Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Many industries use polysaccharide materials, such as those dealing with food, food packaging, medicine delivery, tissue engineering, wound dressing, wastewater treatment, and bioremediation. They were implemented in these spheres because of their efficacy, low cost, non-toxicity, biocompatibility, and biodegradability. It's well-known that many quick and easy techniques can be used to synthesize polysaccharides successfully. Nanotechnology and biotechnology have combined to create nanoparticles that are effective carriers for a wide range of medicines. Numerous researchers in the field of drug delivery are interested in polysaccharides because of their countless desirable properties, including biocompatibility, biodegradability, low toxicity, and amenability to modification. Gene delivery nanoparticles can be prepared from a variety of polysaccharides and their derivatives, with chitosan, hyaluronic acid, and dextran being popular choices. This manuscript provides an overview of the chemical and physical properties of polysaccharides that are of particular interest for use in biomedical applications and then discusses recent advances in the production of polysaccharide-based nanoparticles for gene delivery.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145417666230904150858
2023-09-21
2025-06-20
Loading full text...

Full text loading...

References

  1. LiuJ. WillförS. XuC. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications.Bioactive Carbohydrates and Dietary Fibre201551316110.1016/j.bcdf.2014.12.001
    [Google Scholar]
  2. LempensE.H.M. HelmsB.A. MerkxM. MeijerE.W. Efficient and chemoselective surface immobilization of proteins by using aniline-catalyzed oxime chemistry.ChemBioChem200910465866210.1002/cbic.200900028 19241407
    [Google Scholar]
  3. KooH. HuhM.S. SunI.C. In vivo targeted delivery of nanoparticles for theranosis.Acc. Chem. Res.201144101018102810.1021/ar2000138 21851104
    [Google Scholar]
  4. HuhM.S. LeeE.J. KooH. Polysaccharide-based nanoparticles for gene delivery.Polymeric Gene Delivery Systems20186583
    [Google Scholar]
  5. MizrahyS. PeerD. Polysaccharides as building blocks for nanotherapeutics.Chem. Soc. Rev.20124172623264010.1039/C1CS15239D 22085917
    [Google Scholar]
  6. AminabhaviT.M. DeshmukhA.S. Polysaccharide-based hydrogels as biomaterials. In: Polymeric hydrogels as smart biomaterials.20154571
    [Google Scholar]
  7. FriedmannT. A brief history of gene therapy.Nat. Genet.199222939810.1038/ng1092‑93 1303270
    [Google Scholar]
  8. RothJ.A. CristianoR.J. Gene therapy for cancer: what have we done and where are we going?J. Natl. Cancer Inst.1997891213910.1093/jnci/89.1.21 8978404
    [Google Scholar]
  9. PatilS.D. RhodesD.G. BurgessD.J. DNA-based therapeutics and DNA delivery systems: A comprehensive review.AAPS J.200571E61E7710.1208/aapsj070109 16146351
    [Google Scholar]
  10. HuangG. HuangH. Application of hyaluronic acid as carriers in drug delivery.Drug Deliv.201825176677210.1080/10717544.2018.1450910 29536778
    [Google Scholar]
  11. SindhuR.K. GoyalA. DasJ. Neha, Choden S, Kumar P. Immunomodulatory potential of polysaccharides derived from plants and microbes: A narrative review.Carbohydrate Polymer Technologies and Applications2021210004410.1016/j.carpta.2021.100044
    [Google Scholar]
  12. MahmoudY.A.G. El-NaggarM.E. Abdel-MegeedA. El-NewehyM. Recent advancements in microbial polysaccharides: Synthesis and applications.Polymers (Basel)20211323413610.3390/polym13234136 34883639
    [Google Scholar]
  13. ZhengY XieQ WangH HuY RenB LiX Recent advances in plant polysaccharide-mediated nano drug delivery systems.Int J Biol Macromol2020165Pt B26688310.1016/j.ijbiomac.2020.10.173 33115646
    [Google Scholar]
  14. BarbosaJ.R. de CarvalhoJunior RN Polysaccharides obtained from natural edible sources and their role in modulating the immune system: Biologically active potential that can be exploited against COVID-19.Trends Food Sci. Technol.202110822323510.1016/j.tifs.2020.12.026 33424125
    [Google Scholar]
  15. ChaudhuriS. DattaH.K. Macrofungal Polysaccharides as Immunoceuticals in Cancer Therapy. In: Advances in Macrofungi.1st EditionCRC Press202128731010.1201/9781003191278‑20
    [Google Scholar]
  16. QuJ. HuangP. ZhangL. Hepatoprotective effect of plant polysaccharides from natural resources: A review of the mechanisms and structure-activity relationship.Int. J. Biol. Macromol.2020161243410.1016/j.ijbiomac.2020.05.196 32485257
    [Google Scholar]
  17. TahmouziS. GhodsiM. Optimum extraction of polysaccharides from motherwort leaf and its antioxidant and antimicrobial activities.Carbohydr. Polym.201411239640310.1016/j.carbpol.2014.06.024 25129759
    [Google Scholar]
  18. AzzamT. DombA. Current developments in gene transfection agents.Curr. Drug Deliv.20041216519310.2174/1567201043479902 16305382
    [Google Scholar]
  19. MeeraG. AbrahamT.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan-a review.J. Control. Release2006114111410.1016/j.jconrel.2006.04.017 16828914
    [Google Scholar]
  20. YouJ.O. PengC.A. January. Calcium‐alginate nanoparticles formed by reverse microemulsion as gene carriers.Macromol. Symp.2005219114715310.1002/masy.200550113
    [Google Scholar]
  21. TahamtanA. TabarraeiA. MoradiA. Chitosan nanoparticles as a potential nonviral gene delivery for HPV-16 E7 into mammalian cells.Artif. Cells Nanomed. Biotechnol.201543636637210.3109/21691401.2014.893522 24641772
    [Google Scholar]
  22. KimT.H. JinH. KimH.W. ChoM.H. ChoC.S. Mannosylated chitosan nanoparticle–based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells.Mol. Cancer Ther.2006571723173210.1158/1535‑7163.MCT‑05‑0540 16891458
    [Google Scholar]
  23. LuH.D. ZhaoH.Q. WangK. LvL.L. Novel hyaluronic acid–chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis.Int. J. Pharm.2011420235836510.1016/j.ijpharm.2011.08.046 21911044
    [Google Scholar]
  24. LuD. WenX. LiangJ. GuZ. ZhangX. FanY. A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate.J. Biomed. Mater. Res. B Appl. Biomater.200989B117718310.1002/jbm.b.31203 18777581
    [Google Scholar]
  25. GaneshS. IyerA.K. GattaccecaF. MorrisseyD.V. AmijiM.M. In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles.J. Control. Release2013172369970610.1016/j.jconrel.2013.10.016 24161254
    [Google Scholar]
  26. DeS. RobinsonD. Polymer relationships during preparation of chitosan–alginate and poly-l-lysine–alginate nanospheres.J. Control. Release200389110111210.1016/S0168‑3659(03)00098‑1 12695066
    [Google Scholar]
  27. SalmasoS. CalicetiP. Stealth properties to improve therapeutic efficacy of drug nanocarriers.J. Drug Deliv.2013201311910.1155/2013/374252 23533769
    [Google Scholar]
  28. AmidiM. MastrobattistaE. JiskootW. HenninkW.E. Chitosan-based delivery systems for protein therapeutics and antigens.Adv. Drug Deliv. Rev.2010621598210.1016/j.addr.2009.11.009 19925837
    [Google Scholar]
  29. JinY.J. TermsarasabU. KoS.H. Hyaluronic acid derivative-based self-assembled nanoparticles for the treatment of melanoma.Pharm. Res.201229123443345410.1007/s11095‑012‑0839‑9 22886625
    [Google Scholar]
  30. SalatinS. JelvehgariM. Natural polysaccharide based nanoparticles for drug/gene delivery.Pharm. Sci.2017232849410.15171/PS.2017.14
    [Google Scholar]
  31. LiuL. FishmanM.L. HicksK.B. Pectin in controlled drug delivery – a review.Cellulose2006141152410.1007/s10570‑006‑9095‑7
    [Google Scholar]
  32. Zomer VolpatoF. AlmodóvarJ. EricksonK. PopatK.C. MigliaresiC. KipperM.J. Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers.Acta Biomater.2012841551155910.1016/j.actbio.2011.12.023 22210184
    [Google Scholar]
  33. RussellS. DeweyD. TegmarkM. Research priorities for robust and beneficial artificial intelligence.AI Mag.201536410511410.1609/aimag.v36i4.2577
    [Google Scholar]
  34. SunJ. TanH. Alginate-based biomaterials for regenerative medicine applications.Materials2013641285130910.3390/ma6041285 28809210
    [Google Scholar]
  35. TengZ. LuoY. WangQ. Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation.J. Agric. Food Chem.201260102712272010.1021/jf205238x 22352467
    [Google Scholar]
  36. ChanpL.W. HengW.S. WanL.S.C. Effect of cellulose derivatives on alginate micro spheresprepared by emulsification.J. Microencapsul.199714554555510.3109/02652049709006808 9292431
    [Google Scholar]
  37. PonceletD. LenckiR. BeaulieuC. HalleJ.P. NeufeldR.J. FournierA. Production of alginate beads by emulsification/internal gelation. I. Methodology.Appl. Microbiol. Biotechnol.1992381394510.1007/BF00169416 1369009
    [Google Scholar]
  38. PartapS. MuthutantriA. RehmanI.U. DavisG.R. DarrJ.A. Preparation and characterisation of controlled porosity alginate hydrogels made via a simultaneous micelle templating and internal gelation process.J. Mater. Sci.200742103502350710.1007/s10853‑007‑1533‑x
    [Google Scholar]
  39. HariP.R. ChandyT. SharmaC.P. Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin.J. Microencapsul.199613331932910.3109/02652049609026019 8860687
    [Google Scholar]
  40. JuH.K. KimS.Y. LeeY.M. pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N -isopropylacrylamide).Polymer (Guildf.)200142166851685710.1016/S0032‑3861(01)00143‑4
    [Google Scholar]
  41. RowleyJ.A. MadlambayanG. MooneyD.J. Alginate hydrogels as synthetic extracellular matrix materials.Biomaterials1999201455310.1016/S0142‑9612(98)00107‑0 9916770
    [Google Scholar]
  42. HuhM.S. LeeE.J. KooH. Polysaccharide-based nanoparticles for gene delivery.Polymeric Gene Delivery Systems20186583
    [Google Scholar]
  43. SantS. PoulinS. HildgenP. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.J. Biomed. Mater. Res. A200887A488589510.1002/jbm.a.31800 18228249
    [Google Scholar]
  44. HornigS. BunjesH. HeinzeT. Preparation and characterization of nanoparticles based on dextran–drug conjugates.J. Colloid Interface Sci.20093381566210.1016/j.jcis.2009.05.025 19635622
    [Google Scholar]
  45. JeongY.I.L. KangD.H. ChungC.W. Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer.Int. J. Nanomedicine201161415142710.2147/IJN.S19491 21796244
    [Google Scholar]
  46. JeongY.I.L. ChungK.D. ChoiK.C. Doxorubicin release from self-assembled nanoparticles of deoxycholic acid-conjugated dextran.Arch. Pharm. Res.201134115916710.1007/s12272‑011‑0119‑y 21468928
    [Google Scholar]
  47. LiY.L. ZhuL. LiuZ. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells.Angew. Chem. Int. Ed.200948529914991810.1002/anie.200904260 19937876
    [Google Scholar]
  48. YuJ.M. LiY.J. QiuL.Y. JinY. Self-aggregated nanoparticles of cholesterol-modified glycol chitosan conjugate: Preparation, characterization, and preliminary assessment as a new drug delivery carrier.Eur. Polym. J.200844355556510.1016/j.eurpolymj.2008.01.013
    [Google Scholar]
  49. NittaS. NumataK. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering.Int. J. Mol. Sci.20131411629165410.3390/ijms14011629 23344060
    [Google Scholar]
  50. KhorE. LimL.Y. Implantable applications of chitin and chitosan.Biomaterials200324132339234910.1016/S0142‑9612(03)00026‑7 12699672
    [Google Scholar]
  51. SajeeshS. SharmaC.P. Cyclodextrin–insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.Int. J. Pharm.20063251-214715410.1016/j.ijpharm.2006.06.019 16859846
    [Google Scholar]
  52. van der LubbenI.M. VerhoefJ.C. BorchardG. JungingerH.E. Chitosan and its derivatives in mucosal drug and vaccine delivery.Eur. J. Pharm. Sci.200114320120710.1016/S0928‑0987(01)00172‑5 11576824
    [Google Scholar]
  53. XuY. DuY. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles.Int. J. Pharm.2003250121522610.1016/S0378‑5173(02)00548‑3 12480287
    [Google Scholar]
  54. CuñaM. Alonso-SandeM. Remuñán-LópezC. PivelJ.P. Alonso-LebreroJ.L. AlonsoM.J. Development of phosphorylated glucomannan-coated chitosan nanoparticles as nanocarriers for protein delivery.J. Nanosci. Nanotechnol.2006692887289510.1166/jnn.2006.435 17048495
    [Google Scholar]
  55. MorishitaM. PeppasN.A. Is the oral route possible for peptide and protein drug delivery?Drug Discov. Today20061119-2090591010.1016/j.drudis.2006.08.005 16997140
    [Google Scholar]
  56. GaoP. XiaG. BaoZ. Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery.Int. J. Biol. Macromol.20169171672310.1016/j.ijbiomac.2016.06.015 27287772
    [Google Scholar]
  57. de CamposA.M. DieboldY. CarvalhoE.L.S. SánchezA. José AlonsoM. Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity.Pharm. Res.200421580381010.1023/B:PHAM.0000026432.75781.cb 15180338
    [Google Scholar]
  58. DuceppeN. TabrizianM. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery.Expert Opin. Drug Deliv.20107101191120710.1517/17425247.2010.514604 20836623
    [Google Scholar]
  59. DongX. LiuC. Preparation and characterization of self-assembled nanoparticles of hyaluronic acid-deoxycholic acid conjugates.J. Nanomater.201020101910.1155/2010/906936
    [Google Scholar]
  60. JinYJ UbonvanT KimDD Hyaluronic acid in drug delivery systems.J Pharm Investig201040spc334310.4333/KPS.2010.40.S.033
    [Google Scholar]
  61. ArpiccoS. MillaP. StellaB. DosioF. Hyaluronic acid conjugates as vectors for the active targeting of drugs, genes and nanocomposites in cancer treatment.Molecules20141933193323010.3390/molecules19033193 24642908
    [Google Scholar]
  62. ChoH.J. YoonI.S. YoonH.Y. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin.Biomaterials20123341190120010.1016/j.biomaterials.2011.10.064 22074664
    [Google Scholar]
  63. BalazsE.A. DenlingerJ.L. Viscosupplementation: a new concept in the treatment of osteoarthritis.J. Rheumatol. Suppl.19933939 8410881
    [Google Scholar]
  64. AruffoA. StamenkovicI. MelnickM. UnderhillC.B. SeedB. CD44 is the principal cell surface receptor for hyaluronate.Cell19906171303131310.1016/0092‑8674(90)90694‑A 1694723
    [Google Scholar]
  65. HuhM.S. LeeE.J. KooH. Polysaccharide-based nanoparticles for gene delivery.Polymeric Gene Delivery Systems20186583
    [Google Scholar]
  66. SoniaTA SharmaCP Chitosan and its derivatives for drug delivery perspective.Chitosan for biomaterials I20112353
    [Google Scholar]
  67. JoJ. YamamotoM. MatsumotoK. NakamuraT. TabataY. Liver targeting of plasmid DNA with a cationized pullulan for tumor suppression.J. Nanosci. Nanotechnol.2006692853285910.1166/jnn.2006.466 17048491
    [Google Scholar]
  68. KanataniI. IkaiT. OkazakiA. Efficient gene transfer by pullulan–spermine occurs through both clathrin- and raft/caveolae-dependent mechanisms.J. Control. Release20061161758210.1016/j.jconrel.2006.09.001 17055606
    [Google Scholar]
  69. RekhaM.R. SharmaC.P. Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery.Biomaterials200930346655666410.1016/j.biomaterials.2009.08.029 19726082
    [Google Scholar]
  70. HuangY. HuH. LiR.Q. YuB. XuF.J. Versatile types of MRI-visible cationic nanoparticles involving pullulan polysaccharides for multifunctional gene carriers.ACS Appl. Mater. Interfaces2016863919392710.1021/acsami.5b11016 26841955
    [Google Scholar]
  71. YamaokaT. TabataY. IkadaY. Body distribution profile of polysaccharides after intravenous administration.Drug Deliv.199311758210.3109/10717549309031345
    [Google Scholar]
  72. PrajapatiV.D. JaniG.K. KhandaS.M. Pullulan: An exopolysaccharide and its various applications.Carbohydr. Polym.201395154054910.1016/j.carbpol.2013.02.082 23618305
    [Google Scholar]
  73. SalatinS. BararJ. Barzegar-JalaliM. AdibkiaK. MilaniM.A. JelvehgariM. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery.Arch. Pharm. Res.20163991181119210.1007/s12272‑016‑0782‑0 27352214
    [Google Scholar]
  74. MorrisG.A. KökS.M. HardingS.E. AdamsG.G. Polysaccharide drug delivery systems based on pectin and chitosan.Biotechnol. Genet. Eng. Rev.201027125728410.1080/02648725.2010.10648153 21415901
    [Google Scholar]
  75. MishraR.K. BanthiaA.K. MajeedA.B.A. Pectin based formulations for biomedical applications: a review.Asian J. Pharm. Clin. Res.20125417
    [Google Scholar]
  76. LiL. MoonH.T. ParkJ.Y. Heparin-based self-assembled nanoparticles for photodynamic therapy.Macromol. Res.201119548749410.1007/s13233‑011‑0505‑9
    [Google Scholar]
  77. LiL. HuhK.M. LeeY.K. KimS.Y. Design of a multifunctional heparin-based nanoparticle system for anticancer drug delivery.Macromol. Res.201018215316110.1007/s13233‑009‑0134‑8
    [Google Scholar]
  78. ChaturvediK. GangulyK. KulkarniA.R. Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review.Expert Opin. Drug Deliv.20118111455146810.1517/17425247.2011.610790 21867463
    [Google Scholar]
  79. LehtovaaraB.C. GuF.X. Pharmacological, structural, and drug delivery properties and applications of 1,3-β-glucans.J. Agric. Food Chem.201159136813682810.1021/jf200964u 21609131
    [Google Scholar]
  80. AminabhaviT.M. NadagoudaM.N. JoshiS.D. MoreU.A. Guar gum as platform for the oral controlled release of therapeutics.Expert Opin. Drug Deliv.201411575376610.1517/17425247.2014.897326 24650099
    [Google Scholar]
  81. RollandA. Gene medicines: The end of the beginning?Adv. Drug Deliv. Rev.200557566967310.1016/j.addr.2005.01.002 15757753
    [Google Scholar]
  82. EdelsteinM.L. AbediM.R. WixonJ. Gene therapy clinical trials worldwide to 2007—an update.J. Gene Med.200791083384210.1002/jgm.1100 17721874
    [Google Scholar]
  83. VandenDriesscheT. ThorrezL. NaldiniL. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo.Blood2002100381382210.1182/blood.V100.3.813 12130491
    [Google Scholar]
  84. MerdanT. Kopec̆ekJ. KisselT. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer.Adv. Drug Deliv. Rev.200254571575810.1016/S0169‑409X(02)00046‑7 12204600
    [Google Scholar]
  85. GaoX. HuangL. Potentiation of cationic liposome-mediated gene delivery by polycations.Biochemistry19963531027103610.1021/bi952436a 8547238
    [Google Scholar]
  86. HuhM.S. LeeE.J. KooH. Polysaccharide-based nanoparticles for gene delivery.Polymeric Gene Delivery Systems20186583
    [Google Scholar]
  87. De SmedtS.C. DemeesterJ. HenninkW.E. Cationic polymer based gene delivery systems.Pharm. Res.200017211312610.1023/A:1007548826495 10751024
    [Google Scholar]
  88. TuschlT. RNA interference and small interfering RNAs.ChemBioChem20012423924510.1002/1439‑7633(20010401)2:4<239:AID‑CBIC239>3.0.CO;2‑R 11828450
    [Google Scholar]
  89. JanaS. ChakrabortyC. NandiS. DebJ.K. RNA interference: potential therapeutic targets.Appl. Microbiol. Biotechnol.200465664965710.1007/s00253‑004‑1732‑1 15372214
    [Google Scholar]
  90. AignerA. Nonviral in vivo delivery of therapeutic small interfering RNAs.Curr. Opin. Mol. Ther.200794345352 17694447
    [Google Scholar]
  91. TolentinoM.J. BruckerA.J. FosnotJ. Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization.Retina200424113213810.1097/00006982‑200402000‑00018 15076954
    [Google Scholar]
  92. DescarguesP. DeraisonC. BonnartC. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity.Nat. Genet.2005371566510.1038/ng1493 15619623
    [Google Scholar]
  93. Al-AbdA.M. LeeS.H. KimS.H. Penetration and efficacy of VEGF siRNA using polyelectrolyte complex micelles in a human solid tumor model in-vitro. J. Control. Release2009137213013510.1016/j.jconrel.2009.03.009 19306899
    [Google Scholar]
  94. LiuS. JiaB. QiaoR. A novel type of dual-modality molecular probe for MR and nuclear imaging of tumor: preparation, characterization and in vivo application.Mol. Pharm.2009641074108210.1021/mp900143a 19527074
    [Google Scholar]
  95. de FougerollesA.R. Delivery vehicles for small interfering RNA in vivo.Hum. Gene Ther.200819212513210.1089/hum.2008.928 18257677
    [Google Scholar]
  96. HowardK.A. RahbekU.L. LiuX. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system.Mol. Ther.200614447648410.1016/j.ymthe.2006.04.010 16829204
    [Google Scholar]
  97. RudzinskiW.E. PalaciosA. AhmedA. LaneM.A. AminabhaviT.M. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles.Carbohydr. Polym.201614732333210.1016/j.carbpol.2016.04.041 27178938
    [Google Scholar]
  98. RudzinskiW.E. AminabhaviT.M. Chitosan as a carrier for targeted delivery of small interfering RNA.Int. J. Pharm.20103991-211110.1016/j.ijpharm.2010.08.022 20732398
    [Google Scholar]
  99. WongananP. Lansakara-PD.S.P. ZhuS. Just getting into cells is not enough: Mechanisms underlying 4-(N)-stearoyl gemcitabine solid lipid nanoparticle’s ability to overcome gemcitabine resistance caused by RRM1 overexpression.J. Control. Release20131691-2172710.1016/j.jconrel.2013.03.033 23570983
    [Google Scholar]
  100. MaoS. SunW. KisselT. Chitosan-based formulations for delivery of DNA and siRNA.Adv. Drug Deliv. Rev.2010621122710.1016/j.addr.2009.08.004 19796660
    [Google Scholar]
  101. PaiS.I. LinY-Y. MacaesB. MeneshianA. HungC-F. WuT-C. Prospects of RNA interference therapy for cancer.Gene Ther.200613646447710.1038/sj.gt.3302694 16341059
    [Google Scholar]
  102. SusaM. IyerA.K. RyuK. Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.PLoS One201055e1076410.1371/journal.pone.0010764 20520719
    [Google Scholar]
/content/journals/cms/10.2174/2666145417666230904150858
Loading
/content/journals/cms/10.2174/2666145417666230904150858
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): alginate; chitosan; gene delivery; hydrogel; natural polymer; Polysaccharides
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test