Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

The study systematically investigates the influence of annealing temperatures, ranging from 500°C to 900°C with 100°C increments, on the microstructural characteristics of cobalt ferrite (CoFeO) nanoparticles.

Methods

The nanoparticles, with sizes between 7-18 nm, were synthesized using the co-precipitation method. X-ray diffraction (XRD) analysis reveals that higher annealing temperatures correspond to noticeable increases in crystallite size, lattice parameter, unit cell volume, and interatomic distances within both octahedral and tetrahedral sites. Concurrently, a substantial decrease is observed in the average theoretical X-ray density, dislocation density, and microstructural strain. This investigation elucidates the underlying physical and chemical processes driving these transformations. To explore and quantify the intricate relationships between annealing temperature and various microstructural attributes of CoFeO nanoparticles, Pearson’s correlation coefficient () serves as a robust statistical tool. The study establishes significant associations and elucidates the strength and direction of these correlations.

Results

Regression analysis yields highly robust correlations (Adjusted R-Squared > 0.99) between microstructural features and annealing temperature. These correlations provide valuable predictive insights into microstructural characteristics, offering substantial support for optimizing CoFeO nanoparticle applications across a temperature range spanning from 500°C to 900°C.

Conclusion

This research contributes to the scientific understanding of materials engineering and offers practical guidance for applications requiring precise control over nanoparticle properties.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454267476231214053431
2023-12-19
2025-06-19
Loading full text...

Full text loading...

References

  1. HunyekA. SirisathitkulC. HardingP. HardingD.J. Structural and magnetic properties of cobalt ferrites synthesized using sol-gel techniques.Mater. Sci. Pol.201230327828110.2478/s13536‑012‑0035‑y
    [Google Scholar]
  2. GaraninaA.S. NikitinA.A. AbakumovaT.O. Cobalt ferrite nanoparticles for tumor therapy: Effective heating versus possible toxicity.Nanomaterials20211213810.3390/nano12010038 35009988
    [Google Scholar]
  3. LiuH.Y. LiY.S. Synthesis and microwave absorbing properties of Cobalt ferrite.2nd International Conference on New Material and Chemical Industry (NMCI2017)18–20 November 2017Sanya, China201810.1088/1757‑899X/292/1/012062
    [Google Scholar]
  4. FalcãoM. GarciaM. de MouraC. NicolodiS. de MouraE. Synthesis, characterization and catalytic evaluation of magnetically recoverable SrO/CoFe2O4 nanocatalyst for biodiesel production from babassu oil transesterification.J. Braz. Chem. Soc.20172984585510.21577/0103‑5053.20170209
    [Google Scholar]
  5. ChagasC.A. de SouzaE.F. de CarvalhoM.C.N.A. MartinsR.L. SchmalM. Cobalt ferrite nanoparticles for the preferential oxidation of CO.Appl. Catal. A Gen.201651913914510.1016/j.apcata.2016.03.024
    [Google Scholar]
  6. BhartiM.K. ChaliaS. ThakurP. SridharaS.N. ThakurA. SharmaP.B. Nanoferrites heterogeneous catalysts for biodiesel production from soybean and canola oil: A review.Environ. Chem. Lett.20211953727374610.1007/s10311‑021‑01247‑2 33967660
    [Google Scholar]
  7. PuniaP. BhartiM.K. ChaliaS. Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment- A review.Ceram. Int.20214721526155010.1016/j.ceramint.2020.09.050
    [Google Scholar]
  8. BhartiM.K. GuptaS. ChaliaS. GargI. ThakurP. ThakurA. Potential of magnetic nanoferrites in removal of heavy metals from contaminated water: Mini review.J. Supercond. Nov. Magn.202033123651366510.1007/s10948‑020‑05657‑1
    [Google Scholar]
  9. GheidariD. MehrdadM. MalekiS. HosseiniS. Synthesis and potent antimicrobial activity of CoFe2O4 nanoparticles under visible light.Heliyon2020610e0505810.1016/j.heliyon.2020.e05058 33083590
    [Google Scholar]
  10. MoraisD.O. PancottiA. de SouzaG.S. Synthesis, characterization, and evaluation of antibacterial activity of transition metal oxyde nanoparticles.J. Mater. Sci. Mater. Med.202132910110.1007/s10856‑021‑06578‑8 34406528
    [Google Scholar]
  11. VelayuthamL. ParvathirajaC. AnithaD.C. Photocatalytic and antibacterial activity of CoFe2O4 nanoparticles from hibiscus rosa-sinensis plant extract.Nanomaterials20221220366810.3390/nano12203668 36296858
    [Google Scholar]
  12. TamboliQ.Y. PatangeS.M. MohantaY.K. SharmaR. ZakdeK.R. Green synthesis of cobalt ferrite nanoparticles: An emerging material for environmental and biomedical applications.J. Nanomater.2023202311510.1155/2023/9770212
    [Google Scholar]
  13. Goodarz NaseriM. SaionE.B. Abbastabar AhangarH. ShaariA.H. HashimM. Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method.J. Nanomater.201020101810.1155/2010/907686
    [Google Scholar]
  14. RaoP.V.S. AnjaneyuluT. ReddyM.R. Annealing temperature dependent structural and magnetic properties of Ni−Cu−Zn nanoferrites.J. Korean Phys. Soc.201872559359810.3938/jkps.72.593
    [Google Scholar]
  15. DippongT. LeveiE.A. LeosteanC. CadarO. Impact of annealing temperature and ferrite content embedded in SiO2 matrix on the structure, morphology and magnetic characteristics of (Co0.4Mn0.6Fe2O4)δ (SiO2)100-δ nanocomposites.J. Alloys Compd.202186815920310.1016/j.jallcom.2021.159203
    [Google Scholar]
  16. DesautelsR.D. LieropJ. CadoganJ.M. Disproportionation of cobalt ferrite nanoparticles upon annealing.J. Phys. Conf. Ser.201021701210510.1088/1742‑6596/217/1/012105
    [Google Scholar]
  17. ChenY. RuanM. JiangY.F. ChengS.G. LiW. The synthesis and thermal effect of CoFe2O4 nanoparticles.J. Alloys Compd.20104931-2L36L3810.1016/j.jallcom.2009.12.170
    [Google Scholar]
  18. VishwasM. Venkatesha BabuK.R. Arjuna GowdaK.V. Babu GandlaS. Synthesis, characterization and photo-catalytic activity of magnetic CoFe2O4 nanoparticles prepared by temperature controlled co-precipitation method.Mater. Today Proc.20226849750110.1016/j.matpr.2022.07.429
    [Google Scholar]
  19. DarwishM.S.A. KimH. LeeH. RyuC. LeeJ.Y. YoonJ. Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method.Nanomaterials201998117610.3390/nano9081176 31426427
    [Google Scholar]
  20. BhartiM.K. ChaliaS. ThakurP. HermosaG.C. Aidan SunA-C. ThakurA. Low-loss characteristics and sustained magneto-dielectric behaviour of cobalt ferrite nanoparticles over 1–6 GHz frequency range.Ceram. Int.20214715221642217110.1016/j.ceramint.2021.04.239
    [Google Scholar]
  21. HusseinM.M. SaafanS.A. AbosheiashaH.F. Crystal structure and peculiarities of microwave parameters of Co 1-x Nix Fe2O4 nano spinel ferrites.RSC Advances20231338268792689110.1039/D3RA04557A 37692354
    [Google Scholar]
  22. NaagarM. ChaliaS. KharbandaS. ThakurP. ThakurA. Correlating tailored saturation magnetization of normal- inverse spinels with noncollinear magnetic ordering.J. Mater. Sci. Mater. Electron.20233447310.1007/s10854‑023‑09828‑3
    [Google Scholar]
  23. IslamM.A. HossainA.K.M.A. AhsanM.Z. Structural characteristics, cation distribution, and elastic properties of Cr3+ substituted stoichiometric and non-stoichiometric cobalt ferrites.RSC Advances202212148502851910.1039/D1RA09090A 35424790
    [Google Scholar]
  24. NasiriS. RabieiM. PaleviciusA. Modified Scherrer equation to calculate crystal size by XRD with high accuracy, examples Fe2O3, TiO2 and V2O5.Nano Trends2023310001510.1016/j.nwnano.2023.100015
    [Google Scholar]
  25. MustaphaS. NdamitsoM.M. AbdulkareemA.S. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles.Adv Nat Sci: Nanosci Nanotechnol201910404501310.1088/2043‑6254/ab52f7
    [Google Scholar]
  26. AlanemeK.K. OkoteteE.A. Recrystallization mechanisms and microstructure development in emerging metallic materials: A review.J. Sci. Adv. Mater. Devices201941193310.1016/j.jsamd.2018.12.007
    [Google Scholar]
  27. BajorekA. BergerC. DulskiM. Tuning Physical Properties of NiFe2O4 and NiFe2O4@SiO2 Nanoferrites by Thermal Treatment.Metall. Mater. Trans., A Phys. Metall. Mater. Sci.20225341208123010.1007/s11661‑021‑06567‑0
    [Google Scholar]
  28. BhartiM.K. ChaliaS. ThakurP. ThakurA. Effect of lanthanum doping on microstructural, dielectric and magnetic properties of Mn0.4Zn0.6Cd0.2LaxFe1.8-xO4 (0.0 ≤ x ≤ 0.4).J. Supercond. Nov. Magn.202134102591260010.1007/s10948‑021‑05908‑9
    [Google Scholar]
  29. MazlanN.W. MuratM.S. TsengC.J. HassanO.H. OsmanN. Lattice expansion and crystallite size analyses of NiO-BaCe0.54Zr0.36Y0.1O3-δ anode composite for proton ceramic fuel cells application.Energies20221522852010.3390/en15228520
    [Google Scholar]
  30. WangH.W. KungS.C. Crystallization of nanosized Ni–Zn ferrite powders prepared by hydrothermal method.J. Magn. Magn. Mater.20042701-223023610.1016/j.jmmm.2003.09.019
    [Google Scholar]
  31. JoshiH.M. LinY.P. AslamM. Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation.J. Phys. Chem. C200911341177611776710.1021/jp905776g 21850276
    [Google Scholar]
  32. RiosP.R. SicilianoF.Jr SandimH.R.Z. PlautR.L. PadilhaA.F. Nucleation and growth during recrystallization.Mater. Res.20058322523810.1590/S1516‑14392005000300002
    [Google Scholar]
  33. ArifuzzamanM. HossenM.B. RashidM.H. AhmedM.S. IslamM.S. Effect of annealing temperature on the structural, dielectric and electric properties of Ni 0.7Cd 0.3Fe2O4 ferrites.Bull. Mater. Sci.202043115510.1007/s12034‑020‑02116‑4
    [Google Scholar]
  34. ShengL. ZhengweiX. YafengL. YunL. DongshengJ. PingW. Effect of annealing temperature on the structure and properties of FeCoCrNiMo high-entropy alloy.High-Temp Mater Process202241141742310.1515/htmp‑2022‑0048
    [Google Scholar]
  35. AkogluH. User’s guide to correlation coefficients.Turk. J. Emerg. Med.2018183919310.1016/j.tjem.2018.08.001 30191186
    [Google Scholar]
  36. RobertsA. RobertsJ.M.Jr Fundamentals of Multiple Regression.SAGE Publications, Inc20222364
    [Google Scholar]
/content/journals/cms/10.2174/0126661454267476231214053431
Loading
/content/journals/cms/10.2174/0126661454267476231214053431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test