Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Longevity has been associated with morbidity and an increase in age-related illnesses, linked to tissue degeneration and gradual loss of biological functions. Bone is an important organ that gradually degenerates with increasing lifespan. The remodeling phase plays a huge role in maintaining the ability of bone to regenerate and maintain its stability and function throughout life. Hence, bone health represents one of the major challenges to elderly citizens due to the increase of injury associated with bone degeneration, such as fragility and risks of fractures. In the virtue of improving the regenerative function of bone tissues, a specialized field of bone tissue engineering (BTE) has been introduced to improve the current strategies in treating bone degenerative disorders. Most of the research performed in BTE focuses on the optimization of key components to generate new bone formation, including the scaffold. A scaffold plays a significant role in establishing the structural form that interconnects major elements of the tissue engineering triad. To date, many types of biomaterials have been explored in BTE, ranging from natural and synthetic materials to nanocomposites. However, ideal scaffolds that display excellent biocompatibility and mechanical properties, approved for clinical practices are yet available. This paper aims to describe the up-to-date advancements in scaffold for new bone generation, highlighting the essential elements and strategies in selecting suitable biomaterials for bone repair.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230228120343
2024-06-01
2025-02-18
Loading full text...

Full text loading...

References

  1. WuA.M. BisignanoC. JamesS.L. AbadyG.G. AbediA. Abu-GharbiehE. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019.Lancet Healthy Longev.20192958059210.1016/S2666‑7568(21)00172‑0
    [Google Scholar]
  2. AbosadeghM.M. SaddkiN. Al-TayarB. RahmanS.A. Epidemiology of maxillofacial fractures at a teaching hospital in malaysia: A retrospective study.BioMed Res. Int.20192019902476310.1155/2019/9024763
    [Google Scholar]
  3. LeeC. FooQ. WongL. LeungY. An overview of maxillofacial trauma in oral and maxillofacial tertiary trauma centre, queen elizabeth hospital, kota Kinabalu, Sabah.Craniomaxillofac. Trauma Reconstr.2017101162110.1055/s‑0036‑1584893 28210403
    [Google Scholar]
  4. CheungC-L. AngS. ChadhaM. An updated hip fracture projection in Asia: The Asian federation of osteoporosis societies study.Osteoporos. Sarcopenia201841162110.1016/j.afos.2018.03.003 30775536
    [Google Scholar]
  5. The burden of musculoskeletal conditions at the start of the new millennium. Switzerland.World Health Organization technical report series .2003919
    [Google Scholar]
  6. LobbD.C. DeGeorgeB.R.Jr ChhabraA.B. Bone graft substitutes: Current concepts and future expectations.J. Hand Surg. Am.2019446497505.e210.1016/j.jhsa.2018.10.032 30704784
    [Google Scholar]
  7. HollisterS.J. MurphyW.L. Scaffold translation: Barriers between concept and clinic.Tissue Eng. Part B Rev.201117645947410.1089/ten.teb.2011.0251 21902613
    [Google Scholar]
  8. SheenJ.R. GarlaV.V. Fracture Healing Overview.StatPearls.StatPearls Publishing LLC2019
    [Google Scholar]
  9. AmarasekaraD.S. KimS. RhoJ. Regulation of osteoblast differentiation by cytokine networks.Int. J. Mol. Sci.2021226285110.3390/ijms22062851
    [Google Scholar]
  10. MaruyamaM. RheeC. UtsunomiyaT. ZhangN. UenoM. YaoZ. Modulation of the inflammatory response and bone healing.Front. Endocrinol.20201138610.3389/fendo.2020.00386
    [Google Scholar]
  11. BraddockM. HoustonP. CampbellC. AshcroftP. Born again bone: Tissue engineering for bone repair.Physiology.200116520821310.1152/physiologyonline.2001.16.5.208 11572922
    [Google Scholar]
  12. SallentI. Capella-MonsonísH. ProcterP. Where scientists empower society. The few who made it: Commercially and clinically successful innovative bone grafts.Front. Bioeng. Biotechnol.20208952
    [Google Scholar]
  13. ConnollyJ.F. GuseR. TiedemanJ. DehneR. Autologous marrow injection as a substitute for operative grafting of tibial nonunions.Clin. Orthop. Relat. Res.199126625927010.1097/00003086‑199105000‑00038 2019059
    [Google Scholar]
  14. LiuM. LvY. Reconstructing bone with natural bone graft: A review of in vivo studies in bone defect animal model.Nanomaterials.201881299910.3390/nano8120999 30513940
    [Google Scholar]
  15. AkpanE.I. GbeneborO.P. AdeosunS.O. CletusO. Chitin and chitosan composites for bone tissue regeneration.In: Handbook of Chitin and Chitosan202049955310.1016/B978‑0‑12‑817966‑6.00016‑9
    [Google Scholar]
  16. AlonzoM. Alvarez PrimoF. Anil KumarS. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects.Curr. Opin. Biomed. Eng.20211710024810.1016/j.cobme.2020.100248 33718692
    [Google Scholar]
  17. SheikhZ. JavaidM. HamdanN. HashmiR. Bone regeneration using bone morphogenetic proteins and various biomaterial carriers.Materials.2015841778181610.3390/ma8041778 28788032
    [Google Scholar]
  18. JanssensK. Ten DijkeP. JanssensS. Van HulW. Transforming growth factor-β1 to the bone.Endocrine Reviews.OxfordAcademic2005743774
    [Google Scholar]
  19. LeeK. SilvaE.A. MooneyD.J. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments.J. R. Soc. Interface201185515317010.1098/rsif.2010.0223 20719768
    [Google Scholar]
  20. WangZ. WangZ. LuW.W. ZhenW. YangD. PengS. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications.NPG Asia Mater.20179e435e5
    [Google Scholar]
  21. GillmanC.E. JayasuriyaA.C. FDA-approved bone grafts and bone graft substitute devices in bone regeneration.Mater. Sci. Eng. C202113011246610.1016/j.msec.2021.112466 34702541
    [Google Scholar]
  22. FisheroB. KohliN. DasA. ChristophelJ. CuiQ. Current concepts of bone tissue engineering for craniofacial bone defect repair.Craniomaxillofac. Trauma Reconstr.201581233010.1055/s‑0034‑1393724 25709750
    [Google Scholar]
  23. SohnH.S. OhJ.K. Review of bone graft and bone substitutes with an emphasis on fracture surgeries.Biomater. Res.2019231910.1186/s40824‑019‑0157‑y 30915231
    [Google Scholar]
  24. GarcíaJ.R. GarcíaA.J. Biomaterial-mediated strategies targeting vascularization for bone repair.Drug Deliv. Transl. Res.201662779510.1007/s13346‑015‑0236‑0
    [Google Scholar]
  25. BoseS. RoyM. BandyopadhyayA. Recent advances in bone tissue engineering scaffolds.Trends Biotechnol.20123010546554
    [Google Scholar]
  26. LinX. PatilS. GaoY.G. QianA. The bone extracellular matrix in bone formation and regeneration.Front. Pharmacol.2020757
    [Google Scholar]
  27. ChanB.P. LeongK.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations.Eur. Spine J.200817S446747910.1007/s00586‑008‑0745‑3
    [Google Scholar]
  28. WangW. CaetanoG. AmblerW. Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering.Materials.201691299210.3390/ma9120992 28774112
    [Google Scholar]
  29. MotamedianS.R. HosseinpourS. AhsaieM.G. KhojastehA. Smart scaffolds in bone tissue engineering: A systematic review of literature.World J. Stem Cells20157365766810.4252/wjsc.v7.i3.657 25914772
    [Google Scholar]
  30. WalmsleyG.G. McArdleA. TevlinR. MomeniA. AtashrooD. HuM.S. Nanotechnology in bone tissue engineering.Nanomedicine.20151151253126310.1016/j.nano.2015.02.013
    [Google Scholar]
  31. KashteS. JaiswalA.K. KadamS. Artificial bone via bone tissue engineering: Current scenario and challenges.Tissue Eng. Regen. Med.201714111410.1007/s13770‑016‑0001‑6 30603457
    [Google Scholar]
  32. YangM. ZhangZ.C. LiuY. Function and mechanism of RGD in bone and cartilage tissue engineering.Front. Bioeng. Biotechnol.20219December77363610.3389/fbioe.2021.773636 34976971
    [Google Scholar]
  33. WubnehA. TsekouraE.K. AyranciC. Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering.Acta Biomater.20188013010.1016/j.actbio.2018.09.031 30248515
    [Google Scholar]
  34. WuS. LiuX. YeungK.W.K. LiuC. YangX. Biomimetic porous scaffolds for bone tissue engineering.Mater. Sci. Eng. Rep.201480113610.1016/j.mser.2014.04.001
    [Google Scholar]
  35. BoseS. VahabzadehS. BandyopadhyayA. Bone tissue engineering using 3D printing.Mater. Today2013161249650410.1016/j.mattod.2013.11.017
    [Google Scholar]
  36. KumarA. MandalS. BaruiS. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment.Mater. Sci. Eng. Rep.201610313910.1016/j.mser.2016.01.001
    [Google Scholar]
  37. AbbasiN. HamletS. LoveR.M. NguyenN.T. Porous scaffolds for bone regeneration.J. Sci. Adv. Mater. Devices2020511910.1016/j.jsamd.2020.01.007
    [Google Scholar]
  38. MizunoM. FujisawaR. KubokiY. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-?2?1 integrin interaction.J. Cell. Physiol.2000184220721310.1002/1097‑4652(200008)184:2<207:AID‑JCP8>3.0.CO;2‑U 10867645
    [Google Scholar]
  39. MizunoM. KubokiY. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen.J. Biochem.2001129113313810.1093/oxfordjournals.jbchem.a002824 11134967
    [Google Scholar]
  40. ElangoJ. RobinsonJ. ZhangJ. Collagen peptide upregulates osteoblastogenesis from bone marrow mesenchymal stem cells through MAPK- Runx2.Cells20198544610.3390/cells8050446 31083501
    [Google Scholar]
  41. AkhirH.M. TeohP.L. Collagen type I promotes osteogenic differentiation of amniotic membrane-derived mesenchymal stromal cells in basal and induction media.Biosci. Rep.202040122020132510.1042/BSR20201325
    [Google Scholar]
  42. SomaiahC. KumarA. MawrieD. Collagen promotes higher adhesion, survival and proliferation of mesenchymal stem cells.PLoS One20151012e014506810.1371/journal.pone.0145068 26661657
    [Google Scholar]
  43. YangH.J. KangS.Y. The clinical uses of collagen-based matrices in the treatment of chronic wounds.J Wound Manag Res201915210310810.22467/jwmr.2019.00640
    [Google Scholar]
  44. OryanA KamaliA MoshiriA BaharvandH DaemiH hemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffoldsInt J Biol Macromol20181076788810.1016/j.ijbiomac.2017.08.184
    [Google Scholar]
  45. DhandayuthapaniB YoshidaY MaekawaT KumarDS Polymeric scaffolds in tissue engineering application: A review.Int J Polym Sci 2011201110.1155/2011/290602
    [Google Scholar]
  46. Shan WongY. Yong TayC. WenF. Engineered polymeric biomaterials for tissue engineering.Curr. Tissue Eng.201211415310.2174/2211542011201010041
    [Google Scholar]
  47. ZhuJ. MarchantR.E. Design properties of hydrogel tissue-engineering scaffolds.Expert Rev. Med. Devices20118560710.1586/erd.11.27
    [Google Scholar]
  48. ManthaS. PillaiS. KhayambashiP. Smart hydrogels in tissue engineering and regenerative medicine.Materials.20191220332310.3390/ma12203323 31614735
    [Google Scholar]
  49. El-HusseinyH.M. MadyE.A. HamabeL. AbugomaaA. ShimadaK. YoshidaT. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications.Mater. Today Bio20221310018610.1016/j.mtbio.2021.100186
    [Google Scholar]
  50. KumarP. DehiyaB.S. SindhuA. Bioceramics for hard tissue engineering applications: A review.Int. J. Appl. Eng. Res.201813527442752
    [Google Scholar]
  51. MittwedeP.N. GottardiR. AlexanderP.G. TarkinI.S. TuanR.S. Clinical applications of bone tissue engineering in orthopedic trauma.Curr. Pathobiol. Rep.2018629910810.1007/s40139‑018‑0166‑x
    [Google Scholar]
  52. BainoF. NovajraG. Vitale-BrovaroneC. Bioceramics and scaffolds: A winning combination for tissue engineering.Front. Bioeng. Biotechnol.2015320210.3389/fbioe.2015.00202
    [Google Scholar]
  53. WangJ.L. XuJ.K. HopkinsC. ChowD.H.K. QinL. Biodegradable magnesium‐based implants in orthopedics-A general review and perspectives.Adv. Sci.202078190244310.1002/advs.201902443 32328412
    [Google Scholar]
  54. YusopA.H. BakirA.A. ShaharomN.A. Abdul KadirM.R. HermawanH. Porous biodegradable metals for hard tissue scaffolds: A review.Int. J. Biomater.2012201211010.1155/2012/641430 22919393
    [Google Scholar]
  55. SheikhZ. NajeebS. KhurshidZ. VermaV. RashidH. GlogauerM. Biodegradable materials for bone repair and tissue engineering applications.Materials.2015895744579410.3390/ma8095273
    [Google Scholar]
  56. KokuboT. YamaguchiS. Biomimetic surface modification of metallic biomaterials.Surf Coat Modif Met Biomater201521924610.1016/B978‑1‑78242‑303‑4.00007‑7
    [Google Scholar]
  57. CapuanaE. LoprestiF. Carfì PaviaF. BrucatoV. La CarrubbaV. Solution-based processing for scaffold fabrication in tissue engineering applications: A brief review.Polym202113204110.3390/polym13132041
    [Google Scholar]
  58. CollinsM.N. RenG. YoungK. PinaS. ReisR.L. OliveiraJ.M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering.Adv. Funct. Mater.20213121201060910.1002/adfm.202010609
    [Google Scholar]
  59. ChocholataP. KuldaV. BabuskaV. Fabrication of scaffolds for bone-tissue regeneration.Materials.201912456810.3390/ma12040568
    [Google Scholar]
  60. CostantiniM. BarbettaA. Gas foaming technologies for 3D scaffold engineering.Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications.Elsevier Ltd.201812714910.1016/B978‑0‑08‑100979‑6.00006‑9
    [Google Scholar]
  61. GargT. SinghO. AroraS. MurthyR.S.R. Scaffold: A novel carrier for cell and drug delivery.Crit. Rev. Ther. Drug Carrier Syst.201229116310.1615/CritRevTherDrugCarrierSyst.v29.i1.10 22356721
    [Google Scholar]
  62. JunI. HanH.S. EdwardsJ. JeonH. Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication.Int. J. Mol. Sci.201819374510.3390/ijms19030745 29509688
    [Google Scholar]
  63. WanZ. ZhangP. LiuY. LvL. ZhouY. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.Acta Biomater.2020101264210.1016/j.actbio.2019.10.038 31672585
    [Google Scholar]
  64. LinW. ChenM. QuT. LiJ. ManY. Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering.J. Biomed. Mater. Res. B Appl. Biomater.202010841311132110.1002/jbm.b.34479 31436374
    [Google Scholar]
  65. BetzM.W. YeattsA.B. RichbourgW.J. Macroporous hydrogels upregulate osteogenic signal expression and promote bone regeneration.Biomacromolecules20101151160116810.1021/bm100061z 20345129
    [Google Scholar]
  66. ForeroJ. RoaE. ReyesJ. AcevedoC. OssesN. Development of useful biomaterial for bone tissue engineering by incorporating Nano-Copper-Zinc Alloy (nCuZn) in Chitosan/Gelatin/Nano-Hydroxyapatite (Ch/G/nHAp) scaffold.Materials.20171010117710.3390/ma10101177 29039747
    [Google Scholar]
  67. KavyaK.C. JayakumarR. NairS. ChennazhiK.P. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering.Int. J. Biol. Macromol.20135925526310.1016/j.ijbiomac.2013.04.023 23591473
    [Google Scholar]
  68. ParkH.J. LeeO.J. LeeM.C. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction.Int. J. Biol. Macromol.20157821522310.1016/j.ijbiomac.2015.03.064 25849999
    [Google Scholar]
  69. ZhangJ. NieJ. ZhangQ. LiY. WangZ. HuQ. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.J. Biomater. Sci. Polym. Ed.2014251617410.1080/09205063.2013.836950 24053536
    [Google Scholar]
  70. NieW. PengC. ZhouX. ChenL. WangW. ZhangY. Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering.Carbon201711632533710.1016/j.carbon.2017.02.013
    [Google Scholar]
  71. JanuariyasaI.K. AnaI.D. YusufY. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering.Mater. Sci. Eng. C202010711034710.1016/j.msec.2019.110347 31761152
    [Google Scholar]
  72. Tae YoungA KangJH KangDJ Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration.Int J Biol Macromol201693Pt B14889110.1016/j.ijbiomac.2016.07.027 27402459
    [Google Scholar]
  73. SamadikuchaksaraeiA. GholipourmalekabadiM. Erfani EzadyarE. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration.J. Biomed. Mater. Res. A201610482001201010.1002/jbm.a.35731 27027855
    [Google Scholar]
  74. AlipourM. FirouziN. AghazadehZ. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules.BMC Biotechnol.2021211610.1186/s12896‑020‑00666‑3 33430842
    [Google Scholar]
  75. KondiahP.J. ChoonaraY.E. KondiahP.P.D. MarimuthuT. KumarP. Du ToitL.C. A review of injectable polymeric hydrogel systems for application in bone tissue engineering.Molecules20162111158010.3390/molecules21111580 27879635
    [Google Scholar]
  76. AgarwalR. GarcíaA.J. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair.Adv. Drug Deliv. Rev.201594536210.1016/j.addr.2015.03.013 25861724
    [Google Scholar]
  77. MaJ. BothS.K. YangF. Concise review: cell-based strategies in bone tissue engineering and regenerative medicine.Stem Cells Transl. Med.2014319810710.5966/sctm.2013‑0126 24300556
    [Google Scholar]
  78. Reddy VootlaN. ReddyK.V. Osseointegration-Key Factors Affecting Its Success-An Overview IOSR-JDMS2017164626810.9790/0853‑1604056268
    [Google Scholar]
  79. MishraR. VarshneyR. DasN. SircarD. RoyP. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering.Eur. Polym. J.201911911915516810.1016/j.eurpolymj.2019.07.007
    [Google Scholar]
  80. ChenY. ZhengK. NiuL. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles.Int. J. Biol. Macromol.201912841442010.1016/j.ijbiomac.2019.01.099 30682469
    [Google Scholar]
  81. Gutiérrez-HernándezJ.M. Escobar-GarcíaD.M. EscalanteA. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration.Mater. Sci. Eng. C20177544545310.1016/j.msec.2017.02.074 28415484
    [Google Scholar]
  82. TorgboS. PrakitS. Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering.Mater. Chem. Phys.2019237112186810.1016/j.matchemphys.2019.121868
    [Google Scholar]
  83. GhoshM. Halperin-SternfeldM. NanomaterialsI.G. Injectable alginate-peptide composite hydrogel as a scaffold for bone tissue regeneration.Nanomaterials.201994497
    [Google Scholar]
  84. Garcia GarciaA. HébraudA. DuvalJ.L. Poly(ε-caprolactone)/Hydroxyapatite 3D Honeycomb Scaffolds for a Cellular Microenvironment Adapted to Maxillofacial Bone Reconstruction.ACS Biomater. Sci. Eng.2018493317332610.1021/acsbiomaterials.8b00521 33435068
    [Google Scholar]
/content/journals/cms/10.2174/2666145416666230228120343
Loading
/content/journals/cms/10.2174/2666145416666230228120343
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomaterial; Bone; regeneration; scaffold; stem cells; tissue engineering
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test