Skip to content
2000
image of Polymeric Nanoparticles: Targeted Delivery in Breast Cancer - A Review

Abstract

Background

Breast cancer is one of the most prevalent cancers affecting the female population worldwide. It is a highly heterogeneous disease mainly classified into three subtypes based on the status of the molecular markers for the hormones (estrogen and progesterone) and epidermal growth factor (HER-2) receptors. Hormone receptor positive breast cancer shows a good prognosis, while tumors that do not show any of these receptors (triple negative breast cancer) are highly invasive. Despite all the conventional therapies for the treatment of breast cancer, it remains the leading cause of cancer deaths of women worldwide.

Objective

Chemical grafting of nanoparticles (NPs) with polymers and surface modifiers as a targeted ligand can become an alternative for active targeting. Hence, these polymeric NPs can control drug release with pH-responsive stimuli, and the high selectivity of these NPs allows them to accumulate more inside the cancer cells that overexpress these receptors, leaving normal cells unaffected.

Methods

Formulation incorporates various polymers, solvents drug, and stabilizing agents in the aqueous phase. Various techniques discussed in this review are employed for synthesis, resulting in a dry NP formulation.

Results

In this context, we shall discuss the development of NPs against distinct forms of cancer malignancies. From here, we know that polymeric NPs can produce a system with good characteristics, effectiveness, and active targeting of different cancer cells.

Conclusion

This system is a striking candidate for the targeted drug delivery for cancer therapy, anticipating that NPs could be further developed for various breast cancer therapy applications.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454345326241206062935
2024-12-16
2025-01-31
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016 66 1 7 30 10.3322/caac.21332 26742998
    [Google Scholar]
  2. Catty N.J. Foggitt A. Hamilton C.R. Royle G.T. Taylor I. Patterns of clinical metastasis in breast cancer: An analysis of 100 patients. Eur. J. Surg. Oncol. 1995 21 6 607 608
    [Google Scholar]
  3. Grobmyer S.R. Zhou G. Gutwein L.G. Iwakuma N. Sharma P. Hochwald S.N. Nanoparticle delivery for metastatic breast cancer. Nanomedicine 2012 8 Suppl. 1 S21 S30 10.1016/j.nano.2012.05.011 22640908
    [Google Scholar]
  4. Eroles P. Bosch A. Alejandro Pérez-Fidalgo J. Lluch A. Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat. Rev. 2012 38 6 698 707 10.1016/j.ctrv.2011.11.005 22178455
    [Google Scholar]
  5. Davies E. Hiscox S. New therapeutic approaches in breast cancer. Maturitas 2011 68 2 121 128 10.1016/j.maturitas.2010.10.012 21144683
    [Google Scholar]
  6. Fraguas-Sánchez A.I. Torres-Suárez A.I. Development of innovative formulations for breast cancer chemotherapy. Cancers. MDPI AG 2020 Vol. 12 1 3
    [Google Scholar]
  7. Singh SK Singh S Wlillard J Singh R Drug delivery approaches for breast cancer. Int J Nanomedicine 2017 12 6205 6218 10.2147/IJN.S140325
    [Google Scholar]
  8. Bangham A.D. Liposomes: the Babraham connection. Chem. Phys. Lipids 1993 64 1-3 275 285 10.1016/0009‑3084(93)90071‑A 8242839
    [Google Scholar]
  9. Jarai B.M. Kolewe E.L. Stillman Z.S. Raman N. Fromen C.A. Polymeric Nanoparticles. Nanoparticles for Biomedical Applications. Elsevier 303 324
    [Google Scholar]
  10. Dadwal M. Polymeric nanoparticles as promising novel carriers for drug delivery : An overview. J. Adv. Pharm. Educ. Res. 2014 4 1 20 30
    [Google Scholar]
  11. Sanità G. Carrese B. Lamberti A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci. 2020 7 November 587012 10.3389/fmolb.2020.587012 33324678
    [Google Scholar]
  12. Herdiana Y. Wathoni N. Shamsuddin S. Joni I.M. Muchtaridi M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers 2021 13 11 1717
    [Google Scholar]
  13. Azandaryani A.H. Kashanian S. Shahlaei M. Derakhshandeh K. Motiei M. Moradi S. A comprehensive physicochemical, in vitro and molecular characterization of letrozole incorporated chitosan-lipid nanocomplex. Pharm. Res. 2019 36 4 62 10.1007/s11095‑019‑2597‑4 30850895
    [Google Scholar]
  14. Salahpour Anarjan F. Active targeting drug delivery nanocarriers: Ligands. Nano-Struct. Nano-Objects 2019 19 100370 10.1016/j.nanoso.2019.100370
    [Google Scholar]
  15. Lorscheider M. Gaudin A. Nakhlé J. Veiman K.L. Richard J. Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: Update on recent progress. Ther. Deliv. 2021 12 1 55 76 10.4155/tde‑2020‑0079 33307811
    [Google Scholar]
  16. Paresishvili T. Kakabadze Z. Challenges and opportunities associated with drug delivery for the treatment of solid tumors. Oncol. Rev. 2023 17 August 10577 10.3389/or.2023.10577 37711860
    [Google Scholar]
  17. Hafeez MN Celia C Challenges towards targeted drug delivery in cancer nanomedicines. Processes 2021 9 9 1527
    [Google Scholar]
  18. Gonzalez-Valdivieso J. Girotti A. Schneider J. Arias F.J. Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. Int. J. Pharm. 2021 599 March 120438 10.1016/j.ijpharm.2021.120438 33662472
    [Google Scholar]
  19. Rosenblum D. Joshi N. Tao W. Karp J.M. Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018 9 1 1410 10.1038/s41467‑018‑03705‑y 29650952
    [Google Scholar]
  20. Williams R.M. Shah J. Ng B.D. Minton D.R. Gudas L.J. Park C.Y. Heller D.A. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett. 2015 15 4 2358 2364 10.1021/nl504610d 25811353
    [Google Scholar]
  21. Patent NCT00616967, 2017
  22. Grewal I.K. Singh S. Arora S. Sharma N. Polymeric nanoparticles for breast cancer therapy: A comprehensive review. Biointerface Res. Appl. Chem. 2021 11 4 11151 11171
    [Google Scholar]
  23. Moreira R. Granja A. Pinheiro M. Reis S. Nanomedicine interventions in clinical trials for the treatment of metastatic breast cancer. Appl. Sci. 2021 11 4 1624
    [Google Scholar]
  24. Bahreyni A Mohamud Y Luo H Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology 2020 18 1 180 10.1186/s12951‑020‑00741‑z
    [Google Scholar]
  25. Hernandez-Aya LF Gao F Goedegebuure PS Ma CX Ademuyiwa FO Park H A randomized phase II study of nab-paclitaxel + durvalumab + neoantigen vaccine versus nab-paclitaxel + durvalumab in metastatic triple-negative breast cancer (mTNBC). J. Clin. Oncol. 2019 37 15_suppl TPS1114 TPS1114
    [Google Scholar]
  26. Herdiana Y. Wathoni N. Shamsuddin S. Muchtaridi M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OpenNano 2022 7 May 100048 10.1016/j.onano.2022.100048
    [Google Scholar]
  27. Tang X. Loc W.S. Dong C. Matters G.L. Butler P.J. Kester M. The use of nanoparticulates to treat breast cancer. Nanomedicine. Future Medicine Ltd. 2017 Vol. 12 2367 2388
    [Google Scholar]
  28. Chandna P. Khandare J.J. Ber E. Rodriguez-Rodriguez L. Minko T. Multifunctional tumor-targeted polymer-peptide-drug delivery system for treatment of primary and metastatic cancers. Pharm. Res. 2010 27 11 2296 2306 10.1007/s11095‑010‑0235‑2 20700631
    [Google Scholar]
  29. Vivek R. Thangam R. NipunBabu V. Rejeeth C. Sivasubramanian S. Gunasekaran P. Muthuchelian K. Kannan S. Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. ACS Appl. Mater. Interfaces 2014 6 9 6469 6480 10.1021/am406012g 24780315
    [Google Scholar]
  30. Du J.Z. Du X.J. Mao C.Q. Wang J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 2011 133 44 17560 17563 10.1021/ja207150n 21985458
    [Google Scholar]
  31. Shamay Y. Adar L. Ashkenasy G. David A. Light induced drug delivery into cancer cells. Biomaterials 2011 32 5 1377 1386 10.1016/j.biomaterials.2010.10.029 21074848
    [Google Scholar]
  32. Fitzpatrick S.D. Fitzpatrick L.E. Thakur A. Mazumder M.A.J. Sheardown H. Temperature-sensitive polymers for drug delivery. Expert Rev. Med. Devices 2012 9 4 339 351 10.1586/erd.12.24 22905838
    [Google Scholar]
  33. Lensen D. Gelderblom E.C. Vriezema D.M. Marmottant P. Verdonschot N. Versluis M. de Jong N. van Hest J.C.M. Biodegradable polymeric microcapsules for selective ultrasound-triggered drug release. Soft Matter 2011 7 11 5417 5422 10.1039/c1sm05324h
    [Google Scholar]
  34. Liechty W.B. Kryscio D.R. Slaughter B.V. Peppas N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 2010 1 1 149 173 22432577
    [Google Scholar]
  35. Verma R.K. Mishra B. Garg S. Osmotically controlled oral drug delivery. Drug Dev. Ind. Pharm. 2000 26 7 695 708 10.1081/DDC‑100101287 10872087
    [Google Scholar]
  36. Adair J.H. Parette M.P. Altınoğlu E.İ. Kester M. Nanoparticulate alternatives for drug delivery. ACS Nano 2010 4 9 4967 4970 10.1021/nn102324e 20873786
    [Google Scholar]
  37. Gao M. Long X. Du J. Teng M. Zhang W. Wang Y. Wang X. Wang Z. Zhang P. Li J. Enhanced curcumin solubility and antibacterial activity by encapsulation in PLGA oily core nanocapsules. Food Funct. 2020 11 1 448 455 10.1039/C9FO00901A 31829367
    [Google Scholar]
  38. Bechnak L. Khalil C. Kurdi R.E. Khnayzer R.S. Patra D. Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: Colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem. Photobiol. Sci. 2020 19 8 1088 1098 10.1039/d0pp00032a 32638825
    [Google Scholar]
  39. Avramović N. Mandić B. Savić-Radojević A. Simić T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics 2020 12 4 298 10.3390/pharmaceutics12040298 32218326
    [Google Scholar]
  40. Lawson MK Improvement of therapeutic value of quercetin with chitosan nanoparticle delivery systems and potential applications. Int J Mol Sci 2023 24 4 3293
    [Google Scholar]
  41. Qi L. Xu Z. Chen M. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. Eur. J. Cancer 2007 43 1 184 193 10.1016/j.ejca.2006.08.029 17049839
    [Google Scholar]
  42. Bu L. Gan L.C. Guo X.Q. Chen F.Z. Song Q. Qi-Zhao Gou X.J. Hou S.X. Yao Q. Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int. J. Pharm. 2013 452 1-2 355 362 10.1016/j.ijpharm.2013.05.007 23685116
    [Google Scholar]
  43. Rejinold N.S. Muthunarayanan M. Muthuchelian K. Chennazhi K.P. Nair S.V. Jayakumar R. Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr. Polym. 2011 84 1 407 416 10.1016/j.carbpol.2010.11.056
    [Google Scholar]
  44. Li S.Y. Sun R. Wang H.X. Shen S. Liu Y. Du X.J. Zhu Y.H. Jun W. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J. Control. Release 2015 205 7 14 10.1016/j.jconrel.2014.11.011 25445694
    [Google Scholar]
  45. Khanna V Kalscheuer S Kirtane A Zhang W Panyam J. Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer. Future Drug Discov 2019 1 1 FDD8 10.4155/fdd‑2019‑0005
    [Google Scholar]
  46. Swaminathan S.K. Roger E. Toti U. Niu L. Ohlfest J.R. Panyam J. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J. Control. Release 2013 171 3 280 287 10.1016/j.jconrel.2013.07.014 23871962
    [Google Scholar]
  47. Hosseini S.M. Mohammadnejad J. Salamat S. Beiram Zadeh Z. Tanhaei M. Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: A review. Mater. Today Chem. 2023 29 101400 10.1016/j.mtchem.2023.101400
    [Google Scholar]
  48. Ma Z. Moulton B. Recent advances of discrete coordination complexes and coordination polymers in drug delivery. Coord. Chem. Rev. 2011 255 15-16 1623 1641 10.1016/j.ccr.2011.01.031
    [Google Scholar]
  49. Gibson M. Pharmaceutical preformulation and formulation : A practical guide from candidate drug selection to commercial dosage form. CRC Press Boca Raton 2008
    [Google Scholar]
  50. Han E.J. Chung A.H. Oh I.J. Analysis of residual solvents in poly(lactide-co-glycolide) nanoparticles. J. Pharm. Investig. 2012 42 5 251 256 10.1007/s40005‑012‑0034‑3
    [Google Scholar]
  51. Liu Y Shen J Shi J Gu X Chen H Wang X Functional polymeric core–shell hybrid nanoparticles overcome intestinal barriers and inhibit breast cancer metastasis. Chem. Eng. J. 2022 427 131742 10.1016/j.cej.2021.131742
    [Google Scholar]
  52. Elbaz N.M. Ziko L. Siam R. Mamdouh W. Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Sci. Rep. 2016 6 1 30729 10.1038/srep30729 27491622
    [Google Scholar]
  53. Chouhan R. Bajpai A.K. Real time in vitro studies of doxorubicin release from PHEMA nanoparticles. J. Nanobiotechnology 2009 7 1 5 10.1186/1477‑3155‑7‑5 19843333
    [Google Scholar]
  54. Navya P.N. Kaphle A. Srinivas S.P. Bhargava S.K. Rotello V.M. Daima H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019 6 1 23 10.1186/s40580‑019‑0193‑2 31304563
    [Google Scholar]
  55. Perumal S. Polymer nanoparticles: Synthesis and applications. Polymers 2022 14 24 5449 10.3390/polym14245449 36559816
    [Google Scholar]
  56. Pinto Reis C. Neufeld R.J. Ribeiro A.J. Veiga F. 2006
  57. Weber C. Coester C. Kreuter J. Langer K. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm 2000 194 1 91 102
    [Google Scholar]
  58. Elzoghby A.O. Samy W.M. Elgindy N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 2012 157 2 168 182 10.1016/j.jconrel.2011.07.031 21839127
    [Google Scholar]
  59. Liu M. Zhou Z. Wang X. Xu J. Yang K. Cui Q. Chen X. Cao M. Weng J. Zhang Q. Formation of poly(l,d-lactide) spheres with controlled size by direct dialysis. Polymer 2007 48 19 5767 5779 10.1016/j.polymer.2007.07.053
    [Google Scholar]
  60. Choi S.W. Kim J.H. Design of surface-modified poly(d,l-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J. Control. Release 2007 122 1 24 30 10.1016/j.jconrel.2007.06.003 17628158
    [Google Scholar]
  61. Rao J.P. Geckeler K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science. 36 Elsevier Ltd 2011 887 913
    [Google Scholar]
  62. Fan W. Yan W. Xu Z. Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf. B Biointerfaces 2012 90 1 21 27 10.1016/j.colsurfb.2011.09.042 22014934
    [Google Scholar]
  63. Fessi H. Puisieux F. Devissaguet J.P. Ammoury N. Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989 55 1 R1 R4 10.1016/0378‑5173(89)90281‑0
    [Google Scholar]
  64. Soppimath K.S. Aminabhavi T.M. Kulkarni A.R. Rudzinski W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001 70 1-2 1 20 10.1016/S0168‑3659(00)00339‑4
    [Google Scholar]
  65. Hoa L.T.M. Chi N.T. Nguyen L.H. Chien D.M. Preparation and characterisation of nanoparticles containing ketoprofen and acrylic polymers prepared by emulsion solvent evaporation method. J. Exp. Nanosci. 2012 7 2 189 197 10.1080/17458080.2010.515247
    [Google Scholar]
  66. Jaiswal J. Kumar Gupta S. Kreuter J. Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. J. Control. Release 2004 96 1 169 178 10.1016/j.jconrel.2004.01.017 15063039
    [Google Scholar]
  67. Pinto Reis C. Neufeld R.J. Ribeiro A.J. Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed. 2006 2 1 8 21 10.1016/j.nano.2005.12.003
    [Google Scholar]
  68. Varshosaz J. Hassanzadeh F. Mahmoudzadeh M. Sadeghi A. Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology. Powder Technol. 2009 189 1 97 102 10.1016/j.powtec.2008.06.009
    [Google Scholar]
  69. Singh Sekhon B. Supercritical fluid technology: An overview of pharmaceutical applications. Int. J. PharmTech Res. 2006 2 1 810 826
    [Google Scholar]
  70. Vauthier C. Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 2009 26 5 1025 1058 10.1007/s11095‑008‑9800‑3
    [Google Scholar]
  71. Govender T. Stolnik S. Garnett M.C. Illum L. Davis S.S. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J. Control. Release 1999 57 2 171 185 10.1016/S0168‑3659(98)00116‑3 9971898
    [Google Scholar]
  72. Murakami H. Kobayashi M. Takeuchi H. Kawashima Y. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm 1999 187 2 143 152 10.1016/s0378‑5173(99)00187‑8
    [Google Scholar]
  73. Gallardo M. Study of the mechanisms of formation of nanoparticles and nanocapsules of polyisobutyl-2-cyanoacrylate. Int. J. Pharm. 1993 100 1-3 55 64 10.1016/0378‑5173(93)90075‑Q
    [Google Scholar]
  74. Duclairoir C. Nakache E. Marchais H. Orecchioni A.M. Formation of gliadin nanoparticles: Influence of the solubility parameter of the protein solvent. Colloid Polym. Sci. 1998 276 321 327 10.1007/s003960050246
    [Google Scholar]
  75. Aboubakar M Puisieux F Couvreur P Deyme M Vauthier C Study of the mechanism of insulin encapsulation in poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. J Biomed Mater Res 1999 47 4 568 576 10.1002/(sici)1097‑4636(19991215)47:4568::aid‑jbm143.0.co;2‑x
    [Google Scholar]
  76. Bertholon I. Lesieur S. Labarre D. Besnard M. Vauthier C. Characterization of dextran-poly(isobutylcyanoacrylate) copolymers obtained by redox radical and anionic emulsion polymerization. Macromolecules 2006 39 10 3559 3567 10.1021/ma060338z
    [Google Scholar]
  77. Legrand P. Lesieur S. Bochot A. Gref R. Raatjes W. Barratt G. Vauthier C. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int. J. Pharm. 2007 344 1-2 33 43 10.1016/j.ijpharm.2007.05.054 17616282
    [Google Scholar]
  78. Bertholon I. Vauthier C. Labarre D. Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: Influences of surface morphology, length, and type of polysaccharide. Pharm. Res. 2006 23 6 1313 1323 10.1007/s11095‑006‑0069‑0 16715369
    [Google Scholar]
  79. Pinto-alphandary H. Couvreur P. A new method to isolate polyalkylcyanoacrylate nanoparticle preparations. J. Drug Target. 1995 3 2 167 169 10.3109/10611869509059216
    [Google Scholar]
  80. Chiellini E. Covolan V.L. Orsini L.M. Solaro R. Polymeric nanoparticles based on polylactide and related copolymers. Macromol. Symp. 2003 197 345 354 10.1002/masy.200350730
    [Google Scholar]
  81. Bouchemal K. Ponchel G. Mazzaferro S. Campos-Requena V. Gueutin C. Palmieri G.F. Vauthier C. A new approach to determine loading efficiency of Leu-enkephalin in poly(isobutylcyanoacrylate) nanoparticles coated with thiolated chitosan. J. Drug Deliv. Sci. Technol. 2008 18 6 392 397 10.1016/S1773‑2247(08)50077‑3
    [Google Scholar]
  82. Hillaireau H. Ledoan T. Chacun H. Janin J. Couvreur P. Encapsulation of mono- and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int. J. Pharm. 2007 331 2 148 152 10.1016/j.ijpharm.2006.10.031 17150318
    [Google Scholar]
  83. Oligonucleotide radiolabelling particle size and zeta potential measurements.
    [Google Scholar]
  84. Limayem I. Charcosset C. Fessi H. Purification of nanoparticle suspensions by a concentration/diafiltration process. Separ. Purif. Tech. 2004 38 1 1 9 10.1016/j.seppur.2003.10.002
    [Google Scholar]
  85. Madaeni S.S. Fane A.G. Microfiltration of very dilute colloidal mixtures. J. Membr. Sci. 1996 113 2 301 312 10.1016/0376‑7388(95)00129‑8
    [Google Scholar]
  86. Tishchenko G. Hilke R. Albrecht W. Schauer J. Luetzow K. Pientka Z. Ultrafiltration and microfiltration membranes in latex purification by diafiltration with suction. Sep. Purif. Technol. 2003 30 1 57 68 10.1016/S1383‑5866(02)00120‑X
    [Google Scholar]
  87. Beck P. Scherer D. Kreutert J. Separation of drug-loaded nanoparticles from free drug by gel filtration. J Microencapsul 1990 7 4 491 496 10.3109/02652049009040471
    [Google Scholar]
  88. Masson V. Maurin F. Fessi H. Influence of sterilization processes on poly(epsilon-caprolactone) nanospheres. Biomaterials 1997 18 4 327 335
    [Google Scholar]
  89. Sommerfeld P. Schroeder U. Sabel B.A. Sterilization of unloaded polybutylcyanoacrylate nanoparticles. Int. J. Pharm. 1998 164 1-2 113 118 10.1016/S0378‑5173(97)00394‑3
    [Google Scholar]
  90. Rollot J.M. Physicochemical and morphological characterization of polyisobutyl cyanoacrylate nanocapsules. J. Pharm. Sci. 1986 75 4 361 364
    [Google Scholar]
  91. Bos G.W. Trullas-Jimeno A. Jiskoot W. Crommelin J.A. Hennink W.E. Sterilization of poly(dimethylamino) ethyl methacrylate-based gene transfer complexes. Int J Pharm 2000 211 1-2 79 88 10.1016/s0378‑5173(00)00593‑7
    [Google Scholar]
  92. Boess C. Bögl K.W. Influence of radiation treatment on pharmaceuticals-A review: Alkaloids, morphine derivatives, and antibiotics. Drug Dev. Ind. Pharm. 1996 22 6 495 529 10.3109/03639049609108354
    [Google Scholar]
  93. Sintzel M.B. Merkli A. Tabatabay C. Gurny R. Influence of irradiation sterilization on polymers used as drug carriers—A review. Drug Dev. Ind. Pharm. 1997 23 9 857 878 10.3109/03639049709148693
    [Google Scholar]
  94. Memisoglu-Bilensoy E. Hincal A.A. Sterile, injectable cyclodextrin nanoparticles: Effects of gamma irradiation and autoclaving. Int. J. Pharm. 2006 311 1-2 203 208 10.1016/j.ijpharm.2005.12.013 16413708
    [Google Scholar]
  95. Ne Brigger I Armand-Lefevre L Chaminade P Besnard M Rigaldie Y Largeteau A The stenlying effect of high hydrostatic pressure on thermally and hydrolytically labile nanosized carriers. Pharm Res 2003 20 4 674 683 10.1023/a:1023267304096
    [Google Scholar]
  96. Layre A.M. Couvreur P. Richard J. Requier D. Eddine Ghermani N. Gref R. Freeze-drying of composite core-shell nanoparticles. Drug Dev. Ind. Pharm. 2006 32 7 839 846 10.1080/03639040600685134 16908421
    [Google Scholar]
  97. Abdelwahed W. Degobert G. Stainmesse S. Fessi H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv Drug Deliv Rev 2006 58 15 1688 1713 10.1016/j.addr.2006.09.017
    [Google Scholar]
  98. Abdelwahed W. Degobert G. Fessi H. Freeze-drying of nanocapsules: Impact of annealing on the drying process. Int. J. Pharm. 2006 324 1 74 82 10.1016/j.ijpharm.2006.06.047 16904277
    [Google Scholar]
  99. Tewa-Tagne P. Briançon S. Fessi H. Spray-dried microparticles containing polymeric nanocapsules: Formulation aspects, liquid phase interactions and particles characteristics. Int. J. Pharm. 2006 325 1-2 63 74 10.1016/j.ijpharm.2006.06.025 16872767
    [Google Scholar]
  100. Mü Ller C.R. Bassani V.L. Pohlmann A.R. Michalowski C.B. Petrovick P.R. Guterres S.S. Preparation and characterization of spray-dried polymeric nanocapsules. Drug Dev Ind Pharm 2000 26 3 343 347 10.1081/ddc‑100100363
    [Google Scholar]
  101. Adler M. Unger M. Lee G. Surface composition of spray-dried particles of bovine serum albumin/trehalose/surfactant. Pharm. Res. 2000 17 7 863 870 10.1023/A:1007568511399
    [Google Scholar]
  102. Broadheadl J. The spray drying of pharmaceuticals. Drug Dev. Ind. Pharm. 1992 18 11-12 1169 1206
    [Google Scholar]
/content/journals/cms/10.2174/0126661454345326241206062935
Loading
/content/journals/cms/10.2174/0126661454345326241206062935
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test