Skip to content
2000
image of Recent Advances in Creating 3D-interconnected Networks within Thermally Conductive Aluminum Nitride Polymer Composites: A Review

Abstract

The demand for efficient heat dissipation in advanced electronic devices necessitates the development of polymer composites with exceptional thermal conductivity. Over the course of the last few years, a great deal of research has been conducted to augment the thermal management of polymer composites through the incorporation of fillers possessing exceptionally high thermal conductivity. Among these fillers, aluminum nitride (AlN) has emerged as an exemplary choice for enhancing the thermal conductivity properties of polymer composites. Nevertheless, the substantial thermal resistance that exists at the interface of the filler and polymer matrix, as well as between fillers themselves, significantly impedes heat conduction, thereby limiting the improvement in thermal conductivity. The concise review endeavors to illustrate the recent advancements in the production techniques of polymer/AlN composites that exhibit high thermal conductivity by creating a three-dimensional interconnected filler network. The review begins with an introduction to the proposed mechanisms of heat conductivity in polymer composites, followed by a brief discussion of the various factors influencing the thermal conductivity of these composites. Subsequently, the different methods for fabricating three-dimensional interconnected AlN networks in polymer/AlN composites, all aimed at enhancing thermal conductivity, are presented. The review aims to present novel methods for improving the thermal conductivity of polymer composites by building complex three-dimensional filler networks.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454342916241207195435
2024-12-16
2025-01-31
Loading full text...

Full text loading...

References

  1. Song N. Hou X. Chen L. Cui S. Shi L. Ding P. A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. ACS Appl. Mater. Interfaces 2017 9 21 17914 17922 10.1021/acsami.7b02675 28467836
    [Google Scholar]
  2. Wan Y.J. Li G. Yao Y-M. Zeng X-L. Zhu P-L. Sun R. Recent advances in polymer-based electronic packaging materials. Composites Communications 2020 19 154 167 10.1016/j.coco.2020.03.011
    [Google Scholar]
  3. Li Q. Wang Y. Wang F. Wu J. Usman Tahir M. Li Q. Yuan L. Liu Z. Effect of thickener and reservoir parameters on the filtration property of CO 2 fracturing fluid. Energy Sources A Recovery Util. Environ. Effects 2020 42 14 1705 1715 10.1080/15567036.2019.1604880
    [Google Scholar]
  4. Kim G.H. Lee D. Shanker A. Shao L. Kwon M.S. Gidley D. Kim J. Pipe K.P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 2015 14 3 295 300 10.1038/nmat4141 25419813
    [Google Scholar]
  5. Zhuang J. Hu W. Fan Y. Sun J. He X. Xu H. Huang Y. Wu D. Fabrication and testing of metal/polymer microstructure heat exchangers based on micro embossed molding method. Microsyst. Technol. 2019 25 2 381 388 10.1007/s00542‑018‑3988‑x
    [Google Scholar]
  6. Qin M. Xu Y. Cao R. Feng W. Chen L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 2018 28 45 1805053 10.1002/adfm.201805053
    [Google Scholar]
  7. Zhang Y. Heo Y.J. Son Y.R. In I. An K.H. Kim B.J. Park S.J. Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon 2019 142 445 460 10.1016/j.carbon.2018.10.077
    [Google Scholar]
  8. Zhang H. Zhang X. Fang Z. Huang Y. Xu H. Liu Y. Wu D. Zhuang J. Sun J. Recent advances in preparation, mechanisms, and applications of thermally conductive polymer composites: A review. J. Compos. Sci. 2020 4 4 180 10.3390/jcs4040180
    [Google Scholar]
  9. Zhang L. Deng H. Fu Q. Recent progress on thermal conductive and electrical insulating polymer composites. Composites Communications 2018 8 74 82 10.1016/j.coco.2017.11.004
    [Google Scholar]
  10. Park J.G. Cheng Q. Lu J. Bao J. Li S. Tian Y. Liang Z. Zhang C. Wang B. Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon 2012 50 6 2083 2090 10.1016/j.carbon.2011.12.046
    [Google Scholar]
  11. Chen H. Ginzburg V.V. Yang J. Yang Y. Liu W. Huang Y. Du L. Chen B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016 59 41 85 10.1016/j.progpolymsci.2016.03.001
    [Google Scholar]
  12. Franco Júnior A. Shanafield D.J. Thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics. Ceramica 2004 50 315 247 253 10.1590/S0366‑69132004000300012
    [Google Scholar]
  13. Lee H.M. Bharathi K. Kim D.K. Processing and characterization of aluminum nitride ceramics for high thermal conductivity. Adv. Eng. Mater. 2014 16 6 655 669 10.1002/adem.201400078
    [Google Scholar]
  14. Chen G. Phonon transport in low-dimensional structures. Semicond. Semimet. 2001 71 203 259 10.1016/S0080‑8784(01)80130‑7
    [Google Scholar]
  15. Xu X. Zhou J. Chen J. Thermal transport in conductive polymer-based materials. Adv. Funct. Mater 2019 30 1904704 10.1002/adfm.201904704
    [Google Scholar]
  16. Kim S.J. Hong C. Jang K.S. Theoretical analysis and development of thermally conductive polymer composites. Polymer 2019 176 110 117 10.1016/j.polymer.2019.05.044
    [Google Scholar]
  17. Sun J. Zhuang J. Shi J. Kormakov S. Liu Y. Yang Z. Wu D. Highly elastic and ultrathin nanopaper-based nanocomposites with superior electric and thermal characteristics. J. Mater. Sci. 2019 54 11 8436 8449 10.1007/s10853‑019‑03472‑1
    [Google Scholar]
  18. Gu J. Liang C. Zhao X. Gan B. Qiu H. Guo Y. Yang X. Zhang Q. Wang D.Y. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos. Sci. Technol. 2017 139 83 89 10.1016/j.compscitech.2016.12.015
    [Google Scholar]
  19. Zhang F. Feng Y. Qin M. Gao L. Li Z. Zhao F. Zhang Z. Lv F. Feng W. Stress controllability in thermal and electrical conductivity of 3D elastic graphene‐crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater. 2019 29 25 1901383 10.1002/adfm.201901383
    [Google Scholar]
  20. Huang T. Ma C.G. Dai P.B. Zhang J. Improvement in dielectric constant of carbon black/epoxy composites with separated structure by surface-modified hollow glass beads with reduced graphene oxide. Compos. Sci. Technol. 2019 176 46 53 10.1016/j.compscitech.2019.04.003
    [Google Scholar]
  21. Su Y. Li J.J. Weng G.J. Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance. Carbon 2018 137 222 233 10.1016/j.carbon.2018.05.033
    [Google Scholar]
  22. Zhou Y. Wu S. Long Y. Zhu P. Wu F. Liu F. Murugadoss V. Winchester W. Nautiyal A. Wang Z. Guo Z. Recent advances in thermal interface materials. ES Materials & Manufacturing 2020 7 4 24 10.30919/esmm5f717
    [Google Scholar]
  23. Guo Y. Ruan K. Shi X. Yang X. Gu J. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Compos. Sci. Technol. 2020 193 108134 10.1016/j.compscitech.2020.108134
    [Google Scholar]
  24. Huang C. Qian X. Yang R. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. Rep. 2018 132 1 22 10.1016/j.mser.2018.06.002
    [Google Scholar]
  25. Zhao J. Jiang J.W. Wei N. Zhang Y. Rabczuk T. Thermal conductivity dependence on chain length in amorphous polymers. J. Appl. Phys. 2013 113 18 184304 10.1063/1.4804237
    [Google Scholar]
  26. Han Z. Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011 36 7 914 944 10.1016/j.progpolymsci.2010.11.004
    [Google Scholar]
  27. Mehra N. Mu L. Ji T. Yang X. Kong J. Gu J. Zhu J. Thermal transport in polymeric materials and across composite interfaces. Appl. Mater. Today 2018 12 92 130 10.1016/j.apmt.2018.04.004
    [Google Scholar]
  28. Moradi S. Calventus Y. Román F. Hutchinson J.M. Achieving high thermal conductivity in epoxy Composites: Effect of boron nitride particle size and matrix-filler interface. Polymers 2019 11 7 1156 10.3390/polym11071156 31284564
    [Google Scholar]
  29. Sohn Y. Han T. Han J.H. Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coefficient of thermal expansion of graphite/copper composites. Carbon 2019 149 152 164 10.1016/j.carbon.2019.04.055
    [Google Scholar]
  30. He X. Ou D. Wu S. Luo Y. Ma Y. Sun J. A mini review on factors affecting network in thermally enhanced polymer composites: Filler content, shape, size, and tailoring methods. Adv. Compos. Hybrid Mater. 2022 5 1 21 38 10.1007/s42114‑021‑00321‑1
    [Google Scholar]
  31. Tanimoto M. Yamagata T. Miyata K. Ando S. Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity. ACS Appl. Mater. Interfaces 2013 5 10 4374 4382 10.1021/am400615z 23607623
    [Google Scholar]
  32. Ngo I.L. Prabhakar Vattikuti S.V. Byon C. A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers. Int. J. Heat Mass Transf. 2017 114 727 734 10.1016/j.ijheatmasstransfer.2017.06.116
    [Google Scholar]
  33. Bigg D.M. Bhattacharya S.K. Electrical properties of metal-filled polymer composites. Metal-filled polymers. Marcel Dekker New York 1986 165 226
    [Google Scholar]
  34. Zhang D.L. Zha J.W. Li W.K. Li C.Q. Wang S.J. Wen Y. Dang Z.M. Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning. Compos. Sci. Technol. 2018 156 1 7 10.1016/j.compscitech.2017.12.008
    [Google Scholar]
  35. Zhu B.L. Ma J. Wu J. Yung K.C. Xie C.S. Study on the properties of the epoxy‐matrix composites filled with thermally conductive AlN and BN ceramic particles. J. Appl. Polym. Sci. 2010 118 5 2754 2764 10.1002/app.32673
    [Google Scholar]
  36. Ng H.Y. Lu X. Lau S.K. Thermal conductivity of boron nitride-filled thermoplastics: Effect of filler characteristics and composite processing conditions. Polym. Compos. 2005 26 6 778 790 10.1002/pc.20151
    [Google Scholar]
  37. Wu H. Drzal L.T. High thermally conductive graphite nanoplatelet/polyetherimide composite by precoating: Effect of percolation and particle size. Polym. Compos. 2013 34 12 2148 2153 10.1002/pc.22624
    [Google Scholar]
  38. Yu A. Ramesh P. Sun X. Bekyarova E. Itkis M.E. Haddon R.C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet - Carbon nanotube filler for epoxy composites. Adv. Mater. 2008 20 24 4740 4744 10.1002/adma.200800401
    [Google Scholar]
  39. Fu Y.X. He Z.X. Mo D.C. Lu S.S. Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl. Therm. Eng. 2014 66 1-2 493 498 10.1016/j.applthermaleng.2014.02.044
    [Google Scholar]
  40. Rai A. Moore A.L. Enhanced thermal conduction and influence of interfacial resistance within flexible high aspect ratio copper nanowire/polymer composites. Compos. Sci. Technol. 2017 144 70 78 10.1016/j.compscitech.2017.03.020
    [Google Scholar]
  41. Rivière L. Lonjon A. Dantras E. Lacabanne C. Olivier P. Gleizes N.R. Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites. Eur. Polym. J. 2016 85 115 125 10.1016/j.eurpolymj.2016.08.003
    [Google Scholar]
  42. Shen X. Wang Z. Wu Y. Liu X. He Y.B. Kim J.K. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 2016 16 6 3585 3593 10.1021/acs.nanolett.6b00722 27140423
    [Google Scholar]
  43. Guo H. Liu J. Wang Q. Liu M. Du C. Li B. Feng L. High thermal conductive poly(vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance. Compos. Sci. Technol. 2019 181 107713 10.1016/j.compscitech.2019.107713
    [Google Scholar]
  44. Nanda J. Maranville C. Bollin S.C. Sawall D. Ohtani H. Remillard J.T. Ginder J.M. Thermal conductivity of single-wall carbon nanotube dispersions: role of interfacial effects. J. Phys. Chem. C 2008 112 3 654 658 10.1021/jp711164h
    [Google Scholar]
  45. Rashidi V. Coyle E.J. Sebeck K. Kieffer J. Pipe K.P. Thermal conductance in cross-linked polymers: Effects of non-bonding interactions. J. Phys. Chem. B 2017 121 17 4600 4609 10.1021/acs.jpcb.7b01377 28362103
    [Google Scholar]
  46. Stevens R.J. Zhigilei L.V. Norris P.M. Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations. Int. J. Heat Mass Transf. 2007 50 19-20 3977 3989 10.1016/j.ijheatmasstransfer.2007.01.040
    [Google Scholar]
  47. Ruan K. Shi X. Guo Y. Gu J. Interfacial thermal resistance in thermally conductive polymer composites: A review. Composites Communications 2020 22 100518 10.1016/j.coco.2020.100518
    [Google Scholar]
  48. Shi X. Zhang R. Ruan K. Ma T. Guo Y. Gu J. Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. 2021 82 239 249 10.1016/j.jmst.2021.01.018
    [Google Scholar]
  49. Shi A. Li Y. Liu W. Xu J.Z. Yan D.X. Lei J. Li Z.M. Highly thermally conductive and mechanically robust composite of linear ultrahigh molecular weight polyethylene and boron nitride via constructing nacre-like structure. Compos. Sci. Technol. 2019 184 107858 10.1016/j.compscitech.2019.107858
    [Google Scholar]
  50. Guan L.Z. Wan Y.J. Gong L.X. Yan D. Tang L.C. Wu L.B. Jiang J.X. Lai G-Q. Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. J. Mater. Chem. A Mater. Energy Sustain. 2014 2 36 15058 15069 10.1039/C4TA02429J
    [Google Scholar]
  51. Layek R.K. Nandi A.K. A review on synthesis and properties of polymer functionalized graphene. Polymer 2013 54 19 5087 5103 10.1016/j.polymer.2013.06.027
    [Google Scholar]
  52. Yu J. Huang X. Wu C. Wu X. Wang G. Jiang P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 2012 53 2 471 480 10.1016/j.polymer.2011.12.040
    [Google Scholar]
  53. Jiang F. Cui X. Song N. Shi L. Ding P. Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos. Commun. 2020 20 100350 10.1016/j.coco.2020.04.016
    [Google Scholar]
  54. Sun N. Sun J. Zeng X. Chen P. Qian J. Xia R. Sun R. Hot-pressing induced orientation of boron nitride in polycarbonate composites with enhanced thermal conductivity. Compos., Part A Appl. Sci. Manuf. 2018 110 45 52 10.1016/j.compositesa.2018.04.010
    [Google Scholar]
  55. Liu B. Li Y. Fei T. Han S. Xia C. Shan Z. Jiang J. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method. Chem. Eng. J. 2020 385 123829 10.1016/j.cej.2019.123829
    [Google Scholar]
  56. Yu S. Hing P. Hu X. Thermal conductivity of polystyrene–aluminum nitride composite. Compos., Part A Appl. Sci. Manuf. 2002 33 2 289 292 10.1016/S1359‑835X(01)00107‑5
    [Google Scholar]
  57. He X. Ou D. Ma Y. Wu S. Chen Y. Luo Y. Wu D. Enhancing the thermal conductivities of aluminum nitride‐ polydimethylsiloxane composites via tailoring of thermal losses in filler networks. Polym. Compos. 2021 42 3 1338 1346 10.1002/pc.25904
    [Google Scholar]
  58. Dang T.M.L. Kim C.Y. Zhang Y. Yang J.F. Masaki T. Yoon D.H. Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres. Compos., Part B Eng. 2017 114 237 246 10.1016/j.compositesb.2017.02.008
    [Google Scholar]
  59. Zhang K. Lu Y. Hao N. Nie S. Enhanced thermal conductivity of cellulose nanofibril/aluminum nitride hybrid films by surface modification of aluminum nitride. Cellulose 2019 26 16 8669 8683 10.1007/s10570‑019‑02694‑5
    [Google Scholar]
  60. Lee W. Kim J. Enhanced through-plane thermal conductivity of paper-like cellulose film with treated hybrid fillers comprising boron nitride and aluminum nitride. Compos. Sci. Technol. 2020 200 108424 10.1016/j.compscitech.2020.108424
    [Google Scholar]
  61. Wei Z. Xie W. Ge B. Zhang Z. Yang W. Xia H. Wang B. Jin H. Gao N. Shi Z. Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Compos. Sci. Technol. 2020 199 108304 10.1016/j.compscitech.2020.108304
    [Google Scholar]
  62. Wu L. Xiang D. Novel in-situ constructing approach for vertically aligned AlN skeleton and its thermal conductivity enhancement effect on epoxy. Ceram. Int. 2023 49 4 5707 5719 10.1016/j.ceramint.2022.11.115
    [Google Scholar]
  63. He X. Yu X. Wang Y. Significantly enhanced thermal conductivity in polyimide composites with the matching of graphene flakes and aluminum nitride by in situ polymerization. Polym. Compos. 2020 41 2 740 747 10.1002/pc.25404
    [Google Scholar]
  64. Liu L. Cao C. Ma X. Zhang X. Lv T. Thermal conductivity of polyimide/AlN and polyimide/(AlN + BN) composite films prepared by in-situ polymerization. J. Macromol. Sci. Part A Pure Appl. Chem. 2020 57 5 398 407 10.1080/10601325.2019.1703555
    [Google Scholar]
  65. Lee S. Park D. Kim J. 3D ‐printed surface‐modified aluminum nitride reinforced thermally conductive composites with enhanced thermal conductivity and mechanical strength. Polym. Adv. Technol. 2022 33 4 1291 1297 10.1002/pat.5601
    [Google Scholar]
  66. Lee W. Kim J. Highly thermal conductive and electrical insulating epoxy composites with a three-dimensional filler network by sintering silver nanowires on aluminum nitride surface. Polymers 2021 13 5 694 2021 10.3390/polym13050694
    [Google Scholar]
  67. Shtein M. Nadiv R. Buzaglo M. Kahil K. Regev O. Thermally conductive graphene-polymer composites: Size, percolation, and synergy effects. Chem. Mater. 2015 27 6 2100 2106 10.1021/cm504550e
    [Google Scholar]
  68. Renteria J.D. Ramirez S. Malekpour H. Alonso B. Centeno A. Zurutuza A. Cocemasov A.I. Nika D.L. Balandin A.A. Strongly anisotropic thermal conductivity of free‐standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 2015 25 29 4664 4672 10.1002/adfm.201501429
    [Google Scholar]
  69. Chen Y. Hou X. Liao M. Dai W. Wang Z. Yan C. Li H. Lin C.T. Jiang N. Yu J. Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite. Chem. Eng. J. 2020 381 122690 10.1016/j.cej.2019.122690
    [Google Scholar]
  70. Zhang F. Feng Y. Feng W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng. Rep. 2020 142 100580 10.1016/j.mser.2020.100580
    [Google Scholar]
  71. Ngo I.L. Jeon S. Byon C. Thermal conductivity of transparent and flexible polymers containing fillers: A literature review. Int. J. Heat Mass Transf. 2016 98 219 226 10.1016/j.ijheatmasstransfer.2016.02.082
    [Google Scholar]
  72. TabkhPaz M. Compos., Part B Eng. 2016 100 19 30
    [Google Scholar]
  73. Zhao W. Chen W. Yue Y. Wu S. In-situ two-step Raman thermometry for thermal characterization of monolayer graphene interface material. Appl. Therm. Eng. 2017 113 481 489 10.1016/j.applthermaleng.2016.11.063
    [Google Scholar]
  74. Yue X.F. Wang Y.Y. Zhao Y. Jiang J. Yu K. Liang Y. Zhong B. Ren S.T. Gao R.X. Zou M.Q. Measurement of interfacial thermal conductance of few-layer MoS2 supported on different substrates using Raman spectroscopy. J. Appl. Phys. 2020 127 10 104301 10.1063/1.5128613
    [Google Scholar]
/content/journals/cms/10.2174/0126661454342916241207195435
Loading
/content/journals/cms/10.2174/0126661454342916241207195435
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: thermal conductivity ; Polymer matrix composites ; 3D network ; aluminum nitride
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test