Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Cancer has become a major global public health concern, with millions of new cases and deaths reported annually. Conventional cancer treatments, such as chemotherapy and surgery, continue to be the standard of care; however, they frequently bear significant risks and high costs, necessitating the development of more cost-effective and safe alternatives. These limitations can be overcome by nanoparticle (NPs), composed of organic or inorganic substances in the nanoscale range, which offer benefits including enhanced pharmacokinetics, selective targeting of cancer cells, reduced toxicity, and decreased drug resistance. Green nanotechnology, which integrates nanotechnology with natural compounds, has emerged as a strategy for reducing toxicity on human health and the environment by functioning as reducing, capping, and stabilising agents. Compared to other NPs, Zinc oxide NPs (ZnO NPs) possess a unique selectivity and a potent capacity to target cancer cells, in addition to being biocompatible and considered safer for both humans and the environment. Due to the physiological function of zinc, an essential micronutrient, ZnO NPs have demonstrated greater bioavailability than other metal or metal oxide NPs. NP plays a more significant role in bioavailability than particle size, making ZnO NPs an attractive option for various applications. This mini review aims to comprehensively explore the synthesis methodology of ZnO NPs and the potential mechanisms underlying their anticancer properties.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145417666230918115854
2023-09-27
2025-06-21
Loading full text...

Full text loading...

References

  1. DeoS.V.S. SharmaJ. KumarS. GLOBOCAN 2020 report on global cancer burden: Challenges and opportunities for surgical oncologists.Ann. Surg. Oncol.202229116497650010.1245/s10434‑022‑12151‑6 35838905
    [Google Scholar]
  2. GurenM.G. The global challenge of colorectal cancer.Lancet Gastroenterol. Hepatol.201941289489510.1016/S2468‑1253(19)30329‑2 31648973
    [Google Scholar]
  3. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  4. DadwalA. BaldiA. KumarN.R. NPs as carriers for drug delivery in cancer.Artif. Cells Nanomed. Biotechnol.201846S2295305
    [Google Scholar]
  5. Da SilvaC.G. PetersG.J. OssendorpF. CruzL.J. The potential of multi-compound nanoparticles to bypass drug resistance in cancer.Cancer Chemother. Pharmacol.201780588189410.1007/s00280‑017‑3427‑1 28887666
    [Google Scholar]
  6. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c04996 34181394
    [Google Scholar]
  7. PalazzoloS. BaydaS. HadlaM. The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes.Curr. Med. Chem.201825344224426810.2174/0929867324666170830113755 28875844
    [Google Scholar]
  8. YaoY. ZhouY. LiuL. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  9. ZhangL. ChanJ.M. GuF.X. Self-assembled lipid--polymer hybrid nanoparticles: A robust drug delivery platform.ACS Nano2008281696170210.1021/nn800275r 19206374
    [Google Scholar]
  10. O’BrienM.E.R. WiglerN. InbarM. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/] Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer.Ann. Oncol.200415344044910.1093/annonc/mdh097 14998846
    [Google Scholar]
  11. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  12. AnastasP.T. KirchhoffM.M. Origins, current status, and future challenges of green chemistry.Acc. Chem. Res.200235968669410.1021/ar010065m 12234198
    [Google Scholar]
  13. SinghJ. DuttaT. KimK.H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation.J. Nanobiotechnology20181618410.1186/s12951‑018‑0408‑4 30373622
    [Google Scholar]
  14. WangN. FengY. Elaborating the role of natural products-induced autophagy in cancer treatment: Achievements and artifacts in the state of the art.BioMed Res. Int.2015201511410.1155/2015/934207 25821829
    [Google Scholar]
  15. SharmaG. RaturiK. DangS. GuptaS. GabraniR. Combinatorial antimicrobial effect of curcumin with selected phytochemicals on Staphylococcus epidermidis.J. Asian Nat. Prod. Res.201416553554110.1080/10286020.2014.911289 24773066
    [Google Scholar]
  16. MandalA.K. KatuwalS. TetteyF. Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications.Nanomaterials20221217306610.3390/nano12173066 36080103
    [Google Scholar]
  17. National Center for Biotechnology Information. PubChem compound summary for CID 14806, Zinc Oxide.Available from: pubchem.ncbi.nlm.nih.gov/compound/Zinc-Oxide (Accessed May 9, 2023)
  18. American Chemical Society.Molecule of the week archive zinc oxide.Available from: acs.org/molecule-of-the-week/archive/z/zinc-oxide.html(Accessed May 9, 2023)
    [Google Scholar]
  19. Healthline. Zinc: Benefits, deficiency, food sources and side effects.Available from: healthline.com/nutrition/zinc#what-it-is(accessed May 9, 2023)
  20. KielbikP. KaszewskiJ. RosowskaJ. Biodegradation of the ZnO:Eu nanoparticles in the tissues of adult mouse after alimentary application.Nanomedicine201713384385210.1016/j.nano.2016.11.002 27884640
    [Google Scholar]
  21. NiyatFY AbadiMHS The review of semiconductor gas sensor for nox detcting.Turk Online J Design, Art Commun20166JLYSPCL89893710.7456/1060JSE/059
    [Google Scholar]
  22. QinX. ZhangJ. WangB. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells.Autophagy202117124266428510.1080/15548627.2021.1911016 33843441
    [Google Scholar]
  23. WiesmannN. TremelW. BriegerJ. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine.J. Mater. Chem. B Mater. Biol. Med.20208234973498910.1039/D0TB00739K 32427264
    [Google Scholar]
  24. MitraS.B.S. PatraP. Porous ZnO nanorod for targeted delivery of doxorubicin: in vitro and in vivo response for therapeutic applications.J. Mater. Chem.201222452414510.1039/c2jm35013k
    [Google Scholar]
  25. NegrescuA.M. KillianM.S. RaghuS.N.V. SchmukiP. MazareA. CimpeanA. Metal oxide nanoparticles: Review of synthesis, characterization and biological effects.J. Funct. Biomater.202213427410.3390/jfb13040274 36547533
    [Google Scholar]
  26. VinardellM. MitjansM. Antitumor activities of metal oxide nanoparticles.Nanomaterials2015521004102110.3390/nano5021004 28347048
    [Google Scholar]
  27. IbraheemS. KadhimA.A. KadhimK.A. KadhimI.A. JabirM. Zinc oxide nanoparticles as diagnostic tool for cancer cells.Int. J. Biomater.2022202211010.1155/2022/2807644 36387955
    [Google Scholar]
  28. MukherjeeD. ZendehdelE.A. GhahfarokhiM.R. PirposhteM.A. DehaghaniA.J. BranguleA. ZnO for probes in diagnostics.Mater Res Found2023146202233
    [Google Scholar]
  29. KimM.K. LeeJ.A. JoM.R. ChoiS.J. Bioavailability of silica, titanium dioxide, and zinc oxide NPs in rats.J. Nanosci. Nanotechnol.20161666580658610.1166/jnn.2016.12350 27427756
    [Google Scholar]
  30. ShenC. JamesS.A. de JongeM.D. TurneyT.W. WrightP.F.A. FeltisB.N. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells.Toxicol. Sci.2013136112013010.1093/toxsci/kft187 23997113
    [Google Scholar]
  31. MilliganJ.J. SahaS. A nanoparticle’s journey to the tumor: Strategies to overcome first-pass metabolism and their limitations.Cancers2022147174110.3390/cancers14071741 35406513
    [Google Scholar]
  32. McGuffieM.J. HongJ. BahngJ.H. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.Nanomedicine2016121334210.1016/j.nano.2015.10.002 26515755
    [Google Scholar]
  33. SunL. GuanJ. XuQ. YangX. WangJ. HuX. Synthesis and applications of molecularly imprinted polymers modified TiO2 nanomaterials: A review.Polymers20181011124810.3390/polym10111248 30961173
    [Google Scholar]
  34. JafariS. DerakhshankhahH. AlaeiL. FattahiA. VarnamkhastiB.S. SabouryA.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications.Biomed. Pharmacother.20191091100111110.1016/j.biopha.2018.10.167 30551360
    [Google Scholar]
  35. KhooK.S. ChiaW.Y. TangD.Y.Y. ShowP.L. ChewK.W. ChenW.H. Nanomaterials utilization in biomass for biofuel and bioenergy production.Energies202013489210.3390/en13040892
    [Google Scholar]
  36. BaptistaP. FernandesA. FigueiredoS. Gold nanoparticle-based theranostics: Disease diagnostics and treatment using a single nanomaterial.Nanobiosensor Disease Diagnosis201520154112310.2147/NDD.S60285
    [Google Scholar]
  37. PanyalaN.R. Peña-MéndezE.M. HavelJ. Silver or silver nanoparticles: A hazardous threat to the environment and human health?J. Appl. Biomed.20086311712910.32725/jab.2008.015
    [Google Scholar]
  38. BaptistaA. SilvaF. PorteiroJ. MíguezJ. PintoG. Sputtering Physical Vapour Deposition (PVD) coatings: A critical review on process improvement and market trend demands.Coatings201881140210.3390/coatings8110402
    [Google Scholar]
  39. DikshitP. KumarJ. DasA. Green synthesis of metallic nanoparticles: Applications and limitations.Catalysts202111890210.3390/catal11080902
    [Google Scholar]
  40. KhanY. SadiaH. Ali ShahS.Z. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review.Catalysts20221211138610.3390/catal12111386
    [Google Scholar]
  41. KurhadeP. KodapeS. ChoudhuryR. Overview on green synthesis of metallic nanoparticles.Chem. Zvesti202175105187522210.1007/s11696‑021‑01693‑w
    [Google Scholar]
  42. BaillyA.L. CorreardF. PopovA. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles.Sci. Rep.2019911289010.1038/s41598‑019‑48748‑3 31501470
    [Google Scholar]
  43. DrummerS. MadzimbamutoT. ChowdhuryM. Green synthesis of transition-metal nanoparticles and their oxides: A review.Materials20211411270010.3390/ma14112700 34063800
    [Google Scholar]
  44. SriramuluM. ShanmugamS. PonnusamyV.K. Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: An in-vitro study.Colloid Interface Sci. Commun.20203510025410.1016/j.colcom.2020.100254
    [Google Scholar]
  45. KuppusamyP. YusoffM.M. ManiamG.P. GovindanN. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report.Saudi Pharm. J.201624447348410.1016/j.jsps.2014.11.013 27330378
    [Google Scholar]
  46. SaravananM. GopinathV. ChaurasiaM.K. SyedA. AmeenF. PurushothamanN. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties.Microb. Pathog.2018115576310.1016/j.micpath.2017.12.039 29248514
    [Google Scholar]
  47. FariqA. KhanT. YasminA. Microbial synthesis of nanoparticles and their potential applications in biomedicine.J. Appl. Biomed.201715424124810.1016/j.jab.2017.03.004
    [Google Scholar]
  48. LiX. Biosynthesis of NPs by microorganisms and their applications.J. Nanomater.20112011116
    [Google Scholar]
  49. NikolaosP. LouiseE.H. Biological synthesis of metallic NPs by bacteria, fungi and plants.J. Nanomed. Nanotechnol.20140505
    [Google Scholar]
  50. JamkhandeP.G. GhuleN.W. BamerA.H. KalaskarM.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J. Drug Deliv. Sci. Technol.20195310117410.1016/j.jddst.2019.101174
    [Google Scholar]
  51. DasR.K. PachapurV.L. LonappanL. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects.Nanotechnol Environ Eng2017211810.1007/s41204‑017‑0029‑4
    [Google Scholar]
  52. GourA. JainN.K. Advances in green synthesis of nanoparticles.Artif. Cells Nanomed. Biotechnol.201947184485110.1080/21691401.2019.1577878 30879351
    [Google Scholar]
  53. NathD. BanerjeeP. Green nanotechnology – A new hope for medical biology.Environ. Toxicol. Pharmacol.2013363997101410.1016/j.etap.2013.09.002 24095717
    [Google Scholar]
  54. NarayananK.B. SakthivelN. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents.Adv. Colloid Interface Sci.20111692597910.1016/j.cis.2011.08.004 21981929
    [Google Scholar]
  55. SiS. MandalT.K. Tryptophan-based peptides to synthesise gold and silver nanoparticles: a mechanistic and kinetic study.Chem European J.200713113160316810.1002/chem.20060149217245786
    [Google Scholar]
  56. MakarovV.V. LoveA.J. SinitsynaO.V. “Green” nanotechnologies: synthesis of metal NPs using plants.Acta Naturae.201461354410.32607/20758251‑2014‑6‑1‑35‑44 24772325
    [Google Scholar]
  57. RauwelP. KüünalS. FerdovS. RauwelE. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM.Adv. Mater. Sci. Eng.201520151910.1155/2015/682749
    [Google Scholar]
  58. KarmousI. PandeyA. HajK.B. ChaouiA. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: Insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles.Biol. Trace Elem. Res.2020196133034210.1007/s12011‑019‑01895‑0 31512171
    [Google Scholar]
  59. Mohd YusofH. MohamadR. ZaidanU.H. Abdul RahmanN.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review.J. Anim. Sci. Biotechnol.20191015710.1186/s40104‑019‑0368‑z 31321032
    [Google Scholar]
  60. ShanmugamR. MunusamyT. JayakodiS. Probiotic-bacteria (lactobacillus fermentum)-wrapped zinc oxide nanoparticles: Biosynthesis, characterization, and antibacterial activity.Fermentation20239541310.3390/fermentation9050413
    [Google Scholar]
  61. Mohd YusofH. Abdul RahmanN.A. MohamadR. ZaidanU.H. SamsudinA.A. Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties.Sci. Rep.20201011999610.1038/s41598‑020‑76402‑w
    [Google Scholar]
  62. JainN. BhargavaA. TarafdarJ.C. SinghS.K. PanwarJ. A biomimetic approach towards synthesis of zinc oxide nanoparticles.Appl. Microbiol. Biotechnol.201397285986910.1007/s00253‑012‑3934‑2 22382164
    [Google Scholar]
  63. RaliyaR. TarafdarJ.C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.).Agric. Res.201321485710.1007/s40003‑012‑0049‑z
    [Google Scholar]
  64. KalpanaV.N. KataruB.A.S. Biosynthesis of zinc oxide NPs using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies.Opennano20183485510.1016/j.onano.2018.06.001
    [Google Scholar]
  65. MoghaddamA.B. MoniriM. AziziS. Biosynthesis of ZnO nanoparticles by a new pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities.Molecules201722687210.3390/molecules22060872 28538674
    [Google Scholar]
  66. ChauhanR. ReddyA. AbrahamJ. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property.Appl. Nanosci.201551637110.1007/s13204‑014‑0292‑7
    [Google Scholar]
  67. MansourA.T. AlprolA.E. KhedawyM. Green synthesis of zinc oxide nanoparticles using red seaweed for the elimination of organic toxic dye from an aqueous solution.Materials20221515516910.3390/ma15155169 35897601
    [Google Scholar]
  68. El-BelelyE.F. FaragM.M.S. SaidH.A. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using arthrospira platensis (Class: Cyanophyceae) and evaluation of their biomedical activities.Nanomaterials20211119510.3390/nano11010095 33406606
    [Google Scholar]
  69. ElrefaeyA.A. El-GamalA.D. HamedS.M. El-BelelyE.F. Algae-mediated biosynthesis of zinc oxide NPs from Cystoseira crinite (Fucales; Sargassaceae) and it’s antimicrobial and antioxidant activities.Egypt. J. Chem.2022654231240
    [Google Scholar]
  70. RaoM.D. GautamP. Synthesis and characterization of ZnO nanoflowers using C hlamydomonas reinhardtii: A green approach.Environ. Prog. Sustain. Energy20163541020102610.1002/ep.12315
    [Google Scholar]
  71. ZhuW. HuC. RenY. Green synthesis of zinc oxide nanoparticles using Cinnamomum camphora (L.) Presl leaf extracts and its antifungal activity.J. Environ. Chem. Eng.20219610665910.1016/j.jece.2021.106659
    [Google Scholar]
  72. TingB.Y.S. FuloriaN.K. SubrimanyanV. Biosynthesis and response of zinc oxide nanoparticles against periimplantitis triggering pathogens.Materials2022159317010.3390/ma15093170 35591502
    [Google Scholar]
  73. BoskabadiS.H. BalanezhadS.Z. NeamatiA. TabriziM.H. The green-synthesized zinc oxide nanoparticle as a novel natural apoptosis inducer in human breast (MCF7 and MDA-MB231) and colon (HT-29) cancer cells.Inorganic Nano-Metal Chem202151573374310.1080/24701556.2020.1808991
    [Google Scholar]
  74. UmamaheswariA. PrabuS.L. JohnS.A. PuratchikodyA. Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines.Biotechnol. Rep.202129e0059510.1016/j.btre.2021.e00595 33659193
    [Google Scholar]
  75. RahmanF. Majed PatwaryM.A. Bakar SiddiqueM.A. Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: Characterization, antimicrobial, antioxidant and photocatalytic activity.R. Soc. Open Sci.202291122085810.1098/rsos.220858 36425517
    [Google Scholar]
  76. OmranA.M.E. Characterization of green route synthesized zinc oxide nanoparticles using Cyperus rotundus rhizome extract: Antioxidant, antibacterial, anticancer and photocatalytic potential.J. Drug Deliv. Sci. Technol.20237910400010.1016/j.jddst.2022.104000
    [Google Scholar]
  77. UmarH. KavazD. RizanerN. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines.Int. J. Nanomedicine2018148710010.2147/IJN.S186888 30587987
    [Google Scholar]
  78. GahlawatG. ChoudhuryA.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes.RSC Advances2019923129441296710.1039/C8RA10483B 35520790
    [Google Scholar]
  79. Al-KordyH.M.H. SabryS.A. MabroukM.E.M. Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7.Sci. Rep.20211111092410.1038/s41598‑021‑90408‑y 34035407
    [Google Scholar]
  80. ThanhN.T.K. MacleanN. MahiddineS. Mechanisms of nucleation and growth of nanoparticles in solution.Chem. Rev.2014114157610763010.1021/cr400544s 25003956
    [Google Scholar]
  81. XuJ HuangY ZhuS AbbesN JingX ZhangL. A review of the green synthesis of ZnO NPs using plant extracts and their prospects for application in antibacterial textiles. J Eng Fiber Fabr202116
    [Google Scholar]
  82. RasliN.I. BasriH. HarunZ. Zinc oxide from aloe vera extract: Two-level factorial screening of biosynthesis parameters.Heliyon202061e0315610.1016/j.heliyon.2020.e03156 32042952
    [Google Scholar]
  83. FakhariS. JamzadM. Kabiri FardH. Green synthesis of zinc oxide nanoparticles: A comparison.Green Chem. Lett. Rev.2019121192410.1080/17518253.2018.1547925
    [Google Scholar]
  84. ChopraH. BibiS. SinghI. Green metallic nanoparticles: Biosynthesis to applications.Front. Bioeng. Biotechnol.20221087474210.3389/fbioe.2022.874742
    [Google Scholar]
  85. IbrahimH.M.M. Green synthesis and characterization of silver NPs using banana peel extract and their antimicrobial activity against representative microorganisms.J Radiat Res Appl Sci201583265275
    [Google Scholar]
  86. AziziS. MohamadR. BahadoranA. Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica.J. Photochem. Photobiol. B201616144144910.1016/j.jphotobiol.2016.06.007 27318600
    [Google Scholar]
  87. CarmelietP. JainR.K. Angiogenesis in cancer and other diseases.Nature2000407680124925710.1038/35025220 11001068
    [Google Scholar]
  88. NavyaP.N. KaphleA. SrinivasS.P. BhargavaS.K. RotelloV.M. DaimaH.K. Current trends and challenges in cancer management and therapy using designer nanomaterials.Nano Converg.2019612310.1186/s40580‑019‑0193‑2 31304563
    [Google Scholar]
  89. CaritaA.C. EloyJ.O. ChorilliM. LeeR.J. LeonardiG.R. Recent advances and perspectives in liposomes for cutaneous drug delivery.Curr. Med. Chem.201825560663510.2174/0929867324666171009120154 28990515
    [Google Scholar]
  90. LimE.K. ChungB.H. ChungS.J. Recent advances in pHsensitive polymeric nanoparticles for smart drug delivery in cancer therapy.Curr. Drug Targets201819430031710.2174/1389450117666160602202339 27262486
    [Google Scholar]
  91. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m 19206243
    [Google Scholar]
  92. RappoportJ.Z. Focusing on clathrin-mediated endocytosis.Biochem. J.2008412341542310.1042/BJ20080474 18498251
    [Google Scholar]
  93. SabourianP. YazdaniG. AshrafS.S. Effect of physico-chemical properties of nanoparticles on their intracellular uptake.Int. J. Mol. Sci.20202121801910.3390/ijms21218019 33126533
    [Google Scholar]
  94. WangJ. ByrneJ.D. NapierM.E. DeSimoneJ.M. More effective nanomedicines through particle design.Small20117141919193110.1002/smll.201100442 21695781
    [Google Scholar]
  95. XiangS. TongH. ShiQ. Uptake mechanisms of nonviral gene delivery.J. Control. Release2012158337137810.1016/j.jconrel.2011.09.093 21982904
    [Google Scholar]
  96. SahooS.K. DwivediG.K. DeyP. PraharajS. Green synthesized ZnO nanoparticles for sustainable production and nutritional biofortification of green gram.Environ Technol Innov20212410195710.1016/j.eti.2021.101957
    [Google Scholar]
  97. MagroM. VenerandoA. MaconeA. CanettieriG. AgostinelliE. vianello F. Nanotechnology-based strategies to develop new anticancer therapies.Biomolecules202010573510.3390/biom10050735 32397196
    [Google Scholar]
  98. De JongW.H. HagensW.I. KrystekP. BurgerM.C. SipsA.J.A.M. GeertsmaR.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.Biomaterials200829121912191910.1016/j.biomaterials.2007.12.037 18242692
    [Google Scholar]
  99. AkhtarM.J. AhamedM. AlhadlaqH.A. Challenges facing nanotoxicology and nanomedicine due to cellular diversity.Clin. Chim. Acta201848718619610.1016/j.cca.2018.10.004 30291894
    [Google Scholar]
  100. VandammeT.F. BrobeckL. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide.J. Control. Release20051021233810.1016/j.jconrel.2004.09.015 15653131
    [Google Scholar]
  101. YeungT. GilbertG.E. ShiJ. SilviusJ. KapusA. GrinsteinS. Membrane phosphatidylserine regulates surface charge and protein localization.Science2008319586021021310.1126/science.1152066 18187657
    [Google Scholar]
  102. KovácsT. KárászA. SzöllősiJ. NagyP. The density of GM1-enriched lipid rafts correlates inversely with the efficiency of transfection mediated by cationic liposomes.Cytometry A200975A865065710.1002/cyto.a.20756 19526485
    [Google Scholar]
  103. Vina-VilasecaA. Bender-SigelJ. SorkinaT. ClossE.I. SorkinA. Protein kinase C-dependent ubiquitination and clathrin-mediated endocytosis of the cationic amino acid transporter CAT-1.J. Biol. Chem.2011286108697870610.1074/jbc.M110.186858 21212261
    [Google Scholar]
  104. KouL. SunJ. ZhaiY. HeZ. The endocytosis and intracellular fate of nanomedicines: Implication for rational design.Asian J Pharmaceut Sci20138111010.1016/j.ajps.2013.07.001
    [Google Scholar]
  105. PerumalO.P. InapagollaR. KannanS. KannanR.M. The effect of surface functionality on cellular trafficking of dendrimers.Biomaterials20082924-253469347610.1016/j.biomaterials.2008.04.038 18501424
    [Google Scholar]
  106. XieX. LiaoJ. ShaoX. LiQ. LinY. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles.Sci. Rep.201771382710.1038/s41598‑017‑04229‑z 28630477
    [Google Scholar]
  107. YueJ. LópezJ.M. Understanding MAPK signaling pathways in apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms21072346 32231094
    [Google Scholar]
  108. ZhangD. WeiL. ZhongM. XiaoL. LiH.W. WangJ. The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy.Chem. Sci.20189235260526910.1039/C8SC01828F 29997881
    [Google Scholar]
  109. ChithraniB.D. GhazaniA.A. ChanW.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Nano Lett.20066466266810.1021/nl052396o 16608261
    [Google Scholar]
  110. ChampionJ.A. MitragotriS. Role of target geometry in phagocytosis.Proc. Natl. Acad. Sci.2006103134930493410.1073/pnas.0600997103 16549762
    [Google Scholar]
  111. LeeM.K. LimS.J. KimC.K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles.Biomaterials200728122137214610.1016/j.biomaterials.2007.01.014 17257668
    [Google Scholar]
  112. JJ JJ, Puente-Urbina BA, Rodríguez-Fernández O, FonsecaGarcía A, et al. Antibacterial and anticancer activity of ZnO with different morphologies: A comparative study.3 Biotech20211126810.1007/s13205‑020‑02611‑9 33489685
    [Google Scholar]
  113. LiY. KrögerM. LiuW.K. Shape effect in cellular uptake of PEGylated nanoparticles: Comparison between sphere, rod, cube and disk.Nanoscale2015740166311664610.1039/C5NR02970H 26204104
    [Google Scholar]
  114. SalatinS. Maleki DizajS. Yari KhosroushahiA. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles.Cell Biol. Int.201539888189010.1002/cbin.10459 25790433
    [Google Scholar]
  115. MaN. MaC. LiC. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake.J. Nanosci. Nanotechnol.201313106485649810.1166/jnn.2013.7525 24245105
    [Google Scholar]
  116. Da Silva-CandalA. BrownT. KrishnanV. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions.J. Control. Release20193099410510.1016/j.jconrel.2019.07.026 31330214
    [Google Scholar]
  117. StoweD.F. CamaraA.K.S. AdrehaliH. Mitochondrial reactive oxygen species production in excitable cells: Modulators of mitochondrial and cell function.Antioxid. Redox Signal.20091161373141410.1089/ars.2008.2331 19187004
    [Google Scholar]
  118. JiangJ. PiJ. CaiJ. The advancing of zinc oxide nanoparticles for biomedical applications.Bioinorg. Chem. Appl.2018201811810.1155/2018/1062562
    [Google Scholar]
  119. ChouguleM. PatelA.R. SachdevaP. JacksonT. SinghM. Anticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancer.Lung Cancer201171327128210.1016/j.lungcan.2010.06.002 20674069
    [Google Scholar]
  120. AhamedM. KarnsM. GoodsonM. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells.Toxicol. Appl. Pharmacol.2008233340441010.1016/j.taap.2008.09.015 18930072
    [Google Scholar]
  121. MousaS.A. BharaliD.J. Nanotechnology-based detection and targeted therapy in cancer: Nano-bio paradigms and applications.Cancers2011332888290310.3390/cancers3032888 24212938
    [Google Scholar]
  122. TangX. GuoY. NakamuraK. Nitroalkenes induce rat aortic smooth muscle cell apoptosis via activation of caspase-dependent pathways.Biochem. Biophys. Res. Commun.2010397223924410.1016/j.bbrc.2010.05.091 20493166
    [Google Scholar]
  123. AnjumS. HashimM. MalikS.A. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment.Cancers20211318457010.3390/cancers13184570 34572797
    [Google Scholar]
  124. SanaS.S. KumbhakarD.V. PashaA. Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: Assessment of antimicrobial and anticancer activity.Molecules20202521489610.3390/molecules25214896 33113894
    [Google Scholar]
  125. ZhangJ. QinX. WangB. Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells.Cell Death Dis.201787e2954e410.1038/cddis.2017.337 28749469
    [Google Scholar]
  126. YueJ. LópezJ.M. Understanding MAPK signaling pathways in apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms21072346 32231094
    [Google Scholar]
  127. ParkG.B. ChoiY. KimY.S. LeeH.K. KimD. HurD.Y. ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in Sorafenib-induced apoptosis of EBV-transformed B cells.Int. J. Oncol.201444397798510.3892/ijo.2014.2252 24402682
    [Google Scholar]
  128. FongY. WuC.Y. ChangK.F. Dual roles of extracellular signal-regulated kinase (ERK) in quinoline compound BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer cells.Cancer Cell Int.20171713710.1186/s12935‑017‑0403‑0 28286419
    [Google Scholar]
  129. YangX. ShaoH. LiuW. Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity.Toxicol. Lett.20152341404910.1016/j.toxlet.2015.02.004 25680694
    [Google Scholar]
  130. SriramM.I. KanthS.B. KalishwaralalK. GurunathanS. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model.Int. J. Nanomedicine20105753762 21042421
    [Google Scholar]
  131. SanaeimehrZ. JavadiI. NamvarF. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction.Cancer Nanotechnol.201891310.1186/s12645‑018‑0037‑5 29628994
    [Google Scholar]
  132. Rahimi Kalateh Shah MohammadG. Homayouni TabriziM. ArdalanT. YadamaniS. SafaviE. Green synthesis of zinc oxide nanoparticles and evaluation of anti-angiogenesis, anti-inflammatory and cytotoxicity properties.J. Biosci.20194423010.1007/s12038‑019‑9845‑y 31180043
    [Google Scholar]
  133. DicksonM.A. SchwartzG.K. Development of cell-cycle inhibitors for cancer therapy.Curr. Oncol.2009162364310.3747/co.v16i2.428 19370178
    [Google Scholar]
  134. Boroumand MoghaddamA. MoniriM. AziziS. Eco-friendly formulated zinc oxide nanoparticles: Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line.Genes201781028110.3390/genes8100281 29053567
    [Google Scholar]
  135. PatelP. KansaraK. SenapatiV.A. ShankerR. DhawanA. KumarA. Cell cycle dependent cellular uptake of zinc oxide nanoparticles in human epidermal cells.Mutagenesis201631448149010.1093/mutage/gew014 27034448
    [Google Scholar]
/content/journals/cms/10.2174/2666145417666230918115854
Loading
/content/journals/cms/10.2174/2666145417666230918115854
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test