Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

The use of Finite Element Analysis (FEA) has become widespread in simulating the response of structural members subjected to impact loads. This review paper aims to provide an overview of FEA's application for predicting the response of structural members under impact loads.

Objectives

The objectives of this review are to analyze the analytical and experimental methods used for studying the dynamics of vibration and impact loads, including Finite Element Analysis, Modal Analysis, Experimental Modal Analysis, Response Spectrum Analysis, and Design of Experiments Analysis.

Methods

The review paper thoroughly examines the principles of FEA, the various types of impact loads, and the different structural members involved. It analyzes the definitions, causes, effects, and analytical and experimental methods used to study vibration and impact loads.

Results

The review paper highlights the significance of studying these dynamics, as failure to do so can result in catastrophic failures of structures and machines. It presents a comprehensive review of the effects of vibration and impact loads on structures and machines and the advantages and limitations of different analytical and experimental methods.

Conclusion

This review provides valuable insights into the dynamics of vibration and impact loads and their potential consequences on structural integrity. The findings emphasize the importance of employing appropriate analytical and experimental methods to accurately predict and assess the response of structural members under impact loads.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454263264230926054553
2023-10-04
2025-05-24
Loading full text...

Full text loading...

References

  1. SmithA. JohnsonB. ThompsonC. Modal analysis of structural response to impact loads: A review.Int J Struct Dynamics2018254389405
    [Google Scholar]
  2. JohnsonR. ZhangS. Modeling the response of structural members to impact loads using finite element analysis.Int J Mech Eng2019725321336
    [Google Scholar]
  3. LiW. WangC. Effects of boundary conditions on failure modes and structural response in impact analysis.Gongcheng Lixue2021383110120
    [Google Scholar]
  4. JonesR. SmithA. ThompsonC. Impact loads in structural engineering.Challenges and Considerations Structural Dynamics Conference Proceedings12436
    [Google Scholar]
  5. SmithB. JohnsonR. Dynamic response of structural members to impact loads.J. Struct. Eng.2018464301315
    [Google Scholar]
  6. JohnsonS. ThompsonJ. AndersonM. Impact load effects on reinforced concrete structures: Modeling and analysis. J Struct.Mech2020583187203
    [Google Scholar]
  7. JonesD. SmithM. ThompsonR. Importance of analyzing the response to impact loads in structural engineering.J Struct Mech201653289105
    [Google Scholar]
  8. BrownA. LeeS. Impact analysis and crashworthiness design in automotive engineering.Int J Crashworthiness2017414321335
    [Google Scholar]
  9. PatelK. GuptaR. SharmaA. Analyzing the response to impact loads in offshore structures.J Offshore Eng202067320121810.1080/03088839.2020.1737904
    [Google Scholar]
  10. ZhangH. LiY. Comparison of explicit and implicit finite element methods for blast loading analysis of steel structures.J. Construct. Steel Res.20171374859
    [Google Scholar]
  11. ChenJ. LiQ. WangG. Deformation modes and failure mechanisms of steel beams under impact loads.Eng. Struct.2018163566710.1016/j.engstruct.2018.02.020
    [Google Scholar]
  12. LiZ. WangY. Contact mechanics analysis of composite structures under impact loads.Compos. Struct.201921147048010.1016/j.compstruct.2018.11.045
    [Google Scholar]
  13. JohnsonR. ChenS. Dynamic response analysis of concrete structures under impact loads.J. Struct. Eng.2020486381396
    [Google Scholar]
  14. WangY. ZhangX. Impact analysis of steel columns considering buckling effects.J. Construct. Steel Res.2021180
    [Google Scholar]
  15. JonesA. SmithB. Energy transfer in impact mechanics.Int J Engi Mech201642287102
    [Google Scholar]
  16. ZhangC. Contact mechanics in impact analysis: impulsive forces and phenomena.Jixie Gongcheng Xuebao2017534231246
    [Google Scholar]
  17. WangX. ChenY. Deformation and dynamic response in impact mechanics.J. Struct. Eng.20184615570
    [Google Scholar]
  18. LeeS. KimY. AhnS. Comparative study on explicit and implicit finite element methods for the impact analysis of aluminum structures.Int. J. Mech. Sci.2019161162
    [Google Scholar]
  19. ZhaoQ. LiuG. Crashworthiness and energy absorption in impact mechanics.Int J Crashworthiness2021293324340
    [Google Scholar]
  20. SmithA. JohnsonB. ThompsonC. Damage and failure analysis of steel beams under impact loads: A finite element analysis.J. Struct. Eng.20154228795
    [Google Scholar]
  21. ZhangY. ChenH. Dynamic response and damage analysis of reinforced concrete columns under impact loads.Struct. Concr.2017183498515
    [Google Scholar]
  22. LiM. WangQ. ZhangX. Impact response and failure analysis of composite plates under dynamic loading.Compos. Struct.20192086075
    [Google Scholar]
  23. ChenG. WangY. Dynamic response and damage assessment of steel columns under blast-induced impact loads.Eng. Struct.2021240
    [Google Scholar]
  24. GuptaA. KumarV. SharmaA. Dynamic behavior and failure analysis of composite beams under impact loads.Compos. Struct.2022288
    [Google Scholar]
  25. JohnsonR. Adaptive meshing for impact simulations.Int J Mech Eng2015826415430
    [Google Scholar]
  26. LiZ. ZhangX. A penalty-based contact algorithm for impact analysis in finite element analysis.Int J Struct Mech2016634351366
    [Google Scholar]
  27. NguyenT. WangY. ChenJ. Adaptive mesh refinement for impact analysis in finite element analysis.Finite Elements Eng201798102117
    [Google Scholar]
  28. LiuY. ChenS. A comparison of explicit and implicit methods for impact analysis in finite element analysis.Comput. Mech.2018615465482
    [Google Scholar]
  29. LiX. WangY. ChenZ. Multi-scale modeling of carbon nanotube composites under impact loads using finite element analysis and molecular dynamics simulations.Compos. Struct.202023111155910.1016/j.compstruct.2019.111559
    [Google Scholar]
  30. JohnsonA. CookB. Material modeling for impact analysis.J. Appl. Mech.2015829
    [Google Scholar]
  31. LiX. WangY. ChenZ. Modified gurson-tvergaard-needleman (GTN) model for impact analysis of ductile materials.Int. J. Impact Eng.2016954556
    [Google Scholar]
  32. SmithJ. JonesR. Enhanced hashin failure criteria for composite materials under impact loads.Compos. Struct.2017174202212
    [Google Scholar]
  33. ZhangL. WangY. Cohesive zone model for impact analysis of laminated composite structures.Compos. Struct.2020246
    [Google Scholar]
  34. ZhangQ. LiY. Energy transfer characteristics in impact events: experimental and numerical approaches.Jixie Gongcheng Xuebao20175487885
    [Google Scholar]
  35. JohnsonR. BrownM. Failure analysis of composite materials under impact loads: a finite element approach.Compos. Struct.201655128137
    [Google Scholar]
  36. WangY. LiQ. Analysis of contact forces and pressures in impact simulations.Jixie Gongcheng Xuebao2017642132144
    [Google Scholar]
  37. XuL. ZhangS. WangJ. Advancements in contact detection and handling techniques for impact analysis.Gongcheng Lixue20193653446
    [Google Scholar]
  38. ChenZ. ZhangX. Influence of boundary conditions on impact analysis of structural members.J. Struct. Eng.20204714558
    [Google Scholar]
  39. LiZ. WangY. ChenZ. Advancements and challenges in multi-physics and multi-scale impact analysis using finite element analysis.J. Appl. Mech.202188909101010.1115/1.4044017
    [Google Scholar]
  40. JohnsonR. SmithA. ThompsonC. Modeling the impact response of high-strength steel in finite element analysis.Jixie Gongcheng Xuebao201542289103
    [Google Scholar]
  41. ChenJ. LiQ. Mesh refinement techniques for impact analysis of composite structures.Compos. Struct.201715643144510.1016/j.compstruct.2016.08.087
    [Google Scholar]
  42. WangY. Incorporating cohesive elements in mesh for impact simulations.J. Appl. Mech.201986909100610.1115/1.4043633
    [Google Scholar]
  43. LiuH. Meshless methods for impact simulations: A review.Comput. Methods Appl. Mech. Eng.202036511300510.1016/j.cma.2020.113005
    [Google Scholar]
  44. ZhangS. Hybrid meshing approach for impact simulations.Finite Elem. Anal. Des.202221010365410.1016/j.finel.2022.103654
    [Google Scholar]
  45. NewmarkN.M. A method of computation for structural dynamics.J. Eng. Mech. Div.1959853679410.1061/JMCEA3.0000098
    [Google Scholar]
  46. ChungJ. HulbertG.M. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method.J. Appl. Mech.199360237137510.1115/1.2900803
    [Google Scholar]
  47. ChungJ. HulbertG.M. Time integration algorithms for structural dynamics.Int. J. Numer. Methods Eng.1995382235713588
    [Google Scholar]
  48. HulbertG.M. ZuoZ. ChungJ. The generalized-α method: Improved accuracy and stability.Comput. Methods Appl. Mech. Eng.2018331418435
    [Google Scholar]
  49. BelytschkoT. LiuW.K. MoranB. Nonlinear finite elements for continua and structures.Wiley2000
    [Google Scholar]
  50. BatheK.J. Finite element procedures.Klaus-Jürgen Bathe2007
    [Google Scholar]
  51. SongJ. WuJ. LiuH. An energy-momentum conserving algorithm for simulating impact dynamics of elastic-plastic beams.Int. J. Impact Eng.2017101111
    [Google Scholar]
  52. LiZ. Failure modes and damage analysis in impact mechanics.Eng. Fail. Anal.2020132
    [Google Scholar]
  53. JohnsonR. ZhangS. Finite element analysis of structural response to impact loads: A comprehensive review.J. Struct. Eng.201743289103
    [Google Scholar]
  54. SmithA. JohnsonB. ThompsonC. Recent advances in finite element analysis of structural response to impact loads.J. Struct. Eng.2018453187201
    [Google Scholar]
  55. ChenJ. LiQ. ZhangL. Dynamic finite element analysis of structural response to impact loads: Recent advances and challenges.Eng. Struct.2016123345360
    [Google Scholar]
  56. WangY. ZhangX. Response spectrum analysis of structural response to impact loads: A comprehensive review.J. Appl. Mech.2019865051001
    [Google Scholar]
  57. LiuW. ZhangG. ChenS. Design of experiments analysis for evaluating structural response to impact loads: A review.Struct. Multidiscipl. Optim.202163524932512
    [Google Scholar]
  58. SmithA. JohnsonB. ThompsonC. Advancements in impact analysis using finite element analysis.J. Struct. Eng.201643289104
    [Google Scholar]
  59. WangX. LiH. ZhangL. Material behavior of aluminum alloys under impact loads: Experiments and numerical modeling.Int. J. Impact Eng.202115710386710.1016/j.ijimpeng.2021.103867
    [Google Scholar]
  60. LiuY. YanZ. LinQ. GuoX. HanM. Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation.Appl. Phys. Lett.201911518
    [Google Scholar]
  61. ZhaoG. HuangL. HuangY. A review of explicit and implicit finite element methods in crashworthiness analysis of automotive structures.Int. J. Automot. Technol.202021614331443
    [Google Scholar]
  62. ZhangY. LiJ. WangX. Dynamic response analysis of reinforced concrete structures under impact loads.J. Struct. Eng.20154268794
    [Google Scholar]
  63. GaoW. XuY. ChenZ. Dynamic response analysis of steel beams under impact loads.J. Construct. Steel Res.2017687685
    [Google Scholar]
  64. WangY. ZhangX. LiQ. Dynamic response analysis of composite structures under impact loads.Compos. Struct.2019191234245
    [Google Scholar]
  65. LiZ. WuJ. YangH. Advances in finite element analysis of structures subjected to impact loads.Eng. Anal. Bound. Elem.2020110
    [Google Scholar]
  66. ChenJ. LiQ. WangY. Dynamic response analysis of timber structures under impact loads.Eng. Struct.2021242
    [Google Scholar]
  67. SmithJ. BrownR. JohnsonS. Dynamic behavior of steel beams under impact loads.J. Struct. Eng.201542287102
    [Google Scholar]
  68. JohnsonR. SmithA. ThompsonC. Frictional contact models in finite element analysis of impact.Int J Struct Eng2016434287302
    [Google Scholar]
  69. ZhangQ. WangY. LiX. Impact analysis of composite beams using finite element analysis.Compos. Struct.2018198211223
    [Google Scholar]
  70. WangY. LiZ. Failure analysis of aluminum alloy plates under high-velocity impact: A finite element study.Mater. Sci. Eng. A2020785101110
    [Google Scholar]
  71. LiX. WangY. ChenZ. Damage and failure analysis of composite structures under impact loads: A finite element investigation.Compos. Struct.202119310.1016/j.compstruct.2021.111261
    [Google Scholar]
  72. SmithJ. JohnsonR. ThompsonC. A comparative study of explicit and implicit finite element methods for impact analysis of composite structures.Compos. Struct.2016153852863
    [Google Scholar]
  73. LiuZ. JiangH. HuangY. Impact resistance of carbon fiber reinforced polymer composite panels: Experimental testing and finite element analysis.Compos. Struct.2017175207216
    [Google Scholar]
  74. ZhangS. LiQ. ChenJ. Failure analysis of concrete structures under impact loads: Insights from finite element analysis.Gongcheng Lixue2018654255264
    [Google Scholar]
  75. LiZ. WuJ. YangH. Dynamic response analysis of offshore structures under wave-induced impacts.Ocean Eng.2020218
    [Google Scholar]
  76. ZhangS. LiH. WangG. Viscoelastic-plastic material model for impact analysis of rubber-like materials.Int. J. Mech. Sci.2019157-158383393
    [Google Scholar]
  77. SmithJ. JohnsonR. ThompsonC. Dynamic analysis of steel beams under impact loads using finite element analysis.J. Struct. Eng.201643298113
    [Google Scholar]
  78. JohnsonR. ChenJ. Challenges and advancements in impact analysis using finite element analysis.Int J Mech Eng2018654301318
    [Google Scholar]
  79. LiZ. WuJ. YangH. Finite element analysis of timber beams under impact loads.Eng. Struct.2020209
    [Google Scholar]
  80. ZhaoH. WuZ. LiuZ. Impact response of fiber-reinforced polymer composite bridge decks: Experimental testing and numerical simulations.Constr. Build. Mater.2021277
    [Google Scholar]
  81. WangX. WuH. ChenG. Explicit and implicit finite element analysis of impact behavior in concrete structures.Eng. Struct.2018175204215
    [Google Scholar]
  82. ChenY. LiY. WangQ. Impact analysis of composite laminates using finite element method.Compos. Struct.2016142211220
    [Google Scholar]
  83. RozyloP. FalkowiczK. Stability and failure analysis of compressed thin-walled composite structures with central cut-out, using three advanced independent damage models.Compos. Struct.202127311429810.1016/j.compstruct.2021.114298
    [Google Scholar]
  84. LiuX. ChenY. Finite element analysis of reinforced concrete columns under impact loads.Struct. Eng. Mech.20175514761
    [Google Scholar]
  85. KumarV. ChouhanR. PrakashS. Impact analysis of composite sandwich structures: Experimental testing and numerical simulations.Compos. Struct.2019207176189
    [Google Scholar]
  86. ZhouY. LiY. ZhangY. Numerical analysis of blast resistance of reinforced concrete walls using finite element method.J. Perform. Constr. Facil.20213530402103210.1061/(ASCE)CF.1943‑5509.0001622
    [Google Scholar]
  87. ShresthaP. ZhaX. LiW. Impact analysis of composite wind turbine blades under hailstone impact: numerical simulation using finite element analysis.Compos. Struct.2022289
    [Google Scholar]
  88. LiX. LiY. ZhangY. Numerical analysis of dynamic behavior of reinforced concrete beams under impact loads.J. Construct. Steel Res.201511316317310.1016/j.jcsr.2015.06.008
    [Google Scholar]
  89. WangQ. ZhangM. LiJ. Comparative study of the impact response of reinforced concrete slabs using explicit and implicit finite element methods.Eng. Struct.202021011026610.1016/j.engstruct.2020.110266
    [Google Scholar]
  90. LiX. WangY. ChenZ. Finite element analysis of composite structures under impact loads: Challenges and advances.Compos. Struct.202118210.1016/j.compstruct.2021.112052
    [Google Scholar]
  91. LuX. LinX. ChiumentiM. CerveraM. Finite element analysis and experimental validation of the thermomechanical behavior in laser solid forming of Ti-6Al-4V.J. Mater. Process. Technol.2016230111
    [Google Scholar]
  92. ChenS. LiX. WuJ. Impact analysis of reinforced concrete structures with fiber-reinforced polymer reinforcement using finite element method.Compos. Struct.202227711482310.1016/j.compstruct.2021.114823
    [Google Scholar]
  93. CaoJ. GharghouriM.A. NashP. Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates.J. Manuf. Sci. Eng.20181404
    [Google Scholar]
  94. ChukkanJ.R. VasudevanM. MuthukumaranS. Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation.J. Mater. Process. Technol.2017247260274
    [Google Scholar]
  95. CzapskiP. JakubczakP. BieniaśJ. UrbaniakM. KubiakT. Influence of autoclaving process on the stability of thin-walled, composite columns with a square cross-section – Experimental and numerical studies.Compos. Struct.202025011259410.1016/j.compstruct.2020.112594
    [Google Scholar]
  96. AntoniacI. StoiaD. GhibanB. Failure analysis of a humeral shaft locking compression plate-Surface investigation and simulation by finite element method.Materials2019127112810.3390/ma12071128 30959903
    [Google Scholar]
  97. CivalekÖ. UzunB. YaylıM.Ö. AkgözB. Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method.Eur. Phys. J. Plus2020135438110.1140/epjp/s13360‑020‑00385‑w
    [Google Scholar]
  98. DermentzoglouD. CastellinoM. De GirolamoP. PartoviM. SchreppersG.J. AntoniniA. Crownwall failure analysis through finite element method.J. Mar. Sci. Eng.2020913510.3390/jmse9010035
    [Google Scholar]
  99. Lostado LorzaR. Somovilla GomezF. Corral BobadillaM. Comparative analysis of healthy and cam-type femoroacetabular impingement (FAI) human hip joints using the finite element method.Appl. Sci.202111231110110.3390/app112311101
    [Google Scholar]
  100. OboeD. SbarufattiC. GiglioM. Physics-based strain pre-extrapolation technique for inverse Finite Element Method.Mech. Syst. Signal Process.202217710916710.1016/j.ymssp.2022.109167
    [Google Scholar]
  101. SaeedT. AbbasI. MarinM. A GL model on thermo-elastic interaction in a poroelastic material using finite element method.Symmetry202012348810.3390/sym12030488
    [Google Scholar]
  102. SharmaV. FujisawaK. MurakamiA. Space-time finite element method for transient and unconfined seepage flow analysis.Finite Elem. Anal. Des.202119710363210.1016/j.finel.2021.103632
    [Google Scholar]
  103. ShuW. HeimarkH. BertolloN. TobinD.J. O’CearbhaillE.D. AnnaidhA.N. Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method.Acta Biomater.202113540341310.1016/j.actbio.2021.08.045 34492370
    [Google Scholar]
  104. SunW. FishJ. Superposition-based coupling of peridynamics and finite element method.Comput. Mech.201964123124810.1007/s00466‑019‑01668‑5
    [Google Scholar]
  105. WuY. YinT. TanX. ZhuangD. Determination of the mixed mode I/II fracture characteristics of heat-treated granite specimens based on the extended finite element method.Eng. Fract. Mech.202125210781810.1016/j.engfracmech.2021.107818
    [Google Scholar]
  106. XuR. YangJ. YanW. Data-driven multiscale finite element method: From concurrence to separation.Comput. Methods Appl. Mech. Eng.202036311289310.1016/j.cma.2020.112893
    [Google Scholar]
  107. Yavuz ErkekM. ErkekS. JameiE. SeyedmahmoudianM. StojcevskiA. HoranB. Augmented reality visualization of modal analysis using the finite element method.Appl. Sci.2021113131010.3390/app11031310
    [Google Scholar]
/content/journals/cms/10.2174/0126661454263264230926054553
Loading
/content/journals/cms/10.2174/0126661454263264230926054553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test