Skip to content
2000
image of Science and Technology of Supercapacitor and its Applications

Abstract

Super-capacitors (SCs) are significant because of their unique characteristics, which include long cycle life, high strength, and environmental friendliness. SCs use electrode substances with high specific surface area and thinner dielectrics. Referring to the energy storage mechanism, all kinds of SCs were reviewed in this review paper; a quick synopsis of the materials and technology used for SCs is provided. Materials such as conducting polymers, carbon materials, metal oxides, and their composites are the main focus. The performance of the composites was evaluated using metrics such as energy, cycle performance, power capacitance, and rate capability, which also provides information on the electrolyte materials. To precisely appraise the state of Charge (SoC) in the super SCs cell module, its identical model o is used. It is expected that this model will accurately capture the features of the cell module, specifically its standing-related self-discharge behavior, and the outcomes of parameter identification directly impact its accuracy. Engine downsizing is a result of the requirement to increase fuel efficiency and lower CO and other hazardous pollutant emissions from internal combustion engine cars. However, smaller turbocharged engines have a relatively poor torque capability at low engine speeds. To solve this issue, an electrical torque boost based on SCs may be used to help recover energy during regenerative braking as well as during acceleration and gear changes.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454319839240906162037
2024-11-01
2025-01-19
Loading full text...

Full text loading...

References

  1. Hosticka B. Moschytz G. Switched-capacitor filters using FDNR-like super capacitances. IEEE Trans. Circ. Syst. 1980 27 6 569 573 10.1109/TCS.1980.1084841
    [Google Scholar]
  2. Abdul-Aziz M.R. Hassan A. Abdel-Aty A.A. Saber M.R. Ghannam R. Anis B. Heidari H. Khalil A.S. High performance super capacitor based on laser induced graphene for wearable devices. IEEE Access 2020 2020 8
    [Google Scholar]
  3. Jalal N.I. Ibrahim R.I. Oudah M.K. A review on Supercapacitors: Types and components. J. Phys.: Conf. Ser. 2021 1973 1 012015
    [Google Scholar]
  4. Zhao Y. Xie W. Fang Z. Liu S. A parameters identification method of the equivalent circuit model of the supercapacitor cell module based on segmentation optimization. IEEE Access 2020 8 1 10.1109/ACCESS.2020.2993285
    [Google Scholar]
  5. Yadlapalli R.T. Alla R.R. Kandipati R. Kotapati A. Super capacitors for energy storage: Progress, applications and challenges. J. Energy Storage 2022 49 104194 10.1016/j.est.2022.104194
    [Google Scholar]
  6. Morandi A. Lampasi A. Cocchi A. Gherdovich F. Melaccio U. Ribani P.L. Rossi C. Soavi F. Characterization and model parameters of large commercial supercapacitor cells. IEEE Access 2021 9 20376 20390 10.1109/ACCESS.2021.3053626
    [Google Scholar]
  7. Huang L. Guo G. Liu Y. Chang Q. Xie Y. Reduced graphene oxide-ZnO nanocomposites for flexible supercapacitors. J. Disp. Technol. 2012 8 7 373 376 10.1109/JDT.2011.2173158
    [Google Scholar]
  8. Wang J. Taylor B. Sun Z. Howe D. Experimental characterization of a supercapacitor-based electrical torque-boost system for downsized ICE vehicles. IEEE Trans. Vehicular Technol. 2007 56 6
    [Google Scholar]
  9. Wu Z.S. Feng X. Cheng H.M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 2014 1 2 277 292 10.1093/nsr/nwt003
    [Google Scholar]
  10. Chen W. Beidaghi M. Penmatsa V. Bechtold K. Kumari L. Li W.Z. Wang C. Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors. IEEE Trans. Nanotechnol. 2010 9 6
    [Google Scholar]
  11. Liu N. Gao Y. Recent progress in micro‐supercapacitors with in‐plane interdigital electrode architecture. Small 2017 13 45 1701989 10.1002/smll.201701989 28976109
    [Google Scholar]
  12. Kamboj N. Purkait T. Das M. Sarkar S. Hazra K.S. Dey R.S. Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device. Energy Environ. Sci. 2019 12 8 2507 2517 10.1039/C9EE01458F
    [Google Scholar]
  13. Beidaghi M. Gogotsi Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 2014 7 3 867 884 10.1039/c3ee43526a
    [Google Scholar]
  14. Xiong G. Meng C. Reifenberger R.G. Irazoqui P.P. Fisher T.S. A review of graphene‐based electrochemical microsupercapacitors. Electroanalysis 2014 26 1 30 51 10.1002/elan.201300238
    [Google Scholar]
  15. Fukushima Y. Fukuma M. Yoshino K. Kishida S. Lee S.S. A KOH Solution Electrolyte-Type Electric Double-Layer Supercapacitor for a Wireless Sensor Network System. IEEE Sens. Lett. 2018 2 3 1 4 10.1109/LSENS.2018.2867192
    [Google Scholar]
  16. Naveen Kumar R. Jagadale B.N. Bhat J.S. A lossless image compression algorithm using wavelets and fractional Fourier transform. SN Appl. Sci. 2019 1 3 266 10.1007/s42452‑019‑0276‑z
    [Google Scholar]
  17. Signorelli R. Ku D.C. Kassakian J.G. Schindall J.E. Electrochemical double-layer capacitors using carbon nanotube electrode structures. Proc. IEEE 2009 97 11 1837 1847 10.1109/JPROC.2009.2030240
    [Google Scholar]
  18. Augustyn V. Simon P. Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014 7 5 1597 1614 10.1039/c3ee44164d
    [Google Scholar]
  19. Shah R. Zhang X. Talapatra S. Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals. Nanotechnology 2009 20 39 395202 10.1088/0957‑4484/20/39/395202 19726841
    [Google Scholar]
  20. Rose M.F. Merryman S.A. Electrochemical capacitor technology for actuator applications. IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference 11-16 August 1996 Washington, DC, USA 1996
    [Google Scholar]
  21. Faranda R. A new parameters identification procedure for simplified double layer capacitor two-branch model. Electr. Power Syst. Res. 2010 80 4 363 371 10.1016/j.epsr.2009.10.024
    [Google Scholar]
  22. Ghai V. Chatterjee K. Agnihotri P.K. Vertically aligned carbon nanotubes-coated aluminium foil as flexible supercapacitor electrode for high power applications. Carbon Lett. 2021 31 3 473 481 10.1007/s42823‑020‑00176‑4
    [Google Scholar]
  23. Chatterjee K. Basu S. Gupta N. Modelling of an electrochemical double layer capacitor using cyclic voltammetry. In 2021 IEEE Electrical Insulation Conference. 07-28 June 2021 Denver, CO, USA 2021 355 358
    [Google Scholar]
  24. Chang T.Y. Wang X. Evans D.A. Robinson S.L. Zheng J.P. Tantalum oxide–ruthenium oxide hybrid(R) capacitors. J. Power Sources 2002 110 1 138 143 10.1016/S0378‑7753(02)00240‑9
    [Google Scholar]
  25. Jha D. Karkaria V.N. Karandikar P.B. Desai R.S. Statistical modeling of hybrid supercapacitor. J. Energy Storage 2022 46 103869 10.1016/j.est.2021.103869
    [Google Scholar]
  26. Chen Y.M. Wu H.C. Chou M.W. Lee K.Y. Online failure prediction of the electrolytic capacitor for LC filter of switching-mode power converters. IEEE Trans. Ind. Electron. 2008 55 1 400 406 10.1109/TIE.2007.903975
    [Google Scholar]
  27. Brousse T. Marchand R. Taberna P.L. Simon P. TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage. J. Power Sources 2006 158 1 571 577 10.1016/j.jpowsour.2005.09.020
    [Google Scholar]
  28. Aida T. Murayama I. Yamada K. Morita M. High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode. J. Power Sources 2007 166 2 462 470 10.1016/j.jpowsour.2007.01.037
    [Google Scholar]
  29. Bakhoum E.G. Cheng M.H.M. Tunable Ultracapacitor. IEEE Trans. Ind. Electron. 2013 60 12 5613 5619 10.1109/TIE.2013.2238875
    [Google Scholar]
  30. Xin-chun Q. Zhi-ping Q. Haidong L. Asymmetric hybrid supercapacitor (AHS)’s modeling based on physical reasoning. 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies 06-09 April 2008 Nanjing, China 2008 10.1109/DRPT.2008.4523865
    [Google Scholar]
  31. Gaikwad N. Gadekar P. Kandasubramanian B. Kaka F. Advanced polymer-based materials and mesoscale models to enhance the performance of multifunctional supercapacitors. J. Energy Storage 2023 58 106337 10.1016/j.est.2022.106337
    [Google Scholar]
  32. Guerrero M.A. Romero E. Barrero F. Milanés M.I. Gonzalez E. Supercapacitors: Alternative energy storage systems. PRZEGLĄD ELEKTROTECHNICZNY 2009 85 10 1 8
    [Google Scholar]
  33. Guerrero M.A. Romero E. Barrero F. Milanes M.I. Gonzalez E. Overview of medium scale energy storage systems. In 2009 Compatibility and Power Electronics. 20-22 May 2009 Badajoz, Spain 2009 93 100
    [Google Scholar]
  34. Sharma P. Kumar V. A brief review on supercapacitor. Pramana Reaserch Journal 2018 8 3 50 55
    [Google Scholar]
  35. Denge N. Study of hybrid super-capacitor. Int. Res. J. Eng. Technol 2016 13 3 1012 1016
    [Google Scholar]
  36. Cheng J. Activated carbon modified by CNTs/Ni-Co oxide as hybrid electrode materials for high performance supercapacitors. IEEE Trans. Nanotechnol. 2014 13 3 557 562
    [Google Scholar]
  37. Lai C.C. Lo C.T. Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors. Electrochim. Acta 2015 183 85 93 10.1016/j.electacta.2015.02.143
    [Google Scholar]
  38. Adán-Más A. Silva T.M. Guerlou-Demourgues L. Bourgeois L. Labrugere-Sarroste C. Montemor M.F. Nickel-cobalt oxide modified with reduced graphene oxide: Performance and degradation for energy storage applications. J. Power Sources 2019 419 12 26 10.1016/j.jpowsour.2019.02.055
    [Google Scholar]
  39. Španer M. Superkondenzator in energijska izkoriščenost baterijsko napajanih vozil Doctoral dissertation, Univerza v Mariboru (Slovenia). 2016
    [Google Scholar]
  40. Hu A.P. You Y.W. Chen F.Y.B. McCormick D. Budgett D.M. Wireless power supply for ICP devices with hybrid supercapacitor and battery storage. IEEE J. Emerg. Sel. Top. Power Electron. 2016 4 1 273 279 10.1109/JESTPE.2015.2489226
    [Google Scholar]
  41. Khalid M. A review on the selected applications of battery-supercapacitor hybrid energy storage systems for microgrids. Energies 2019 12 23 4559 10.3390/en12234559
    [Google Scholar]
  42. Li Z. Zhu C. Jiang J. Song K. Wei G. 3-kW wireless power transfer system for sightseeing car supercapacitor charge. IEEE Trans. Power Electron. 2017 32 5 3301 3316 10.1109/TPEL.2016.2584701
    [Google Scholar]
  43. Trigui A. Hached S. Ammari A.C. Savaria Y. Sawan M. Maximizing data transmission rate for implantable devices over a single inductive link: Methodological review. IEEE Rev. Biomed. Eng. 2019 12 72 87 10.1109/RBME.2018.2873817 30295628
    [Google Scholar]
  44. Wei L. Wu M. Yan M. Liu S. Cao Q. Wang H. A review on electrothermal modeling of supercapacitors for energy storage applications. IEEE J. Emerg. Sel. Top. Power Electron. 2019 7 3 1677 1690 10.1109/JESTPE.2019.2925336
    [Google Scholar]
  45. Liu S. Wei L. Wang H. Review on reliability of supercapacitors in energy storage applications. Appl. Energy 2020 278 115436 10.1016/j.apenergy.2020.115436
    [Google Scholar]
  46. N R.Y. Sharma K. Shafi P.M. An overview, methods of synthesis and modification of carbon-based electrodes for supercapacitor. J. Energy Storage 2022 55 105727 10.1016/j.est.2022.105727
    [Google Scholar]
  47. He X. Zhang X. A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials. J. Energy Storage 2022 56 106023 10.1016/j.est.2022.106023
    [Google Scholar]
  48. Sundriyal S. Shrivastav V. Kaur A. Dubey P. Mishra S. Deep A. Dhakate S. Waste office papers as a cellulosic material reservoir to derive highly porous activated carbon for solid-state electrochemical capacitor. IEEE Trans. Nanotechnol. 2021 20 481 488 10.1109/TNANO.2021.3080589
    [Google Scholar]
  49. Shrivastav V. Sundriyal S. Tiwari U.K. Kim K.H. Deep A. Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode. Energy 2021 235 121351 10.1016/j.energy.2021.121351
    [Google Scholar]
  50. Abdelkareem M.A. Abbas Q. Mouselly M. Alawadhi H. Olabi A.G. High-performance effective metal–organic frameworks for electrochemical applications. J. Sci. Adv. Mater. Devices 2022 7 3 100465 10.1016/j.jsamd.2022.100465
    [Google Scholar]
  51. Singh M. Gupta A. Sundriyal S. Dubey P. Jain K. Dhakate S.R. Activated green carbon-based 2-D nanofabric mats for ultra-flexible all-solid-state supercapacitor. J. Energy Storage 2022 49 104193 10.1016/j.est.2022.104193
    [Google Scholar]
  52. Dubey P. Bhardwaj K. Kumar R. Sundriyal S. Maheshwari P.H. Perylene diimide incorporated activated carbon as a composite electrode for asymmetric supercapacitor. J. Energy Storage 2022 56 106058 10.1016/j.est.2022.106058
    [Google Scholar]
  53. Sundriyal S. Shrivastav V. Kaur A. Mansi Deep A. Dhakate S.R. Surface and diffusion charge contribution study of neem leaves derived porous carbon electrode for supercapacitor applications using acidic, basic, and neutral electrolytes. J. Energy Storage 2021 41 103000 10.1016/j.est.2021.103000
    [Google Scholar]
  54. Marquez-Chin M. Saadatnia Z. Naguib H.E. Popovic M.R. Development of an Aerogel-Based Wet Electrode for Functional Electrical Stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2023 31 4085 4095 10.1109/TNSRE.2023.3324400 37831561
    [Google Scholar]
  55. Cooper G. Barker A.T. Heller B.W. Good T. Kenney L.P.J. Howard D. The use of hydrogel as an electrode–skin interface for electrode array FES applications. Med. Eng. Phys. 2011 33 8 967 972 10.1016/j.medengphy.2011.03.008 21482167
    [Google Scholar]
  56. Solomons C.D. Shanmugasundaram V. Forearm and wrist band for Functional Electrical Stimulation. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT) IEEE 2019
    [Google Scholar]
  57. Gangavarapu P.R.Y. Lokesh P.C. Bhat K.N. Naik A.K. Graphene electrodes as barrier-free contacts for carbon nanotube field-effect transistors. IEEE Trans. Electron Dev. 2017 64 10 4335 4339 10.1109/TED.2017.2741061
    [Google Scholar]
  58. Qian L. Xie Y. Zhang S. Zhang J. Band engineering of carbon nanotubes for device applications. Matter 2020 3 3 664 695 10.1016/j.matt.2020.06.014
    [Google Scholar]
  59. Kim Y.K. Lee Y. Shin K.Y. Jang J. Highly omnidirectional and frequency tunable multilayer graphene-based monopole patch antennas. J. Mater. Chem. C Mater. Opt. Electron. Devices 2019 7 26 7915 7921 10.1039/C9TC02454A
    [Google Scholar]
  60. Du W. Ahmed Z. Wang Q. Yu C. Feng Z. Li G. Zhang M. Zhou C. Structures, properties, and applications of CNT-graphene heterostructures. 2D Materials 2019 6 4 042005
    [Google Scholar]
  61. Kulkarni M.B. Umapathi R. Ayachit N.H. Aminabhavi T.M. Pogue B.W. Nanosensors in the Food Industry and Agriculture. Sustainable Green Nanotechnology. Boca Raton CRC Press 2024 210 227 10.1201/9781003389408‑12
    [Google Scholar]
  62. Kalpana S. Bhat V.S. Hegde G. Niranjana Prabhu T. Anantharamaiah P.N. Hydrothermally synthesized mesoporous Co3O4 nanorods as effective supercapacitor material. Inorg. Chem. Commun. 2023 154 110984 10.1016/j.inoche.2023.110984
    [Google Scholar]
  63. Yue L. Zhao H. Wu Z. Liang J. Lu S. Chen G. Gao S. Zhong B. Guo X. Sun X. Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J. Mater. Chem. A Mater. Energy Sustain. 2020 8 23 11493 11510 10.1039/D0TA03963B
    [Google Scholar]
  64. Ait Kaci Azzou K. Terbouche A. Ait Ramdane-Terbouche C. Bataille T. Hauchard D. Mezaoui D. Supercapacitor electrode based on ternary activated carbon/CuCoO2 hybrid material. Mater. Chem. Phys. 2024 322 129521 10.1016/j.matchemphys.2024.129521
    [Google Scholar]
  65. Yi C. Zou J. Yang H. Leng X. Recent advances in pseudocapacitor electrode materials: Transition metal oxides and nitrides. Trans. Nonferrous Met. Soc. China 2018 28 10 1980 2001 10.1016/S1003‑6326(18)64843‑5
    [Google Scholar]
  66. Gupta A. Sardana S. Dalal J. Lather S. Maan A.S. Tripathi R. Punia R. Singh K. Ohlan A. Nanostructured polyaniline/graphene/Fe2O3 composites hydrogel as a high-performance flexible supercapacitor electrode material. ACS Appl. Energy Mater. 2020 3 7 6434 6446 10.1021/acsaem.0c00684
    [Google Scholar]
  67. Vicentini R. Nunes W.G. Costa L.H. Pascon A. da Silva L.M. Baldan M. Zanin H. Environmentally friendly functionalization of porous carbon electrodes for aqueous-based electrochemical capacitors. IEEE Trans. Nanotechnol. 2019 18 73 82 10.1109/TNANO.2018.2878663
    [Google Scholar]
  68. Costa L.H. Vicentini R. Almeida Silva T. Vilela Franco D. Morais Da Silva L. Zanin H. Identification and quantification of the distributed capacitance and ionic resistance in carbon-based supercapacitors using electrochemical techniques and the analysis of the charge-storage dynamics. J. Electroanal. Chem. (Lausanne) 2023 929 117140 10.1016/j.jelechem.2022.117140
    [Google Scholar]
  69. Zhai Z. Lu Y. Liu G. Ding W.L. Cao B. He H. Recent Advances in Biomass-derived Porous Carbon Materials: Synthesis, Composition and Applications. Chem. Res. Chin. Univ. 2024 40 1 3 19 10.1007/s40242‑024‑3259‑6
    [Google Scholar]
  70. Da Silva L.M. Cesar R. Moreira C.M.R. Santos J.H.M. De Souza L.G. Pires B.M. Vicentini R. Nunes W. Zanin H. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Mater. 2020 27 555 590 10.1016/j.ensm.2019.12.015
    [Google Scholar]
  71. Sugawara S. Noorden Z.A. Okaoto R. Matsumoto S. New carbon material derived from mixture with lubricating oil and sulfuric acid and its electric property for EDLC. 2012 IEEE International Conference on Condition Monitoring and Diagnosis 23-27 September 2012 Bali, Indonesia 2012 350 352 10.1109/CMD.2012.6416451
    [Google Scholar]
  72. Hirai Y. Okada K. Kurokawa R. Matsumoto S. Sato Y. Electrical property of EDLC and electrochemical interaction between separator and electrolyte. J. Int. Counc. Electr. Eng. 2016 6 1 72 77 10.1080/22348972.2016.1173781
    [Google Scholar]
  73. Wei Y. Zhu J. Wang G. High-specific-capacitance supercapacitor based on vanadium oxide nanoribbon. IEEE Trans. Appl. Supercond. 2014 24 5 1 4 10.1109/TASC.2013.2290323
    [Google Scholar]
  74. Majumdar D. Mandal M. Bhattacharya S.K. V2O5 and its carbon‐based nanocomposites for supercapacitor applications. ChemElectroChem 2019 6 6 1623 1648 10.1002/celc.201801761
    [Google Scholar]
  75. Thulasi K.M. Manikkoth S.T. Paravannoor A. Palantavida S. Bhagiyalakshmi M. Vijayan B.K. Facile synthesis of TNT-VO2(M) nanocomposites for high performance supercapacitors. J. Electroanal. Chem. (Lausanne) 2020 878 114644 10.1016/j.jelechem.2020.114644
    [Google Scholar]
  76. Ramachandran R. Felix S. Saranya M. Santhosh C. Velmurugan V. Ragupathy B.P.C. Jeong S.K. Grace A.N. Synthesis of cobalt sulfide–graphene (CoS/G) nanocomposites for supercapacitor applications. IEEE Trans. Nanotechnol. 2013 12 6 985 990 10.1109/TNANO.2013.2278287
    [Google Scholar]
  77. Ramachandran R. Saranya M. Kollu P. Raghupathy B.P.C. Jeong S.K. Grace A.N. Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel Supercapacitor electrodes. Electrochim. Acta 2015 178 647 657 10.1016/j.electacta.2015.08.010
    [Google Scholar]
  78. Meng X. Deng J. Zhu J. Bi H. Kan E. Wang X. Cobalt sulfide/graphene composite hydrogel as electrode for high-performance pseudocapacitors. Sci. Rep. 2016 6 1 21717 10.1038/srep21717 26880686
    [Google Scholar]
  79. Vilchis-Gutiérrez P.G. Pacheco M. Pacheco J. Valdivia-Barrientos R. Barrera-Díaz C.E. Balderas-Hernández P. Synthesis of boron-doped carbon nanotubes with DC electric arc discharge. IEEE Trans. Plasma Sci. 2018 46 8 3139 3144 10.1109/TPS.2018.2850221
    [Google Scholar]
  80. Pacheco M. Monroy M.F. Santana-Diaz A. Pacheco J. Valdivia-Barrientos R. Tu X. González-Pedroza A. Ramirez-Palma M.T. Enhancement of a green supercapacitor with a hydrogel/carbon nanotubes-based electrolyte. IEEE Trans. Nanotechnol. 2020 19 711 718 10.1109/TNANO.2020.3019764
    [Google Scholar]
  81. Wu J. Doping Modification of Carbon Nanotubes and its Applications. Highlights in Science. Eng. Technol 2022 27 327 333
    [Google Scholar]
  82. Lu R. Zhu C. Tian L. Wang Q. Super-capacitor stacks management system with dynamic equalization techniques. IEEE Trans. Magn. 2007 43 1 254 258 10.1109/TMAG.2006.887652
    [Google Scholar]
  83. Gallardo-Lozano J. Romero-Cadaval E. Milanes-Montero M.I. Guerrero-Martinez M.A. Battery equalization active methods. J. Power Sources 2014 246 934 949 10.1016/j.jpowsour.2013.08.026
    [Google Scholar]
  84. Uno M. Kukita A. String-to-battery voltage equalizer based on a half-bridge converter with multistacked current doublers for series-connected batteries. IEEE Trans. Power Electron. 2019 34 2 1286 1298 10.1109/TPEL.2018.2829664
    [Google Scholar]
  85. Izadi Y. Beiranvand R. A Comprehensive Review of Battery and Supercapacitor Cells Voltage-Equalizer Circuits. IEEE Trans. Power Electron. 2023 38 12 15671 15692 10.1109/TPEL.2023.3310574
    [Google Scholar]
  86. Fan S. Duan J. Sun L. Zhang K. A fast modularized multiwinding transformer balancing topology for series-connected Supercapacitors. IEEE Trans. Power Electron. 2019 34 4 3255 3268 10.1109/TPEL.2018.2848364
    [Google Scholar]
  87. Hussain S.Z. Ihrar M. Hussain S.B. Oh W.C. Ullah K. A review on graphene based transition metal oxide composites and its application towards supercapacitor electrodes. SN Appl. Sci. 2020 2 4 764 10.1007/s42452‑020‑2515‑8
    [Google Scholar]
  88. Şahin M. Blaabjerg F. Sangwongwanich A. A comprehensive review on supercapacitor applications and developments. Energies 2022 15 3 674 10.3390/en15030674
    [Google Scholar]
  89. Berrueta A. Ursua A. Martin I.S. Eftekhari A. Sanchis P. Supercapacitors: Electrical characteristics, modeling, applications, and future trends. IEEE Access 2019 7 50869 50896 10.1109/ACCESS.2019.2908558
    [Google Scholar]
  90. Satpathy S. Misra N.K. Shukla D. Goyal V. Bhattacharyya B.K. Yadav C.S. An in-depth study of the electrical characterization of supercapacitors for recent trends in energy storage system. J. Energy Storage 2023 57 106198 10.1016/j.est.2022.106198
    [Google Scholar]
  91. Ma N. Yang D. Riaz S. Wang L. Wang K. Aging mechanism and models of supercapacitors: A review. Technologies (Basel) 2023 11 2 38 10.3390/technologies11020038
    [Google Scholar]
  92. Buller S. Thele M. DeDoncker R.W.A.A. Karden E. Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications. IEEE Trans. Ind. Appl. 2005 41 3 742 747 10.1109/TIA.2005.847280
    [Google Scholar]
  93. Ecker M. Gerschler J.B. Vogel J. Käbitz S. Hust F. Dechent P. Sauer D.U. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. J. Power Sources 2012 215 248 257 10.1016/j.jpowsour.2012.05.012
    [Google Scholar]
  94. Gualous H. Louahlia-Gualous H. Gallay R. Miraoui A. Supercapacitor thermal modeling and characterization in transient state for industrial applications. IEEE Trans. Ind. Appl. 2009 45 3 1035 1044 10.1109/TIA.2009.2018879
    [Google Scholar]
  95. Kreczanik P. Venet P. Hijazi A. Clerc G. Study of supercapacitor aging and lifetime estimation according to voltage, temperature, and RMS current. IEEE Trans. Ind. Electron. 2014 61 9 4895 4902 10.1109/TIE.2013.2293695
    [Google Scholar]
  96. Al Sakka M. Gualous H. Van Mierlo J. Culcu H. Thermal modeling and heat management of supercapacitor modules for vehicle applications. J. Power Sources 2009 194 2 581 587 10.1016/j.jpowsour.2009.06.038
    [Google Scholar]
  97. Rocabert J. Capo-Misut R. Muñoz-Aguilar R.S. Candela J.I. Rodriguez P. Control of energy storage system integrating electrochemical batteries and supercapacitors for grid-connected applications. IEEE Trans. Ind. Appl. 2019 55 2 1853 1862 10.1109/TIA.2018.2873534
    [Google Scholar]
/content/journals/cms/10.2174/0126661454319839240906162037
Loading
/content/journals/cms/10.2174/0126661454319839240906162037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test