Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

One of the most promising novel drug delivery systems is an gel, which uses a unique 'Sol to Gel' conversion to help with the slow and steady release of pharmaceuticals. An gel system enters the body as a solution but transforms into a gel once it encounters the body's internal environment. Traditional methods of ocular drug delivery, such as suspensions, eye drops, and ointments, have a number of drawbacks. These include lacrimation, obscured vision, and, most importantly, rapid precorneal clearance. As a result, many innovative methods have been created in order to address these shortcomings. gel, minidisc, ocusert, nanosuspension, collagen shield, nanoparticulate, system, niosomes, ocular iontophoresis, liposome, ocular film, dendrimers, and other methods are among them. Ocular medication delivery systems have come a long way recently, and one of the most recent innovations is ocular gel. The polymers (natural, semisynthetic, or synthetic) that make up the ocular gel system's delivery vehicle have the unique feature of a sol-gel transition when subjected to the effect of a biological stimulus, such as a change in temperature, pH, or ions. Physical appearance, clarity, pH, gelling ability, isotonicity evaluation, sterility, viscosity, drug release, and irritancy tests are all investigated in ocular gels.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145417666230821151753
2023-09-06
2025-04-23
Loading full text...

Full text loading...

References

  1. El-KamelA.H. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate.Int. J. Pharm.20022411475510.1016/S0378‑5173(02)00234‑X12086720
    [Google Scholar]
  2. MandalS. PrabhushankarG.L. ThimmasettyM.K.M.J. GeethaM.S. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride.Int. J. Pharm. Investig.201222788210.4103/2230‑973X.10004223119236
    [Google Scholar]
  3. KaurI.P. GargA. SinglaA.K. AggarwalD. Vesicular systems in ocular drug delivery: An overview.Int. J. Pharm.2004269111410.1016/j.ijpharm.2003.09.01614698571
    [Google Scholar]
  4. Al-KinaniA.A. ZidanG. ElsaidN. SeyfoddinA. AlaniA.W.G. AlanyR.G. Ophthalmic gels: Past, present and future.Adv. Drug Deliv. Rev.201812611312610.1016/j.addr.2017.12.01729288733
    [Google Scholar]
  5. ChowhanA. GiriT.K. Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route.Int. J. Biol. Macromol.202015055957210.1016/j.ijbiomac.2020.02.09732057864
    [Google Scholar]
  6. MadniA. RahemM.A. TahirN. SarfrazM. JabarA. RehmanM. KashifP.M. BadshahS.F. KhanK.U. SantosH.A. Non-invasive strategies for targeting the posterior segment of eye.Int. J. Pharm.20175301-232634510.1016/j.ijpharm.2017.07.06528755994
    [Google Scholar]
  7. CohenS. LobelE. TrevgodaA. PeledY. A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye.J. Control. Release1997442-320120810.1016/S0168‑3659(96)01523‑4
    [Google Scholar]
  8. RajoriaG. GuptaA. In-situ gelling system: A novel approach for ocular drug delivery.AJPTR201222453
    [Google Scholar]
  9. RajasN.J. KavithaK. GounderT. ManiT. In-situ ophthalmic gels: A developing trend.Int. J. Pharm. Sci. Rev. Res.201171814
    [Google Scholar]
  10. NanjundswamyN.G. FatimaS.D. SholapurH.N. A review on hydrogels and its use in in-situ ocular drug delivery.Indian J. Nov. Drug Deliv.200911117
    [Google Scholar]
  11. MohanambalE. Formulation and evaluation of pH triggered in-situ gelling system of levofloxacinJ. Pharm. Sci. Res.2020121012621270
    [Google Scholar]
  12. ZignaniM. TabatabayC. GurnyR. Topical semi-solid drug delivery: Kinetics and tolerance of ophthalmic hydrogels.Adv. Drug Deliv. Rev.1995161516010.1016/0169‑409X(95)00015‑Y
    [Google Scholar]
  13. BhattaraiN. GunnJ. ZhangM. Chitosan-based hydrogels for controlled, localized drug delivery.Adv. Drug Deliv. Rev.2010621839910.1016/j.addr.2009.07.01919799949
    [Google Scholar]
  14. JärvinenK. JärvinenT. UrttiA. Ocular absorption following topical delivery.Adv. Drug Deliv. Rev.199516131910.1016/0169‑409X(95)00010‑5
    [Google Scholar]
  15. AlmeidaH. AmaralM.H. LobãoP. Sousa LoboJ.M. Applications of poloxamers in ophthalmic pharmaceutical formulations: An overview.Expert Opin. Drug Deliv.20131091223123710.1517/17425247.2013.79636023688342
    [Google Scholar]
  16. ZimmerA. KreuterJ. Microspheres and nanoparticles used in ocular delivery systems.Adv. Drug Deliv. Rev.1995161617310.1016/0169‑409X(95)00017‑2
    [Google Scholar]
  17. SasakiH. YamamuraK. NishidaK. NakamuraJ. IchikawaM. Delivery of drugs to the eye by topical application.Prog. Retin. Eye Res.199615258362010.1016/1350‑9462(96)00014‑6
    [Google Scholar]
  18. de la FuenteM. RaviñaM. PaolicelliP. SanchezA. SeijoB. AlonsoM.J. Chitosan-based nanostructures: A delivery platform for ocular therapeutics.Adv. Drug Deliv. Rev.201062110011710.1016/j.addr.2009.11.02619958805
    [Google Scholar]
  19. LudwigA. The use of mucoadhesive polymers in ocular drug delivery.Adv. Drug Deliv. Rev.200557111595163910.1016/j.addr.2005.07.00516198021
    [Google Scholar]
  20. NagarwalR.C. KantS. SinghP.N. MaitiP. PanditJ.K. Polymeric nanoparticulate system: A potential approach for ocular drug delivery.J. Control. Release2009136121310.1016/j.jconrel.2008.12.01819331856
    [Google Scholar]
  21. Abdel-MottalebM.M. MortadaN.D. ElshamyA.A. AwadG.A. Preparation and evaluation of fluconazole gels.Egyptian Journal of Biomedical Sciences200723126628610.4314/ejbs2.v23i1.40309
    [Google Scholar]
  22. RobinsonJ.R. MlynekG.M. Bioadhesive and phase-change polymers for ocular drug delivery.Adv. Drug Deliv. Rev.1995161455010.1016/0169‑409X(95)00013‑W
    [Google Scholar]
  23. GeethalakshmiaA. KarkibR. SagibP. JhacS.K. Temperature triggered in-situ gelling system for betaxolol in glaucoma.J. Appl. Pharm. Sci.20133215315910.7324/JAPS.2013.30227
    [Google Scholar]
  24. MaliM.N. HajareA.A. In-situ gel-forming systems for sustained ocular drug delivery.Eur. Ind. Pharm.201051720
    [Google Scholar]
  25. PatilR.N. KumarR.S. In-situ gelling system: Novel approach for ophthalmic drug delivery.World J. Pharm. Pharm. Sci.201437423440
    [Google Scholar]
  26. GuptaA. ManochaN. Formulation and evaluation of in-situ ophthalmic drug delivery system.Int. J. Pharm. Biol. Arch.201234715718
    [Google Scholar]
  27. AgarwalK. In-situ gel formation for ocular drug delivery system an overview.Asian Journal of Biomedical and Pharmaceutical Sciences.201114
    [Google Scholar]
  28. Al-TahamiK. SinghJ. Smart polymer based delivery systems for peptides and proteins.Recent Pat. Drug Deliv. Formul.200711657110.2174/18722110777981411319075875
    [Google Scholar]
  29. ParekhH.B. JivaniR. JivaniN.P. PatelL.D. MakwanaA. SamejaK. Novel in situ polymeric drug delivery system: A review.J. Drug Deliv. Ther.20122510.22270/jddt.v2i5.276
    [Google Scholar]
  30. BakliwalS. PawarS. SamejaK. In-situ gel: New trends in controlled and sustained drug delivery system.Int. J. Pharm. Tech. Res.20102213981408
    [Google Scholar]
  31. NerkarT.S. GujarathiN.A. RaneB.R. BakliwalS.R. PawarS.P. In-situ gel: Novel approach in sustained and controlled drug delivery system.Pharma Sci Monitor An Int J Pharm Sci.20134418
    [Google Scholar]
  32. LeeV.H.L. RobinsonJ.R. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits.J. Pharm. Sci.197968667368410.1002/jps.2600680606458563
    [Google Scholar]
  33. BrombergL. BrombergL.E. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery.Adv. Drug Deliv. Rev.199831319722110.1016/S0169‑409X(97)00121‑X10837626
    [Google Scholar]
  34. QiuY. ParkK. Environment-sensitive hydrogels for drug delivery.Adv. Drug Deliv. Rev.200153332133910.1016/S0169‑409X(01)00203‑411744175
    [Google Scholar]
  35. MorsiN. GhorabD. RefaiH. TebaH. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery.Int. J. Pharm.20165061-2576710.1016/j.ijpharm.2016.04.02127091293
    [Google Scholar]
  36. GadadA.P. WadklarP.D. DandghiP. PatilA. Thermosensitive in-situ gel for ocular delivery of lomefloxacin.Indian J Pharm Educ Res.2016502S96S105
    [Google Scholar]
  37. AmmarH.O. SalamaH.A. GhorabM. MahmoudA.A. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery.Drug Dev. Ind. Pharm.201036111330133910.3109/0363904100380188520545523
    [Google Scholar]
  38. AsasutjaritR. ThanasanchokpibullS. FuongfuchatA. VeeranondhaS. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels.Int. J. Pharm.20114111-212813510.1016/j.ijpharm.2011.03.05421459137
    [Google Scholar]
  39. SawantD. DandagiP.M. GadadA.P. Formulation and evaluation of sparfloxacin emulsomes-loaded thermosensitive in situ gel for ophthalmic delivery.J. Sol-Gel Sci. Technol.201677365466510.1007/s10971‑015‑3897‑8
    [Google Scholar]
  40. Al KhatebK. OzhmukhametovaE.K. MussinM.N. SeilkhanovS.K. RakhypbekovT.K. LauW.M. KhutoryanskiyV.V. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery.Int. J. Pharm.20165021-2707910.1016/j.ijpharm.2016.02.02726899977
    [Google Scholar]
  41. LihongW. XinC. YongxueG. YiyingB. GangC. Thermoresponsive ophthalmic poloxamer/tween/carbopol in situ gels of a poorly water-soluble drug fluconazole: Preparation and in vitroin vivo evaluation.Drug Dev. Ind. Pharm.201440101402141010.3109/03639045.2013.82822123944837
    [Google Scholar]
  42. QianY. WangF. LiR. ZhangQ. XuQ. Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide.Drug Dev. Ind. Pharm.201036111340134710.3109/0363904100380189320849349
    [Google Scholar]
  43. LiJ. LiuH. LiuL. CaiC. XinH. LiuW. Design and evaluation of a brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery.Chem. Pharm. Bull. (Tokyo)201462101000100810.1248/cpb.c14‑0045125099146
    [Google Scholar]
  44. MaW.D. XuH. WangC. NieS.F. PanW.S. Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system.Int. J. Pharm.20083501-224725610.1016/j.ijpharm.2007.09.00517961940
    [Google Scholar]
  45. KumarD. NagaichU. GulatiN. JainN. Nanoparticles laden in situ gelling system for ocular drug targeting.J. Adv. Pharm. Technol. Res.20134191710.4103/2231‑4040.10749523662277
    [Google Scholar]
  46. GuptaS. VyasS.P. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate.Sci. Pharm.201078495997610.3797/scipharm.1001‑0621179328
    [Google Scholar]
  47. KanoujiaJ. SonkerK. PandeyM. KymonilK.M. SarafS.A. Formulation and characterization of a novel pH-triggered in-situ gelling ocular system containing Gatifloxacin.Int. Curr. Pharm. J.197013434910.3329/icpj.v1i3.9661
    [Google Scholar]
  48. WuH. LiuZ. PengJ. LiL. LiN. LiJ. PanH. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery.Int. J. Pharm.20114101-2314010.1016/j.ijpharm.2011.03.00721397671
    [Google Scholar]
  49. SheikhA.A. Development and characterization of novel in-situ gel of moxifloxacin hydrochloride.Asian J. Pharm.20171103
    [Google Scholar]
  50. UpadhayayP. KumarM. PathakK. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: Optimization, ocular irritancy and corneal toxicity.Iran. J. Pharm. Res.201615132227610144
    [Google Scholar]
  51. PangX. LiJ. PiJ. QiD. GuoP. LiN. WuY. LiuZ. Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits.Pharm. Dev. Technol.201823323123910.1080/10837450.2017.132869328488447
    [Google Scholar]
  52. MakwanaS.B. PatelV.A. ParmarS.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride.Results Pharma Sci.201661610.1016/j.rinphs.2015.06.00126949596
    [Google Scholar]
  53. BhardwajL SharmaPK MalviyaR A short review on gastro retentive formulations for stomach specific drug delivery: Special emphasis on floating in situ gel systems.African J Basic Appl Sci201136300312
    [Google Scholar]
  54. AnsariS.H. SameemM. IslamF. Influence of nanotechnology on herbal drugs: A Review.J. Adv. Pharm. Technol. Res.20123314214610.4103/2231‑4040.10100623057000
    [Google Scholar]
  55. VeselovV.V. NosyrevA.E. JicsinszkyL. AlyautdinR.N. CravottoG. Targeted delivery methods for anticancer drugs.Cancers (Basel)202214362210.3390/cancers1403062235158888
    [Google Scholar]
  56. WangL. PanH. GuD. SunH. ChenK. TanG. PanW. A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: Characterization, ex-vivo imaging, and in vivo evaluation.Int. J. Mol. Sci.20212218993410.3390/ijms2218993434576093
    [Google Scholar]
  57. MishraB. PatelB.B. TiwariS. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery.Nanomedicine20106192410.1016/j.nano.2009.04.00819447208
    [Google Scholar]
  58. ChatterjeeS. HuiP.C. Review of applications and future prospects of stimuli-responsive hydrogel based on thermo-responsive biopolymers in drug delivery systems.Polymers (Basel)20211313208610.3390/polym1313208634202828
    [Google Scholar]
  59. DurraniA.M. DaviesN.M. ThomasM. KellawayI.W. Pilocarpine bioavailability from a mucoadhesive liposomal ophthalmic drug delivery system.Int. J. Pharm.1992881-340941510.1016/0378‑5173(92)90340‑8
    [Google Scholar]
  60. MauriceD.M. MishimaS. Ocular pharmacokinetics. InPharmacology of the Eye.Berlin, HeidelbergSpringer198419116
    [Google Scholar]
  61. MiyazakiS. TobiyamaT. TakadaM. AttwoodD. Percutaneous absorption of indomethacin from pluronic F127 gels in rats.J. Pharm. Pharmacol.201147645545710.1111/j.2042‑7158.1995.tb05829.x7674126
    [Google Scholar]
  62. CarelliV. ColtelliS. Di ColoG. NannipieriE. SerafiniM.F. Silicone microspheres for pH-controlled gastrointestinal drug delivery.Int. J. Pharm.19991791738310.1016/S0378‑5173(98)00387‑110053204
    [Google Scholar]
  63. KuboW. MiyazakiS. AttwoodD. Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations.Int. J. Pharm.20032581-2556410.1016/S0378‑5173(03)00163‑712753753
    [Google Scholar]
  64. PattonT.F. RobinsonJ.R. Ocular evaluation of polyvinyl alcohol vehicle in rabbits.J. Pharm. Sci.19756481312131610.1002/jps.26006408111151703
    [Google Scholar]
  65. MohantyD. BakshiV. SimharajuN. HaqueM.A. SahooC.K. A review on in-situ gel: A novel drug delivery system.Int. J. Pharm. Sci. Rev. Res.2018501175181
    [Google Scholar]
  66. DarwhekarG. JainP. JainD.K. AgrawalG. Development and optimization of dorzolamide hydrochloride and timolol maleate in-situ gel for glaucoma treatment.Asian J Pharm Anal.201119397
    [Google Scholar]
  67. GokulgandhiMR ParikhJR Megha BarotM ModiDM A pH triggered in-situ gel forming ophthalmic drug delivery system for tropicamide.Drug Deliv Tech20075449
    [Google Scholar]
  68. LiuZ. LiJ. NieS. LiuH. DingP. PanW. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin.Int. J. Pharm.20063151-2121710.1016/j.ijpharm.2006.01.02916616442
    [Google Scholar]
  69. PatelH.A. PatelJ.K. PatelK.N. PatelR.R. Ophthalmic drug delivery system-a review.Pharm. Lett.201024100115
    [Google Scholar]
  70. Avis, K.E., Ed.; Pharmaceutical dosage forms: Parenteral medications.Routledge201810.1201/9780203743676
    [Google Scholar]
  71. PawarS.D. PawarR.G. GadhveM.V. Controlled release in-situ forming gatifloxacine HCl for ophthalmic drug delivery.Int Res J of Phar.201238689
    [Google Scholar]
  72. SinghV. BushettiS.S. RajuS.A. AhmadR. SinghM. Glaucoma: A treatment by hydrogel.Pharma Sci. Monitor20102285294
    [Google Scholar]
  73. DraizeJ.H. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes.J. Pharmacol. Exp. Ther.194482377390
    [Google Scholar]
  74. MudgilM. PawarP.K. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application.Sci. Pharm.201381259160610.3797/scipharm.1204‑1623833723
    [Google Scholar]
  75. VodithalaS. KhatryS. ShastriN. SadanandamM. Formulation and evaluation of ion activated ocular gels of ketorolac tromethamine.Int. J. Curr. Pharm. Res.2010233338
    [Google Scholar]
  76. MajeedA. KhanN.A. Ocular in situ gel: An overview.J. Drug Deliv. Ther.20199133734710.22270/jddt.v9i1.2231
    [Google Scholar]
  77. JainM. ShahN.H. MalickA.W. RhodesC.T. Novel in situ gel systems for ocular drug delivery.Expert Opin. Drug Deliv.2018158781797
    [Google Scholar]
  78. AgrawalM. SarafS. SarafS. DubeyS.K. PuriA. GuptaU. KesharwaniP. RavichandiranV. KumarP. NaiduV.G.M. MurtyU.S. Ajazuddin AlexanderA. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery.J. Control. Release202032723526510.1016/j.jconrel.2020.07.04432739524
    [Google Scholar]
  79. DilnawazF SahooSK Nanotechnology-based ophthalmic drug delivery system. Focal Controlled Drug DeliverySpringerHeidelberg2013225241
    [Google Scholar]
  80. KompellaU.B. KadamR.S. LeeV.H.L. Recent advances in ophthalmic drug delivery.Ther. Deliv.20101343545610.4155/tde.10.4021399724
    [Google Scholar]
  81. FathiM. BararJ. AghanejadA. OmidiY. Hydrogels for ocular drug delivery and tissue engineering.Bioimpacts20155415916410.15171/bi.2015.3126929918
    [Google Scholar]
/content/journals/cms/10.2174/2666145417666230821151753
Loading
/content/journals/cms/10.2174/2666145417666230821151753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test