Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

To face the challenge of the finite nature of fossil fuels and large energy crises across the globe, there is an urgent requirement for sustainable and renewable energy sources. Moreover, it is essential to focus on energy storage in order to meet the demand of future generations. Among various energy storage devices such as fuel cells, batteries, capacitors, supercapacitors, flywheels, ., it is the supercapacitor device that has elicited extensive research interest recently because of prominent features like high power density, fast recharge capability, and long cycle life. The main objective of this article is to review the enhancement of the electrochemical performance of supercapacitor devices. The electrochemical properties of the supercapacitor device majorly depend on the electrode materials used, which include carbonaceous materials, metal oxides, and conducting polymers. In order to reduce energy shortages and environmental pressure, carbon materials derived from biomass/waste materials have been considered remarkable candidates for electrode materials with the advantages of high abundance, low cost, and environmental friendliness. This review shows the complied study of various methodologies for the preparation of activated carbons derived from different such as plants, animals, and microorganisms, which have been investigated in the past few years as electrochemical electrode materials for supercapacitors. Further, ongoing challenges and potential improvements in this area for creating efficient energy storage devices are also discussed. The goal of this review article is to aid in the creation of new insights for energy storage applications of biomass-generated carbons that will lead to sustainable energy development.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230314123738
2024-06-01
2024-11-26
Loading full text...

Full text loading...

References

  1. GowdaS.R. LeelaM.R.A. ZhanX. AjayanP.M. Building energy storage device on a single nanowire.Nano Lett.20111183329333310.1021/nl2017042 21755944
    [Google Scholar]
  2. SimonP. GogotsiY. Materials for electrochemical capacitors.Nat. Mater.200871184585410.1038/nmat2297 18956000
    [Google Scholar]
  3. BrezesinskiT. WangJ. TolbertS.H. DunnB. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors.Nat. Mater.20109214615110.1038/nmat2612 20062048
    [Google Scholar]
  4. AricoA.S. BruceP. ScrosatiB. TarasconJ.M. Van SchalkwijkW. Nanostructured materials for advanced energy conversion and storage devices.Nat. Mater.2011436637710.1038/nmat1368
    [Google Scholar]
  5. DunnB. KamathH. TarasconJ.M. Electrical energy storage for the grid: A battery of choices.Science2011334605892893510.1126/science.1212741 22096188
    [Google Scholar]
  6. SundaramurthyI. ThiyagarajanG. PandaR.C. SankarS. Collagen and carbon-ferrous nanoparticles used as a green energy composite material for energy storage devices.Cur Mater Sci2021141809210.2174/2666145413666201207202502
    [Google Scholar]
  7. MillerJ.R. SimonP. Electrochemical capacitors for energy management.Science2008321588965165210.1126/science.1158736
    [Google Scholar]
  8. PushparajV.L. ShaijumonM.M. KumarA. Flexible energy storage devices based on nanocomposite paper.Proc. Natl. Acad. Sci.200710434135741357710.1073/pnas.0706508104 17699622
    [Google Scholar]
  9. FolksonR. StapsfordS. Alternative fuels and advanced vehicle technologies for improved environmental performance: Towards zero carbon transportation.2nd edElsevier2014
    [Google Scholar]
  10. Poonam SharmaK. AroraA. TripathiS.K. Review of supercapacitors: Materials and devices.J. Energy Storage20192180182510.1016/j.est.2019.01.010
    [Google Scholar]
  11. WinterM. BroddR.J. What are batteries, fuel cells, and supercapacitors?Chem. Rev.2004104104245427010.1021/cr020730k 15669155
    [Google Scholar]
  12. ZhangL.L. ZhaoX.S. Carbon-based materials as supercapacitor electrodes.Chem. Soc. Rev.20093892520253110.1039/b813846j 19690733
    [Google Scholar]
  13. BalducciA. DugasR. TabernaP.L. High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte.J. Power Sources2007165292292710.1016/j.jpowsour.2006.12.048
    [Google Scholar]
  14. LargeotC. PortetC. ChmiolaJ. TabernaP.L. GogotsiY. SimonP. Relation between the ion size and pore size for an electric double-layer capacitor.J. Am. Chem. Soc.200813092730273110.1021/ja7106178 18257568
    [Google Scholar]
  15. KandalkarS.G. DhawaleD.S. KimC.K. LokhandeC.D. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application.Synth. Met.201016011-121299130210.1016/j.synthmet.2010.04.003
    [Google Scholar]
  16. AshtianiC. WrightR. HuntG. Ultracapacitors for automotive applications.J. Power Sources2006154256156610.1016/j.jpowsour.2005.10.082
    [Google Scholar]
  17. SharmaP. BhattiT.S. A review on electrochemical double-layer capacitors.Energy Convers. Manage.201051122901291210.1016/j.enconman.2010.06.031
    [Google Scholar]
  18. GonzálezA. GoikoleaE. BarrenaJ.A. MysykR. Review on supercapacitors: Technologies and materials.Renew. Sustain. Energy Rev.2016581189120610.1016/j.rser.2015.12.249
    [Google Scholar]
  19. EndoM TakedaT KimYJ KoshibaK IshiiK High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons.Carbon letters20011(3_4)11728
    [Google Scholar]
  20. BagotskyV.S. Fundamentals of electrochemistry.John Wiley & Sons200510.1002/047174199X
    [Google Scholar]
  21. ChapmanD.L. LI. A contribution to the theory of electrocapillarity.Lond. Edinb. Dublin Philos. Mag. J. Sci.19132514847548110.1080/14786440408634187
    [Google Scholar]
  22. ConwayB.E. Electrochemical supercapacitors: Scientific fundamentals and technological applications.Springer Science & Business Media201310.1007/978‑1‑4757‑3058‑6
    [Google Scholar]
  23. FrackowiakE. Carbon materials for supercapacitor application.Phys. Chem. Chem. Phys.20079151774178510.1039/b618139m 17415488
    [Google Scholar]
  24. RazaW. AliF. RazaN. Recent advancements in supercapacitor technology.Nano Energy20185244147310.1016/j.nanoen.2018.08.013
    [Google Scholar]
  25. ChenS.M. RamachandranR. ManiV. SaraswathiR. Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: A review.Int. J. Electrochem. Sci.20149840724085
    [Google Scholar]
  26. ZhangY. FengH. WuX. Progress of electrochemical capacitor electrode materials: A review.Int. J. Hydrogen Energy200934114889489910.1016/j.ijhydene.2009.04.005
    [Google Scholar]
  27. JiangJ. KucernakA. Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization.Electrochim. Acta200247152381238610.1016/S0013‑4686(02)00031‑2
    [Google Scholar]
  28. LangX. HirataA. FujitaT. ChenM. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors.Nat. Nanotechnol.20116423223610.1038/nnano.2011.13 21336267
    [Google Scholar]
  29. GómezH. RamM.K. AlviF. VillalbaP. StefanakosE.L. KumarA. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors.J. Power Sources201119684102410810.1016/j.jpowsour.2010.11.002
    [Google Scholar]
  30. FrackowiakE. AbbasQ. BéguinF. Carbon/carbon supercapacitors.J Energy Chemist201322222624010.1016/S2095‑4956(13)60028‑5
    [Google Scholar]
  31. NasibiM. GolozarM.A. RashedG. Nanoporous carbon black particles as an electrode material for electrochemical double layer capacitors.Mater. Lett.20139132332510.1016/j.matlet.2012.09.088
    [Google Scholar]
  32. YangL. HouL.R. ZhangY.W. YuanC.Z. Facile synthesis of mesoporous carbon nanofibres towards high-performance electrochemical capacitors.Mater. Lett.201397979910.1016/j.matlet.2012.12.018
    [Google Scholar]
  33. ZhengJ.P. GoonetillekeP.C. PettitC.M. RoyD. Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: A comparative study of carbon nanotube and glassy carbon electrodes in [EMIM]+[EtSO4]-.Talanta20108131045105510.1016/j.talanta.2010.01.059 20298892
    [Google Scholar]
  34. QuD. Studies of the activated carbons used in double-layer supercapacitors.J. Power Sources2002109240341110.1016/S0378‑7753(02)00108‑8
    [Google Scholar]
  35. ShenH. LiuE. XiangX. A novel activated carbon for supercapacitors.Mater. Res. Bull.201247366266610.1016/j.materresbull.2011.12.028
    [Google Scholar]
  36. IroZ.S. SubramaniC. DashS.S. A brief review on electrode materials for supercapacitor.Int. J. Electrochem. Sci.20161112106281064310.20964/2016.12.50
    [Google Scholar]
  37. QianW. SunF. XuY. Human hair-derived carbon flakes for electrochemical supercapacitors.Energy Environ. Sci.20147137938610.1039/C3EE43111H
    [Google Scholar]
  38. XiaX. LeiW. HaoQ. WangW. WangX. One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors.Electrochim. Acta20139925326110.1016/j.electacta.2013.03.131
    [Google Scholar]
  39. WangH. GaoQ. JiangL. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors.Small20117172454245910.1002/smll.201100534
    [Google Scholar]
  40. WuZ.S. ZhouG. YinL.C. RenW. LiF. ChengH.M. Graphene/metal oxide composite electrode materials for energy storage.Nano Energy20121110713110.1016/j.nanoen.2011.11.001
    [Google Scholar]
  41. WangJ.G. YangY. HuangZ.H. KangF. Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors.J. Power Sources201220423624310.1016/j.jpowsour.2011.12.057
    [Google Scholar]
  42. MitchellE. JimenezA. GuptaR.K. Ultrathin porous hierarchically textured NiCo2 O4 –graphene oxide flexible nanosheets for high-performance supercapacitors.New J. Chem.20153932181218710.1039/C4NJ02110J
    [Google Scholar]
  43. LiF. XingY. HuangM. MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.20153157855786110.1039/C5TA00634A
    [Google Scholar]
  44. HuangM. ZhaoX.L. LiF. ZhangL.L. ZhangY.X. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes.J. Power Sources2015277364310.1016/j.jpowsour.2014.12.005
    [Google Scholar]
  45. KuangM. WenZ.Q. GuoX.L. ZhangS.M. ZhangY.X. Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors.J. Power Sources201427042643310.1016/j.jpowsour.2014.07.144
    [Google Scholar]
  46. HuangM. LiF. DongF. ZhangY.X. ZhangL.L. MnO2 -based nanostructures for high-performance supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.2015343213802142310.1039/C5TA05523G
    [Google Scholar]
  47. JiJ. LiuJ. LaiL. In situ activation of nitrogen-doped graphene anchored on graphite foam for a high-capacity anode.ACS Nano2015988609861610.1021/acsnano.5b03888 26258909
    [Google Scholar]
  48. ZhangY.X. HuangM. LiF. WangX.L. WenZ.Q. One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes.J. Power Sources201424644945610.1016/j.jpowsour.2013.07.115
    [Google Scholar]
  49. PurkaitT. SinghG. SinghM. KumarD. DeyR.S. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor.Sci. Rep.2017711523910.1038/s41598‑017‑15463‑w 29127348
    [Google Scholar]
  50. PanH. LiJ. FengY.P. Carbon nanotubes for supercapacitor.Nanoscale Res. Lett.20105365466810.1007/s11671‑009‑9508‑2 20672061
    [Google Scholar]
  51. FrackowiakE. MetenierK. BertagnaV. BeguinF. Supercapacitor electrodes from multiwalled carbon nanotubes.Appl. Phys. Lett.200077152421242310.1063/1.1290146
    [Google Scholar]
  52. AhnH.J. SohnJ.I. KimY.S. ShimH.S. KimW.B. SeongT.Y. Electrochemical capacitors fabricated with carbon nanotubes grown within the pores of anodized aluminum oxide templates.Electrochem. Commun.20068451351610.1016/j.elecom.2006.01.018
    [Google Scholar]
  53. ZhangW. YangW. ZhouH. Self-discharge of supercapacitors based on carbon nanotubes with different diameters.Electrochim. Acta202035713685510.1016/j.electacta.2020.136855
    [Google Scholar]
  54. XuZ. YounisA. XuH. LiS. ChuD. Improved super-capacitive performance of carbon foam supported CeO x nanoflowers by selective doping and UV irradiation.RSC Advances2014466350673507110.1039/C4RA03024A
    [Google Scholar]
  55. GhoshA. LeeY.H. Carbon-based electrochemical capacitors.Chem Sus Chem20125348049910.1002/cssc.201100645 22389329
    [Google Scholar]
  56. CandelariaS.L. ShaoY. ZhouW. Nanostructured carbon for energy storage and conversion.Nano Energy20121219522010.1016/j.nanoen.2011.11.006
    [Google Scholar]
  57. DubeyR. GuruviahV. Review of carbon-based electrode materials for supercapacitor energy storage.Ionics20192541419144510.1007/s11581‑019‑02874‑0
    [Google Scholar]
  58. JurewiczK. Vix-GuterlC. FrackowiakE. Capacitance properties of ordered porous carbon materials prepared by a templating procedure.J. Phys. Chem. Solids2004652-328729310.1016/j.jpcs.2003.10.024
    [Google Scholar]
  59. FernándezJ.A. MorishitaT. ToyodaM. InagakiM. StoeckliF. CentenoT.A. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors.J. Power Sources2008175167567910.1016/j.jpowsour.2007.09.042
    [Google Scholar]
  60. WangR. HanM. ZhaoQ. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors.Sci. Rep.2017714456210.1038/srep44562 28291246
    [Google Scholar]
  61. ZhangW. SongY. WangY. A perylenetetracarboxylic dianhydride and aniline-assembled supramolecular nanomaterial with multi-color electrochemiluminescence for a highly sensitive label-free immunoassay.J. Mater. Chem. B Mater. Biol. Med.20208163676368210.1039/C9TB02368B 32096516
    [Google Scholar]
  62. BiswalM. BanerjeeA. DeoM. OgaleS. From dead leaves to high energy density supercapacitors.Energy Environ. Sci.2013641249125910.1039/c3ee22325f
    [Google Scholar]
  63. WangJ. ZhangX. LiZ. MaY. MaL. Recent progress of biomass-derived carbon materials for supercapacitors.J. Power Sources202045122779410.1016/j.jpowsour.2020.227794
    [Google Scholar]
  64. AnwarZ. GulfrazM. IrshadM. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review.J Radiat Res Appl Sci20147216317310.1016/j.jrras.2014.02.003
    [Google Scholar]
  65. YangC.S. JangY.S. JeongH.K. Bamboo-based activated carbon for supercapacitor applications.Curr. Appl. Phys.201414121616162010.1016/j.cap.2014.09.021
    [Google Scholar]
  66. ZhangY. GaoZ. SongN. LiX. High-performance supercapacitors and batteries derived from activated banana-peel with porous structures.Electrochim. Acta20162221257126610.1016/j.electacta.2016.11.099
    [Google Scholar]
  67. QiangL. HuZ. LiZ. Buckwheat husk-derived hierarchical porous nitrogen-doped carbon materials for high-performance symmetric supercapacitor.J. Porous Mater.20192641217122510.1007/s10934‑019‑00723‑z
    [Google Scholar]
  68. KishoreB. ShanmughasundaramD. PenkiT.R. MunichandraiahN. Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors.J. Appl. Electrochem.201444890391610.1007/s10800‑014‑0708‑9
    [Google Scholar]
  69. JayakumarA. ZhaoJ. LeeJ.M. A coconut leaf sheath derived graphitized n-doped carbon network for high-performance supercapacitors.Chem Electro Chem20185228429110.1002/celc.201701133
    [Google Scholar]
  70. TianX. MaH. LiZ. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors.J. Power Sources2017359889610.1016/j.jpowsour.2017.05.054
    [Google Scholar]
  71. HuangC. SunT. Hulicova-JurcakovaD. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons.Chem Sus Chem20136122330233910.1002/cssc.201300457 24039010
    [Google Scholar]
  72. QuW.H. XuY.Y. LuA.H. ZhangX.Q. LiW.C. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.Bioresour. Technol.201518928529110.1016/j.biortech.2015.04.005 25898091
    [Google Scholar]
  73. ZhouJ. WangM. LiX. Promising biomass-derived nitrogen-doped porous carbon for high performance supercapacitor.J. Porous Mater.20192619910810.1007/s10934‑018‑0622‑3
    [Google Scholar]
  74. ZhangQ. HanK. LiS. LiM. LiJ. RenK. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors.Nanoscale20181052427243710.1039/C7NR07158B 29335695
    [Google Scholar]
  75. WangD. YangM. HeY. Honeycomb-like nitrogen-superdoped porous carbon for high performance supercapacitors.J. Porous Mater.20202761765177110.1007/s10934‑020‑00952‑7
    [Google Scholar]
  76. SenthilkumarS.T. FuN. LiuY. WangY. ZhouL. HuangH. Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon.Electrochim. Acta201621141141910.1016/j.electacta.2016.06.059
    [Google Scholar]
  77. ZhangY. LiuS. ZhengX. Biomass organs control the porosity of their pyrolyzed carbon.Adv. Funct. Mater.2017273160468710.1002/adfm.201604687
    [Google Scholar]
  78. Tran Thi DieuH. CharoensookK. TaiH.C. LinY.T. LiY.Y. Preparation of activated carbon derived from oil palm empty fruit bunches and its modification by nitrogen doping for supercapacitors.J. Porous Mater.202128191810.1007/s10934‑020‑00957‑2
    [Google Scholar]
  79. AhmedS. AhmedA. RafatM. Nitrogen doped activated carbon from pea skin for high performance supercapacitor.Mater. Res. Express20185404550810.1088/2053‑1591/aabbe7
    [Google Scholar]
  80. LengC. SunK. LiJ. JiangJ. From dead pine needles to O, N codoped activated carbons by a one-step carbonization for high rate performance supercapacitors.ACS Sustain. Chem.& Eng.2017511104741048210.1021/acssuschemeng.7b02481
    [Google Scholar]
  81. GaoS. LiX. LiL. WeiX. A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation.Nano Energy20173333434210.1016/j.nanoen.2017.01.045
    [Google Scholar]
  82. TeoE.Y.L. MuniandyL. NgE.P. High surface area activated carbon from rice husk as a high performance supercapacitor electrode.Electrochim. Acta201619211011910.1016/j.electacta.2016.01.140
    [Google Scholar]
  83. ZhuL. ShenF. SmithR.L.Jr YanL. LiL. QiX. Black liquor-derived porous carbons from rice straw for high-performance supercapacitors.Chem. Eng. J.201731677077710.1016/j.cej.2017.02.034
    [Google Scholar]
  84. FerreroG.A. FuertesA.B. SevillaM. From Soybean residue to advanced supercapacitors.Sci. Rep.2015511661810.1038/srep16618 26568473
    [Google Scholar]
  85. RuffordT.E. Hulicova-JurcakovaD. KhoslaK. ZhuZ. LuG.Q. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse.J. Power Sources2010195391291810.1016/j.jpowsour.2009.08.048
    [Google Scholar]
  86. LiX. XingW. ZhuoS. Preparation of capacitor’s electrode from sunflower seed shell.Bioresour. Technol.201110221118112310.1016/j.biortech.2010.08.110 20850968
    [Google Scholar]
  87. LiuW. MeiJ. LiuG. KouQ. YiT. XiaoS. Nitrogen-doped hierarchical porous carbon from wheat straw for supercapacitors.ACS Sustain. Chem.& Eng.201869115951160510.1021/acssuschemeng.8b01798
    [Google Scholar]
  88. BraghiroliF.L. CuñaA. da SilvaE.L. The conversion of wood residues, using pilot-scale technologies, into porous activated biochars for supercapacitors.J. Porous Mater.202027253754810.1007/s10934‑019‑00823‑w
    [Google Scholar]
  89. HuangY. PengL. LiuY. ZhaoG. ChenJ.Y. YuG. Biobased nano porous active carbon fibers for high-performance supercapacitors.ACS Appl. Mater. Interfaces2016824152051521510.1021/acsami.6b02214 27220422
    [Google Scholar]
  90. WangD. XuZ. LianY. BanC. ZhangH. Nitrogen self-doped porous carbon with layered structure derived from porcine bladders for high-performance supercapacitors.J. Colloid Interface Sci.201954240040910.1016/j.jcis.2019.02.024 30771635
    [Google Scholar]
  91. FuM. ChenW. DingJ. ZhuX. LiuQ. Biomass waste derived multi-hierarchical porous carbon combined with CoFe2O4 as advanced electrode materials for supercapacitors.J. Alloys Compd.201978295296010.1016/j.jallcom.2018.12.244
    [Google Scholar]
  92. XuZ. LiY. LiD. N-enriched multilayered porous carbon derived from natural casings for high-performance supercapacitors.Appl. Surf. Sci.201844466167110.1016/j.apsusc.2018.03.100
    [Google Scholar]
  93. LeiS. ChenL. ZhouW. Tetra-heteroatom self-doped carbon nanosheets derived from silkworm excrement for high-performance supercapacitors.J. Power Sources2018379748310.1016/j.jpowsour.2018.01.032
    [Google Scholar]
  94. NiuJ. ShaoR. LiangJ. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors.Nano Energy20173632233010.1016/j.nanoen.2017.04.042
    [Google Scholar]
  95. TangL. ZhouY. ZhouX. ChaiY. ZhengQ. LinD. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature.J. Mater. Sci. Mater. Electron.20193032600260910.1007/s10854‑018‑0535‑6
    [Google Scholar]
  96. LiuM. NiuJ. ZhangZ. DouM. WangF. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors.Nano Energy20185136637210.1016/j.nanoen.2018.06.037
    [Google Scholar]
  97. XuH. WuC. WeiX. GaoS. Hierarchically porous carbon materials with controllable proportion of micropore area by dual-activator synthesis for high-performance supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.2018631153401534710.1039/C8TA04777D
    [Google Scholar]
  98. ZhouY. RenJ. XiaL. Nitrogen-doped hierarchical porous carbon framework derived from waste pig nails for high-performance supercapacitors.Chem Electro Chem20174123181318710.1002/celc.201700810
    [Google Scholar]
  99. GaoF. QuJ. GengC. ShaoG. WuM. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.20164197445745210.1039/C6TA01314G
    [Google Scholar]
  100. ZhuB. LiuB. QuC. Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres.J. Mater. Chem. A Mater. Energy Sustain.2018641523153010.1039/C7TA09608A
    [Google Scholar]
  101. JiangL. ShengL. ChenX. WeiT. FanZ. Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.2016429113881139610.1039/C6TA02570F
    [Google Scholar]
  102. LiD. ChangG. ZongL. From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage.Energy Storage Mater.201917223010.1016/j.ensm.2018.08.004
    [Google Scholar]
  103. Perez-SalcedoK.Y. RuanS. SuJ. ShiX. KannanA.M. EscobarB. Seaweed-derived KOH activated biocarbon for electrocatalytic oxygen reduction and supercapacitor applications.J. Porous Mater.202027495996910.1007/s10934‑020‑00871‑7
    [Google Scholar]
  104. ChenD. LiL. XiY. Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors.Electrochim. Acta201828626427010.1016/j.electacta.2018.08.030
    [Google Scholar]
  105. BaughmanR.H. ZakhidovA.A. De HeerW.A. Carbon nanotubes--the route toward applications.Science2002297558278779210.1126/science.1060928
    [Google Scholar]
  106. ChenC. MoM. ChenW. Highly conductive nanocomposites based on cellulose nanofiber networks via NaOH treatments.Compos. Sci. Technol.201815610310810.1016/j.compscitech.2017.12.029
    [Google Scholar]
  107. ChenC. WangY. MengT. Electrically conductive polyacrylamide/carbon nanotube hydrogel: Reinforcing effect from cellulose nanofibers.Cellulose201926168843885110.1007/s10570‑019‑02710‑8
    [Google Scholar]
  108. YoonB.J. JeongS.H. LeeK.H. Seok KimH. Gyung ParkC. Hun HanJ. Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes.Chem. Phys. Lett.20043881-317017410.1016/j.cplett.2004.02.071
    [Google Scholar]
  109. WenS. JungM. JooO.S. MhoS. EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates.Curr. Appl. Phys.2006661012101510.1016/j.cap.2005.07.008
    [Google Scholar]
  110. XuB. WuF. SuY. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity.Electrochim. Acta200853267730773510.1016/j.electacta.2008.05.033
    [Google Scholar]
  111. ShahR. ZhangX. TalapatraS. Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals.Nanotechnology2009203939520210.1088/0957‑4484/20/39/395202 19726841
    [Google Scholar]
  112. JungD.W. LeeC.S. ParkS. OhE.S. Characterization of electric double-layer capacitors with carbon nanotubes directly synthesized on a copper plate as a current collector.Korean J Metals Mater201149641942410.3365/KJMM.2011.49.5.419
    [Google Scholar]
  113. PanH. PohC.K. FengY.P. LinJ. Supercapacitor electrodes from tubes-in-tube carbon nanostructures.Chem. Mater.200719256120612510.1021/cm071527e
    [Google Scholar]
  114. Izadi-NajafabadiA. YasudaS. KobashiK. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density.Adv. Mater.20102235E235E24110.1002/adma.200904349 20564700
    [Google Scholar]
  115. Li-XiangL.I. JingT.A.O. XinG.E.N.G. Bai-GangA.N. TaoJ. GengX. AnB.G. Bai-GangAN. TaoJ. GengX Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification.Wuli Huaxue Xuebao201329111111610.3866/PKU.WHXB201211091
    [Google Scholar]
  116. GueonD. MoonJ.H. Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications: Emulsion-assisted compact packing and capacitance enhancement.ACS Appl. Mater. Interfaces2015736200832008910.1021/acsami.5b05231 26325508
    [Google Scholar]
  117. BulushevaL.G. FedorovskayaE.O. KurenyaA.G. OkotrubA.V. Supercapacitor performance of nitrogen-doped carbon nanotube arrays.Phys. Status Solidi2013250122586259110.1002/pssb.201300108
    [Google Scholar]
  118. PengC. JinJ. ChenG.Z. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes.Electrochim. Acta200753252553710.1016/j.electacta.2007.07.004
    [Google Scholar]
  119. XieL. SunG. SuF. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications.J. Mater. Chem. A Mater. Energy Sustain.2016451637164610.1039/C5TA09043A
    [Google Scholar]
  120. KimT.Y. LeeH.W. StollerM. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.ACS Nano20115143644210.1021/nn101968p 21142183
    [Google Scholar]
  121. ZhuY. MuraliS. StollerM. RuoffR. Graphene-Based Ultracapacitors. IOP Publishing InECS Meeting Abstracts. (2010).10.1149/MA2010‑02/6/427
    [Google Scholar]
  122. LiuC. YuZ. NeffD. ZhamuA. JangB.Z. Graphene-based supercapacitor with an ultrahigh energy density.Nano Lett.201010124863486810.1021/nl102661q 21058713
    [Google Scholar]
  123. OgataC. KurogiR. HatakeyamaK. TaniguchiT. KoinumaM. MatsumotoY. All-graphene oxide device with tunable supercapacitor and battery behaviour by the working voltage.Chem. Commun.201652203919392210.1039/C5CC09575A 26871961
    [Google Scholar]
  124. ZhangH. WangK. ZhangX. Self-generating graphene and porous nanocarbon composites for capacitive energy storage.J. Mater. Chem. A Mater. Energy Sustain.2015321112771128610.1039/C5TA01783A
    [Google Scholar]
  125. VivekchandS.R.C. RoutC.S. SubrahmanyamK.S. GovindarajA. RaoC.N.R. Graphene-based electrochemical supercapacitors.J. Chem. Sci.2008120191310.1007/s12039‑008‑0002‑7
    [Google Scholar]
  126. StollerM.D. ParkS. ZhuY. AnJ. RuoffR.S. Graphene-Based Ultracapacitors.Nano Lett.20088103498350210.1021/nl802558y 18788793
    [Google Scholar]
  127. WangY. ShiZ. HuangY. Supercapacitor devices based on graphene materials.J. Phys. Chem. C200911330131031310710.1021/jp902214f
    [Google Scholar]
  128. Navarro-SuárezA.M. Van AkenK.L. MathisT. Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes.Electrochim. Acta201825975276110.1016/j.electacta.2017.10.125
    [Google Scholar]
  129. LiF. ChenJ. WangX. XueM. ChenG.F. Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes.Adv. Funct. Mater.201525294601460610.1002/adfm.201500718
    [Google Scholar]
  130. YanJ. RenC.E. MaleskiK. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance.Adv. Funct. Mater.20172730170126410.1002/adfm.201701264
    [Google Scholar]
  131. WangF. WangC. ZhaoY. A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets.Small201612456207621310.1002/smll.201602331 27682599
    [Google Scholar]
  132. WangF. LiuZ. YuanX. A quasi-solid-state Li-ion capacitor with high energy density based on Li3 VO4/carbon nanofibers and electrochemically-exfoliated graphene sheets.J. Mater. Chem. A Mater. Energy Sustain.2017528149221492910.1039/C7TA03920D
    [Google Scholar]
  133. LuoH. LiuZ. ChaoL. Synthesis of hierarchical porous N-doped sandwich-type carbon composites as high-performance supercapacitor electrodes.J. Mater. Chem. A Mater. Energy Sustain.2015373667367510.1039/C4TA05843G
    [Google Scholar]
  134. SunL. TianC. LiM. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.20131216462647010.1039/c3ta10897j
    [Google Scholar]
  135. ZhouH. ZhangJ. AmiinuI.S. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction.Phys. Chem. Chem. Phys.20161815103921039910.1039/C6CP00174B 27030144
    [Google Scholar]
  136. ChienH.C. ChengW.Y. WangY.H. LuS.Y. Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites.Adv. Funct. Mater.201222235038504310.1002/adfm.201201176
    [Google Scholar]
  137. RoldánS. BlancoC. GrandaM. MenéndezR. SantamaríaR. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes.Angew. Chem. Int. Ed.20115071699170110.1002/anie.201006811 21308936
    [Google Scholar]
  138. WangH. WuH. ChangY. ChenY. HuZ. Tert-butylhydroquinone-decorated graphene nanosheets and their enhanced capacitive behaviors.Chin. Sci. Bull.201156202092209710.1007/s11434‑011‑4424‑0
    [Google Scholar]
  139. AnjosD.M. McDonoughJ.K. PerreE. Pseudocapacitance and performance stability of quinone-coated carbon onions.Nano Energy20132570271210.1016/j.nanoen.2013.08.003
    [Google Scholar]
  140. AnjosD.M. KolesnikovA.I. WuZ. Inelastic neutron scattering, Raman and DFT investigations of the adsorption of phenanthrenequinone on onion-like carbon.Carbon20135215015710.1016/j.carbon.2012.09.016
    [Google Scholar]
  141. ChenX. WangH. YiH. WangX. YanX. GuoZ. Anthraquinone on porous carbon nanotubes with improved supercapacitor performance.J. Phys. Chem. C2014118168262827010.1021/jp5009626
    [Google Scholar]
  142. ShabangoliY. RahmanifarM.S. El-KadyM.F. NooriA. MousaviM.F. KanerR.B. Thionine functionalized 3D graphene aerogel: Combining simplicity and efficiency in fabrication of a metal-free redox supercapacitor.Adv. Energy Mater.2018834180286910.1002/aenm.201802869
    [Google Scholar]
  143. SunW. GaoG. DuY. ZhangK. WuG. A facile strategy for fabricating hierarchical nanocomposites of V 2 O 5 nanowire arrays on a three-dimensional N-doped graphene aerogel with a synergistic effect for supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.20186219938994710.1039/C8TA01448E
    [Google Scholar]
  144. LeeJ.H. ParkS.J. Recent advances in preparations and applications of carbon aerogels: A review.Carbon202016311810.1016/j.carbon.2020.02.073
    [Google Scholar]
  145. JiangL. ShengL. FanZ. Biomass-derived carbon materials with structural diversities and their applications in energy storage.Sci. China Mater.201861213315810.1007/s40843‑017‑9169‑4
    [Google Scholar]
  146. WangY. QuQ. GaoS. Biomass derived carbon as binder-free electrode materials for supercapacitors.Carbon201915570672610.1016/j.carbon.2019.09.018
    [Google Scholar]
  147. ChengP. LiT. YuH. ZhiL. LiuZ. LeiZ. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors.J. Phys. Chem. C201612042079208610.1021/acs.jpcc.5b11280
    [Google Scholar]
/content/journals/cms/10.2174/2666145416666230314123738
Loading
/content/journals/cms/10.2174/2666145416666230314123738
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test