Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

The primary intent of the study is to formulate the inclusion complex of lisinopril with the varied compositions of polymers like β-cyclodextrin for the enhancement of oral drug solubility and bioavailability using QbD approach.

Methods

The application of Box-behnken design to determine the optimized run from the prepared inclusion complexes. The physical kneading technique with β-cyclodextrin at varied amounts was used to create the inclusion complex of lisinopril.

Results

The FT-IR analysis study confirmed the selected drug, polymers, and other excipients showed no physical interactions. The prepared inclusion complexes' particle sizes and encapsulation efficiency were between 802 to 3259µm, 19.22 to 93.28%. The optimized formulation batch (F5) showed 90.16% drug release at 24h compared to the pure drug. From the study, the pharmacokinetic parameters for the optimized formulation (F5) were found to be C of 94.336 ng/ml, T of 12h, and AUC 94.336 ng.h/ml, K of 0.0395h-1 and t of 12h. After three months, stability studies for the optimized formulation batch indicate no change in drug entrapment efficiency and other parameters.

Conclusion

The β-cyclodextrin inclusion complex of lisinopril exhibited a 2-fold increase in the oral bioavailability of the model drug, which will be the novel drug-delivery strategy for the treatment of hypertension.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230407100318
2024-06-01
2024-11-26
Loading full text...

Full text loading...

References

  1. DesaiP.M. ErP.X.H. LiewC.V. HengP.W.S. Functionality of disintegrants and their mixtures in enabling fast disintegration of tablets by a quality by design approach.AAPS PharmSciTech20141551093110410.1208/s12249‑014‑0137‑4 24848762
    [Google Scholar]
  2. BrewsterM.E. LoftssonT. Cyclodextrins as pharmaceutical solubilizers.Adv. Drug Deliv. Rev.200759764566610.1016/j.addr.2007.05.012 17601630
    [Google Scholar]
  3. KurkovS.V. LoftssonT. Cyclodextrins.Int. J. Pharm.2013453116718010.1016/j.ijpharm.2012.06.055 22771733
    [Google Scholar]
  4. FerrariR. GuardigliG. MeleD. ValgimigliM. CeconiC. Myocardial ischaemia: New evidence for angiotensin-converting enzyme inhibition.Eur. Heart J. Suppl.20035E11E1710.1016/S1520‑765X(03)90027‑7
    [Google Scholar]
  5. JobP. Formation and stability of inorganic complexes in solution.Ann. Chim.19289113203
    [Google Scholar]
  6. SzejtliJ. Past, present and futute of cyclodextrin research.Pure Appl. Chem.200476101825184510.1351/pac200476101825
    [Google Scholar]
  7. SalústioP.J. FeioG. FigueirinhasJ.L. PintoJ.F. Cabral MarquesH.M. The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity.Eur. J. Pharm. Biopharm.200971237738610.1016/j.ejpb.2008.09.027 18977436
    [Google Scholar]
  8. TorricelliC. MartiniA. MuggettiL. EliM. De PontiR. Stability studies on steroidal drug/β-cyclodextrin kneaded systems.Int. J. Pharm.1991752-314715310.1016/0378‑5173(91)90188‑T
    [Google Scholar]
  9. DasS. SubuddhiU. Studies on the complexation of diclofenac sodium with β–cyclodextrin: Influence of method of preparation.J. Mol. Struct.2015109948248910.1016/j.molstruc.2015.07.001
    [Google Scholar]
  10. GilA. ChamayouA. LeverdE. BougaretJ. BaronM. CouarrazeG. Evolution of the interaction of a new chemical entity, eflucimibe, with γ-cyclodextrin during kneading process.Eur. J. Pharm. Sci.200423212312910.1016/j.ejps.2004.06.002 15451000
    [Google Scholar]
  11. OlaruA. BorodiG. KacsóI. VasilescuM. BratuI. CozarO. Spectroscopic studies of the inclusion compound of lisinopril with β -cyclodextrin.Spectroscopy.2009233-419119910.1155/2009/837158
    [Google Scholar]
  12. BratuI. KacsoI. BorodiG. ConstantinescuD.E. DraganF. Inclusion compound of Fosinopril with β -cyclodextrin.Spectroscopy.2009231515810.1155/2009/275398
    [Google Scholar]
  13. PrabhuS. OrtegaM. MaC. Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam.Int. J. Pharm.20053011-220921610.1016/j.ijpharm.2005.05.032 16046087
    [Google Scholar]
  14. PamudjiJ.S. MauludinR. LestariV.A. Improvement of carvedilol dissolution rate through formation of inclusion complex with β-cyclodextrin.Int. J. Pharm. Pharm. Sci.20146228233
    [Google Scholar]
  15. SherjeA.P. KulkarniV. MurahariM. Inclusion complexation of etodolac with hydroxypropyl-beta-cyclodextrin and auxiliary agents: Formulation characterization and molecular modeling studies.Mol. Pharm.20171441231124210.1021/acs.molpharmaceut.6b01115 28248111
    [Google Scholar]
  16. DerleD. BeleM. KasliwalN. In vitro and in vivo evaluation of mefenamic acid and its complexes with β-Cyclodextrin and HP-β-Cyclodextrin.Asian J. Pharm.200821303410.4103/0973‑8398.41562
    [Google Scholar]
  17. BulaniV.D. KothavadeP.S. KundaikarH.S. Inclusion complex of ellagic acid with β-cyclodextrin: Characterization and in vitro anti-inflammatory evaluation.J. Mol. Struct.2016110530831510.1016/j.molstruc.2015.08.054
    [Google Scholar]
  18. FateminasabF. BordbarA.K. ShityakovS. GholamiS. Diadzein complexation with unmodified cyclodextrins: A detailed experimental and theoretical study.J. Mol. Liq.2018271809510.1016/j.molliq.2018.08.124
    [Google Scholar]
  19. KhoukhiO.E. El BahriZ. DiafK. BaiticheM. Piroxicam/β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations.Chem. Pap.201670682883910.1515/chempap‑2016‑0014
    [Google Scholar]
  20. HirlekarR.S. SonawaneS.N. KadamV.J. Studies on the effect of water-soluble polymers on drug-cyclodextrin complex solubility.AAPS PharmSciTech200910385886310.1208/s12249‑009‑9274‑6 19562489
    [Google Scholar]
  21. SivaS. Kothai NayakiS. RajendiranN. Spectral and molecular modeling investigations of supramolecular complexes of mefenamic acid and aceclofenac with α- and β-cyclodextrin.Spectrochim. Acta A Mol. Biomol. Spectrosc.201717434936210.1016/j.saa.2014.12.002 29941144
    [Google Scholar]
  22. PradinesB. GallardJ.F. IorgaB.I. Investigation of the complexation of albendazole with cyclodextrins for the design of new antiparasitic formulations.Carbohydr. Res.2014398505510.1016/j.carres.2014.06.008 25240182
    [Google Scholar]
  23. RudrangiS.R.S. BhomiaR. TrivediV. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes.Int. J. Pharm.2015479238139010.1016/j.ijpharm.2015.01.010 25579867
    [Google Scholar]
  24. BernardiL.S. OliveiraP.R. MurakamiF.S. SilvaM.A.S. BorgmannS.H.M. CardosoS.G. Characterization of venlafaxine hydrochloride and compatibility studies with pharmaceutical excipients.J. Therm. Anal. Calorim.200997272973310.1007/s10973‑009‑0282‑2
    [Google Scholar]
  25. LiuL. ZhuS. Preparation and characterization of inclusion complexes of prazosin hydrochloride with β-cyclodextrin and hydroxypropyl-β-cyclodextrin.J. Pharm. Biomed. Anal.200640112212710.1016/j.jpba.2005.06.022 16095859
    [Google Scholar]
  26. SreenivasaR.K. UdgirkarD.B. MuleD.D. Enhancement of dissolution rate and bioavailability of aceclofenac by complexation with cyclodextrin.RJPBCS20101142151
    [Google Scholar]
  27. SwainS. BeheraU.A. BegS. Design and characterization of enteric-coated controlled release mucoadhesive microcapsules of Rabeprazole sodium.Drug Dev. Ind. Pharm.201339454856010.3109/03639045.2012.676047 22512732
    [Google Scholar]
  28. SwainS. BeheraA. DindaS.C. Formulation design, optimization, and pharmacodynamic evaluation of sustained release mucoadhesive microcapsules of venlafaxine HCl.Indian J. Pharm. Sci.2014764354363 25284934
    [Google Scholar]
  29. SwainS. PatraC.N. SrutiJ. RaoM.E.B. Design and evaluation of sustained-release solid dispersions of verapamil hydrochloride.Int J Pharm Sci Nanotech20113412521262
    [Google Scholar]
  30. LinH.L. LinS.Y. LinC.C. HsuC.H. WuT.K. HuangY.T. Mechanical grinding effect on thermodynamics and inclusion efficiency of loratadine-cyclodextrin inclusion complex formation.Carbohydr. Polym.201287151251710.1016/j.carbpol.2011.08.010 34662996
    [Google Scholar]
  31. AignerZ. BerkesiO. FarkasG. Szabó-RévészP. DSC, X-ray and FTIR studies of a gemfibrozil/dimethyl-β-cyclodextrin inclusion complex produced by co-grinding.J. Pharm. Biomed. Anal.201257626710.1016/j.jpba.2011.08.034 21920691
    [Google Scholar]
  32. GasconA.R. CuadradoA. SolinísM.A. Comparative bioavailability of two immediate-release tablets of lisinopril/hydrochlorothiazide in healthy volunteers.Int. J. Clin. Pharmacol. Ther.200341730931510.5414/CPP41309 12875347
    [Google Scholar]
  33. EyjolfssonR. Lisinopril-lactose incompatibility.Drug Dev. Ind. Pharm.199824879779810.3109/03639049809082729 9876529
    [Google Scholar]
/content/journals/cms/10.2174/2666145416666230407100318
Loading
/content/journals/cms/10.2174/2666145416666230407100318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test