Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Introduction

In the current research work, an attempt has been made to machine Ti6Al4V using Powder Mixed Electric Discharge Machining (PMEDM) technique.

Methods

The experiments were designed utilizing central composite response surface methodology by varying current, pulse on time, gap distance, and powder concentration at five different levels, whereas Material Removal Rate (MRR), Tool Wear Rate (TWR), and Surface Roughness (Ra) were documented as responses. The MRR reduced with an increase in powder concentration until the concentration reached 7.5 g/l because incorporated particles observed the major proportion of heat, and at 10 g/l, MRR increased due to the bridging effect.

Results

The TWR and R reduced with an escalation in powder concentration due to expansion in the spark gap, facilitating the flushing of machined debris. The surface topography revealed cracks, pits, globules, and craters. Moreover, with the addition of particles, surface quality improved owing to the elimination of re-melted layers.

Conclusion

The parameters were optimized using the Grey Relational Analysis (GRA), and the combination of 2.5 g/l powder concentration, 20A current, 50 µs ton, and 4 mm gap distance offers the best machining performance.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145417666230816091446
2023-10-17
2025-05-25
Loading full text...

Full text loading...

References

  1. BandyopadhyayA. EspanaF. BallaV.K. BoseS. OhgamiY. DaviesN.M. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants.Acta Biomater.2010641640164810.1016/j.actbio.2009.11.011 19913643
    [Google Scholar]
  2. VeigaC. Properties and applications of titanium alloys: A brief review.Rev. Adv. Mater. Sci.2012322133148
    [Google Scholar]
  3. MierzejewskaŻ.A. HudákR. SidunJ. Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications.Materials201912117610.3390/ma12010176 30621079
    [Google Scholar]
  4. LiaoZ. AbdelhafeezA. LiH. YangY. DiazO.G. AxinteD. State-of-the-art of surface integrity in machining of metal matrix composites.Int. J. Mach. Tools Manuf.2019143639110.1016/j.ijmachtools.2019.05.006
    [Google Scholar]
  5. SivakandhanC. Babu LoganathanG. MuraliG. Suresh PrabhuP. MarichamyS. Sai KrishnanG. PradhanR. Material characterization and unconventional machining on synthesized Niobium metal matrix.Mater. Res. Express20207101501810.1088/2053‑1591/ab624d
    [Google Scholar]
  6. RanjithR. TamilselvamP. PrakashT. ChinnasamyC. Examinations concerning the electric discharge machining of AZ91/5B 4 C P composites utilizing distinctive electrode materials.Mater. Manuf. Process.201934101120112810.1080/10426914.2019.1628258
    [Google Scholar]
  7. RagavendranU. GhadaiR.K. BhoiA.K. RamachandranM. KalitaK. Sensitivity analysis and optimization of EDM process parameters.Trans. Can. Soc. Mech. Eng.2019431132510.1139/tcsme‑2018‑0021
    [Google Scholar]
  8. RanjithR. GiridharanP.K. DevarajJ. Influence of titanium-coated (B4C + SiC) particles on electric discharge machining of AA7050 hybrid composites.High Temp. Mater. Process.20162029310510.1615/HighTempMatProc.2016017308
    [Google Scholar]
  9. YuvarajT. SureshP. Analysis of EDM Process parameters on inconel 718 using the grey-taguchi and topsis methods. Strojniski vestnik-.Jixie Gongcheng Xuebao20196510557565
    [Google Scholar]
  10. RouniyarA.K. ShandilyaP. Semi-empirical modeling and optimization of process parameters on overcut during MFAPM-EDM of Al6061 alloy.Proc. Inst. Mech. Eng., E J. Process Mech. Eng.202123561784179610.1177/09544089211015890
    [Google Scholar]
  11. RanjithR. Manoj PrabhakarS. GiridharanK. RamuM. Influence of Al 203 particle mixed dielectric fluid on machining performance of Ti6Al4V.Surf. Topogr.20219404505210.1088/2051‑672X/ac456a
    [Google Scholar]
  12. SinghG. LamichhaneY.R. BhuiA.S. SidhuS.S. Surface morphology and microhardness behavior of 316L in HAp-PMEDM.FU Mech Eng2019173445454
    [Google Scholar]
  13. SomuC. RanjithR. GiridharanP.K. RamuM. A novel Cu-Gr composite electrode development for electric discharge machining of Inconel 718 alloy.Surf. Topogr.20219303502510.1088/2051‑672X/ac1f80
    [Google Scholar]
  14. HuuP.N. Multi-objective optimization in titanium powder mixed electrical discharge machining process parameters for die steels.Alex. Eng. J.20205964063407910.1016/j.aej.2020.07.012
    [Google Scholar]
  15. NguyenA.T. LeX.H. NguyenV.T. PhanD.P. TranQ.H. NguyenD.N. NguyenM-C. VuN-P. Optimizing main process parameters when conducting powder-mixed electrical discharge machining of hardened 90CrSi.Machines202191237510.3390/machines9120375
    [Google Scholar]
  16. KansalH.K. SinghS. KumarP. Technology and research developments in powder mixed electric discharge machining (PMEDM).J. Mater. Process. Technol.20071841-3324110.1016/j.jmatprotec.2006.10.046
    [Google Scholar]
  17. YeoS.H. MuraliM. CheahH.T. Magnetic field assisted micro electro-discharge machining.J. Micromech. Microeng.200414111526152910.1088/0960‑1317/14/11/013
    [Google Scholar]
  18. KumarH. Development of mirror like surface characteristics using nano powder mixed electric discharge machining (NPMEDM).Int. J. Adv. Manuf. Technol.2015761-410511310.1007/s00170‑014‑5965‑6
    [Google Scholar]
  19. GugulothuB. RaoG.K.M. BezabihM. Grey relational analysis for multi-response optimization of process parameters in green electrical discharge machining of Ti-6Al-4V alloy.Mater. Today Proc.202146899810.1016/j.matpr.2020.06.135
    [Google Scholar]
  20. PrabhakarM. R, R.; S, V. Characterization of electric discharge machining of titanium alloy utilizing MEIOT technique for orthopedic implants.Mater. Res. Express20218808650510.1088/2053‑1591/ac1a2d
    [Google Scholar]
  21. ChaiR. SavvarisA. TsourdosA. ChaiS. XiaY. A review of optimization techniques in spacecraft flight trajectory design.Prog. Aerosp. Sci.201910910054310.1016/j.paerosci.2019.05.003
    [Google Scholar]
  22. RaoR.V. SarojA. OclońP. TalerJ. Design optimization of heat exchangers with advanced optimization techniques: A review.Arch. Comput. Methods Eng.202027251754810.1007/s11831‑019‑09318‑y
    [Google Scholar]
  23. SarkerM.R. JulaiS. SabriM.F.M. SaidS.M. IslamM.M. TahirM. Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system.Sens. Actuators A Phys.201930011163410.1016/j.sna.2019.111634
    [Google Scholar]
  24. RanjithR. VimalkumarS.N. Integrated MOORA-ELECTRE approach for solving multi-criteria decision problem.World J. Eng.2021
    [Google Scholar]
  25. RajamanickamR. KumarS.N.V. GiridharanP.K. PradeepV. Characterization of tribological and mechanical properties of AA7050/Al2O3 composites at elevated temperature. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes2021254
    [Google Scholar]
  26. AnN.T. NamN.M. QinX. Solving k-center problems involving sets based on optimization techniques.J. Glob. Optim.202076118920910.1007/s10898‑019‑00834‑6
    [Google Scholar]
  27. BuiV.D. MwangiJ.W. MeinshausenA.K. MuellerA.J. BertrandJ. SchubertA. Antibacterial coating of Ti-6Al-4V surfaces using silver nano-powder mixed electrical discharge machining.Surf. Coat. Tech.202038312525410.1016/j.surfcoat.2019.125254
    [Google Scholar]
  28. RouniyarA.K. ShandilyaP. Fabrication and experimental investigation of magnetic field assisted powder mixed electrical discharge machining on machining of aluminum 6061 alloy.Proc. Inst. Mech. Eng., B J. Eng. Manuf.2019233122283229110.1177/0954405419838954
    [Google Scholar]
  29. SahuS.K. DattaS. Experimental studies on graphite powder-mixed electro-discharge machining of Inconel 718 super alloys: Comparison with conventional electro-discharge machining.Proc. Inst. Mech. Eng., E J. Process Mech. Eng.2019233238440210.1177/0954408918787104
    [Google Scholar]
  30. RouniyarA.K. ShandilyaP. Experimental investigation on recast layer and surface roughness on aluminum 6061 alloy during magnetic field assisted powder mixed electrical discharge machining.J. Mater. Eng. Perform.202029127981799210.1007/s11665‑020‑05244‑4
    [Google Scholar]
  31. JadamT. SahuS.K. DattaS. MasantaM. Powder-mixed electro-discharge machining performance of Inconel 718: effect of concentration of multi-walled carbon nanotube added to the dielectric media.Sadhana202045113510.1007/s12046‑020‑01378‑2
    [Google Scholar]
  32. IlaniM.A. KhoshnevisanM. Powder mixed-electrical discharge machining (EDM) with the electrode is made by fused deposition modeling (FDM) at Ti-6Al-4V machining procedure.Multiscale and Multidiscip. Model. Exp. and Des.202033173186
    [Google Scholar]
  33. DineshS. VijayanV. ThanikaikarasanS. SebastianP.J. Productivity and quality enhancement in powder mixed electrical discharge machining for OHNS die steel by utilization of ANN and RSM modeling.J. New Mater. Electrochem. Syst.20192213343
    [Google Scholar]
  34. DharmendraB.V. KodaliS.P. Nageswara RaoB. A simple and reliable Taguchi approach for multi-objective optimization to identify optimal process parameters in nano-powder-mixed electrical discharge machining of INCONEL800 with copper electrode.Heliyon201958e0232610.1016/j.heliyon.2019.e02326 31485524
    [Google Scholar]
  35. KalamanS. YasarH. EkmekciN. OpozT.T. EkmekciB. Powder mixed electrical discharge machining and biocompatibility: A state of the art review. The 18th International Conference on Machine Design and Production2018
    [Google Scholar]
  36. PrakashC. SinghS. SinghM. AntilP. AliyuA.A.A. Abdul-RaniA.M. SidhuS.S. Multi-objective optimization of MWCNT mixed electric discharge machining of Al–30SiC p MMC using particle swarm optimization.Futuristic Composites.SingaporeSpringer201814516410.1007/978‑981‑13‑2417‑8_7
    [Google Scholar]
  37. MohantyS. MishraA. NandaB.K. RoutaraB.C. Multi-objective parametric optimization of nano powder mixed electrical discharge machining of AlSiCp using response surface methodology and particle swarm optimization.Alex. Eng. J.201857260961910.1016/j.aej.2017.02.006
    [Google Scholar]
  38. JattiV.S. BaganeS. Thermo-electric modelling, simulation and experimental validation of powder mixed electric discharge machining (PMEDM) of BeCu alloys.Alex. Eng. J.201857264365310.1016/j.aej.2017.02.023
    [Google Scholar]
  39. BanhT.L. NguyenH.P. NgoC. NguyenD.T. Characteristics optimization of powder mixed electric discharge machining using titanium powder for die steel materials.Proc. Inst. Mech. Eng., E J. Process Mech. Eng.2018232328129810.1177/0954408917693661
    [Google Scholar]
  40. RameshS. JenarthananM.P. Experimental investigation of powder-mixed electric discharge machining of AISI P20 steel using different powders and tool materials.Multidiscip. Model. Mater. Struct.2018
    [Google Scholar]
  41. SharmaD. MohantyS. DasA.K. Surface modification of titanium alloy using hBN powder mixed dielectric through micro-electric discharge machining.Surf. Coat. Tech.202038112515710.1016/j.surfcoat.2019.125157
    [Google Scholar]
  42. SinghJ. SharmaR.K. Multi-objective optimization of green powder-mixed electrical discharge machining of tungsten carbide alloy.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2018232162774278610.1177/0954406217727306
    [Google Scholar]
  43. ShardA. ShikhaD. GuptaV. GargM.P. Effect of B4C abrasive mixed into dielectric fluid on electrical discharge machining.J. Braz. Soc. Mech. Sci. Eng.2018401255410.1007/s40430‑018‑1474‑0
    [Google Scholar]
  44. NguyenH.P. PhamV.D. NgoN.V. Application of TOPSIS to Taguchi method for multi-characteristic optimization of electrical discharge machining with titanium powder mixed into dielectric fluid.Int. J. Adv. Manuf. Technol.2018985-81179119810.1007/s00170‑018‑2321‑2
    [Google Scholar]
  45. PrakashK.B. AmarkarthikA. RavikumarM. Manoj KumarP. JegadheeswaranS. Optimizing performance characteristics of blower for combustion process using taguchi based grey relational analysis.Advances in Materials Research.SingaporeSpringer202115516310.1007/978‑981‑15‑8319‑3_17
    [Google Scholar]
  46. SarrafF. NejadS.H. Improving performance evaluation based on balanced scorecard with grey relational analysis and data envelopment analysis approaches: Case study in water and wastewater companies.Eval. Program Plann.20207910176210.1016/j.evalprogplan.2019.101762 31835153
    [Google Scholar]
  47. WuY. ZhouF. KongJ. Innovative design approach for product design based on TRIZ, AD, fuzzy and Grey relational analysis.Comput. Ind. Eng.202014010627610.1016/j.cie.2020.106276
    [Google Scholar]
  48. LiX. WangZ. ZhangL. ZouC. DorrellD.D. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis.J. Power Sources2019410-41110611410.1016/j.jpowsour.2018.10.069
    [Google Scholar]
  49. YazdaniM. KahramanC. ZarateP. OnarS.C. A fuzzy multi attribute decision framework with integration of QFD and grey relational analysis.Expert Syst. Appl.201911547448510.1016/j.eswa.2018.08.017
    [Google Scholar]
/content/journals/cms/10.2174/2666145417666230816091446
Loading
/content/journals/cms/10.2174/2666145417666230816091446
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): GRA; MRR; optimization; PMEDM; response surface methodology; surface topography
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test