Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

Criminal actions using falsified papers are on the rise. Any changes to the document's content are usually made with ballpoint and gel pens. All changes made to a document using a pen necessitate ink analysis. Thus, a quick and accurate ink analysis process must be created to cope with the challenges associated with counterfeiting.

Aim

This study aims to analyze several brands of ballpoint and gel pen inks using physicochemical and computational techniques and provide a database of the results.

Methods

A total of 24 pen samples from various brands were colour-tested first, followed by an optical test using ImageJ software. The composition of each ink sample was distinguished using the non-destructive method ATR-FTIR, followed by a destructive technique TLC. Lastly, a computational technique algorithm was applied for rapid and desirable results.

Results

The results distinguished each brand based on RGB measures and mean values. The differentiation of each sample using ATR-FTIR spectroscopy was challenging due to similar structural characteristics. However, TLC (destructive) was used with several solvent systems. Ballpoint pen inks separated well in all solvent systems, with the greatest results achieved in solvent systems 2 and solvent system 4. The TLC spots were identical, but when evaluated digitally using MATLAB, substantial changes were visible, which were utilized to differentiate similar colour inks from various brands.

Conclusion

The chemical approaches, in conjunction with the computational techniques, offered a rapid and sophisticated method that allowed for better distinction of the inks and provided more accuracy in substantially less time than typical methods employed in forensic laboratories.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454271054240102101302
2024-01-17
2025-04-24
Loading full text...

Full text loading...

References

  1. van RenesseR.L. Paper based document security-A review.European Conference on Security and Detection Ecos1997977580
    [Google Scholar]
  2. LevinsonJ. Questioned documents: A lawyer’s handbook.Academic Press2000
    [Google Scholar]
  3. MorrisR. N. Forensic handwriting identification: Fundamental concepts and principles.2nd ed.Elsevier2020
    [Google Scholar]
  4. ManningG.A. Financial investigation and forensic accounting.Routledge2010
    [Google Scholar]
  5. SharmaS. GargD. ChophiR. SinghR. On the spectroscopic investigation of stamp inks using ATR-FTIR and chemometrics: Application in forensic document examination.Forensic Chem.20212610037710.1016/j.forc.2021.100377
    [Google Scholar]
  6. MacdonaldK. TiptonC. Using documents.In: Researching social life1993187200
    [Google Scholar]
  7. EllenD. The materials of handwritten documents: Substances and techniques: Scientific examination of documents: methods and techniques.3rd edBoca Raton, FLCRC Press2005115148
    [Google Scholar]
  8. SrihariS.N. ChaS.H. AroraH. LeeS. Individuality of handwriting.J. Forensic Sci.200247415447J10.1520/JFS15447J12136998
    [Google Scholar]
  9. KoppenhaverK. M. Forensic document examination: Principles and practiceSpringer2007
    [Google Scholar]
  10. TerrasM. M. The rise of digitization: An overview.In: Digitisation perspectives2011120
    [Google Scholar]
  11. ParekhH. Digitization: An Overview Of IssuesINFLIBNET Centre2001
    [Google Scholar]
  12. StolińskiS. BienieckiW. Application of OCR systems to processing and digitization of paper documents.Inf. Syst. Manage.2011VIII102
    [Google Scholar]
  13. HanY. WanX. Digitization of text documents using PDF/A.Infor. Technol. Libr.2018371526410.6017/ital.v37i1.9878
    [Google Scholar]
  14. FatimaF.F. Forensic examination and identification of writing inks on documents.IJECI202043242410.54692/ijeci.2020.040362
    [Google Scholar]
  15. CausinV. CasamassimaR. MaregaC. MaidaP. SchiavoneS. MarigoA. VillariA. The discrimination potential of ultraviolet-visible spectrophotometry, thin layer chromatography, and Fourier transform infrared spectroscopy for the forensic analysis of black and blue ballpoint inks.J. Forensic Sci.20085361468147310.1111/j.1556‑4029.2008.00867.x18752549
    [Google Scholar]
  16. EllenD. DayS. DaviesC. Scientific examination of documents: Methods and techniques.CRC Press201810.4324/9780429491917
    [Google Scholar]
  17. ChenH. MengH. ChengK. A survey of methods used for the identification and characterization of inks.J. Forensic Sci.20021114
    [Google Scholar]
  18. SiegelJ. A. Ink analysis.In: Encyclopedia of Forensic Sciences201337537910.1016/B978‑0‑12‑382165‑2.00135‑5
    [Google Scholar]
  19. ZlotnickJ.A. SmithF.P. Chromatographic and electrophoretic approaches in ink analysis.J. Chromatogr., Biomed. Appl.19997331-226527210.1016/S0378‑4347(99)00312‑610572985
    [Google Scholar]
  20. Zięba-PalusJ. TrzcińskaB.M. Establishing of chemical composition of printing ink.J. Forensic Sci.201156381982110.1111/j.1556‑4029.2011.01734.x21361954
    [Google Scholar]
  21. LaPorteG. M. StephensJ. C. Analysis techniques used for the forensic examination of writing and printing inks.In: Forensic chemistry handbook2011225250.
    [Google Scholar]
  22. KamilM. AsriM.N.M. DesaW.N.S.M. IsmailD. Fourier transform infrared (FTIR) spectroscopy and principal component analysis (PCA) of unbranded black ballpoint pen inks. Malays J Forens. Sci.2015614853
    [Google Scholar]
  23. BojkoK. RouxC. ReedyB.J. An examination of the sequence of intersecting lines using attenuated total reflectance-Fourier transform infrared spectral imaging.J. Forensic Sci.20085361458146710.1111/j.1556‑4029.2008.00796.x18624894
    [Google Scholar]
  24. PurbaM. K. GuptaS. GuptaR. R. ShuklaS. K. A survey of techniques used for Ink examination.J. Punjab Acad. Forensic Med. Toxicol.2019191155161A survey of techniques used for Ink examination.10.5958/0974‑083X.2019.00032.3
    [Google Scholar]
  25. GodownL. New nondestructive document testing methods.J. Crim. Law Criminol. Police Sci.196455228010.2307/1140760
    [Google Scholar]
  26. FinlaysonG. SchieleB. CrowleyJ. Comprehensive colour image normalization.In: European Conference on Computer Vision199847549010.1007/BFb0055685
    [Google Scholar]
  27. DirwonoW. ParkJ.S. Agustin-CamachoM.R. KimJ. ParkH.M. LeeY. LeeK.B. Application of micro-attenuated total reflectance FTIR spectroscopy in the forensic study of questioned documents involving red seal inks.Forensic Sci. Int.20101991-36810.1016/j.forsciint.2010.02.00920413232
    [Google Scholar]
  28. PayneG. WallaceC. ReedyB. LennardC. SchulerR. ExlineD. RouxC. Visible and near-infrared chemical imaging methods for the analysis of selected forensic samples.Talanta200567233434410.1016/j.talanta.2005.03.04218970173
    [Google Scholar]
  29. CentoreP. Controlling Colour with the Munsell SystemPaul Centore2014
    [Google Scholar]
  30. BrownJ.F. LauK. Colour and colour matching.In: In The Printing Ink ManualSpringer199186139
    [Google Scholar]
  31. BrewerC.A. The development of process-printed Munsell charts for selecting map colors.Am. Cartogr.198916426927810.1559/152304089783813945
    [Google Scholar]
  32. SeleþchiE. DuliuO.G. Image processing and data analysis in computed tomography.7th International Balkan Workshop on Applied Physics200757
    [Google Scholar]
  33. GallagherS.R. Digital image processing and analysis with ImageJ.Curr. Protoc. Essent. Lab. Tech.201491A-3C10.1002/9780470089941.eta03cs9
    [Google Scholar]
  34. BroekeJ. PérezJ.M.M. PascauJ. Image processing with ImageJ.Packt Publishing Ltd.2015
    [Google Scholar]
  35. LiuG.L. KazarianS.G. Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging.Analyst202214791777179710.1039/D2AN00005A35388386
    [Google Scholar]
  36. ReddyK. O. MaheshwariU. ShuklaM. Preparation, chemical composition, characterization, and properties of napier grass paper sheets.ResearchGate201449102129
    [Google Scholar]
  37. MenzykA. ZadoraG. SajewiczM. Physicochemical analysis of inks and methods of evidence evaluation − A review.Prob. Forensic Sci.2015104245278
    [Google Scholar]
  38. BrazA. López-LópezM. García-RuizC. Raman spectroscopy for forensic analysis of inks in questioned documents.Forensic Sci. Int.20132321-320621210.1016/j.forsciint.2013.07.01724053882
    [Google Scholar]
  39. CalcerradaM. García-RuizC. Analysis of questioned documents: A review.Anal. Chim. Acta201585314316610.1016/j.aca.2014.10.05725467455
    [Google Scholar]
  40. HartigS.M. Basic image analysis and manipulation in Image.J.Curr. Protoc. Mol. Biol.201310211510.1002/0471142727.mb1415s10223547012
    [Google Scholar]
  41. SchroederA.B. DobsonE.T.A. RuedenC.T. TomancakP. JugF. EliceiriK.W. The ImageJ ecosystem: Open‐source software for image visualization, processing, and analysis.Protein Sci.202130123424910.1002/pro.399333166005
    [Google Scholar]
  42. AndronacheI. LiritzisI. JelinekH.F. Fractal algorithms and RGB image processing in scribal and ink identification on an 1819 secret initiation manuscript to the Philike Hetaereia.Sci. Rep.2023131173510.1038/s41598‑023‑28005‑436720889
    [Google Scholar]
  43. FeraruD.L. MegheaA. BadeaN. Forensic discrimination of ballpoint pen inks based on correlation of data obtained by optical and spectral methods.REV CHIM2013641115187
    [Google Scholar]
  44. NamY.S. ParkJ.S. LeeY. LeeK.B. Application of micro-attenuated total reflectance Fourier transform infrared spectroscopy to ink examination in signatures written with ballpoint pen on questioned documents.J. Forensic Sci.201459380080510.1111/1556‑4029.1240524661236
    [Google Scholar]
  45. MeyersR.A. CoatesJ. Interpretation of infrared spectra, a practical approach.In: Encyclopedia of Analytical Chemistry: Applications, Theory, and InstrumentationWiley2006
    [Google Scholar]
  46. LeeL.C. OthmanR. PuaH. IshakA. IsharS.M. Classification and identification of black ballpoint pen inks based on multivariate analysis and infrared spectra.Prob. Forensic Sci.201292253264
    [Google Scholar]
  47. KherA. MulhollandM. GreenE. ReedyB. Forensic classification of ballpoint pen inks using high performance liquid chromatography and infrared spectroscopy with principal components analysis and linear discriminant analysis.Vib. Spectrosc.200640227027710.1016/j.vibspec.2005.11.002
    [Google Scholar]
  48. ComanV. CopaciuF. Analysis of dyes and inks.In: Instrumental Thin-Layer Chromatography.Elsevier201555558810.1016/B978‑0‑12‑417223‑4.00020‑0
    [Google Scholar]
  49. SchweppeH. Synthetic colouring materials.In: Thin-layer chromatography: A laboratory handbook1969612630
    [Google Scholar]
  50. LeeL.C. HakimM.A. IshakA. The analysis of dyes in black ballpoint pen inks using high performance thin layer chromatography.Malays J Forens. Sci.2014522226
    [Google Scholar]
  51. GannetionL. NoorS.N.M.M. LimP.Y. ChangK.H. AbdullahA.F.L. Forensic discrimination of blue pen inks: Emergence of hybrid pen inks.Malays. J. Anal. Sci.2021254584595
    [Google Scholar]
  52. SainiK. RathoreR. SainiA. Forensic analysis of toners by TLC and HPTLC.Res. J. forensic sci.201643620
    [Google Scholar]
  53. SharifM. BatoolM. ChandS. FarooqiZ.H. TirmaziS.A.A.S. AtharM. Forensic discrimination potential of blue, black, green, and red colored fountain pen inks commercially used in pakistan, by UV/Visible spectroscopy, thin layer chromatography, and fourier transform infrared spectroscopy.Int. J. Anal. Chem.2019201911010.1155/2019/598096730723504
    [Google Scholar]
  54. SinghB. Color and texture-based image retrieval.Int. J. Res. Dev. Technol.200913207211
    [Google Scholar]
  55. GoraiA. PalR. GuptaP. Document fraud detection by ink analysis using texture features and histogram matching.2016 International Joint Conference on Neural Networks (IJCNN)20164512451710.1109/IJCNN.2016.7727790
    [Google Scholar]
  56. BergerC.E.H. Objective ink color comparison through image processing and machine learning.Sci. Justice2013531555910.1016/j.scijus.2012.09.00323380063
    [Google Scholar]
  57. Knight and AndrewBasics of MATLAB and beyond.Boca Raton, FLChapman & Hall/CRC1999
    [Google Scholar]
  58. AsriN. DesaW. IsmailD. Fourier transform infrared (FTIR) spectroscopy with chemometric techniques for the classification of ballpoint pen inks.AJFSFM201512194200
    [Google Scholar]
  59. AsriN. DesaW.N. IsmailD. Source determination of red gel pen inks using raman spectroscopy and attenuated total reflectance fourier transform infrared spectroscopy combined with pearson’s product moment correlation coefficients and principal component analysis.J. Forensic Sci.20171015564029
    [Google Scholar]
  60. CausinV. MaregaC. MarigoA. CasamassimaR. PelusoG. RipaniL. Forensic differentiation of paper by X-ray diffraction and infrared spectroscopy.Forensic Sci. Int.20101971-3707410.1016/j.forsciint.2009.12.05620079986
    [Google Scholar]
  61. SilvaC.S. BorbaF.S.L. PimentelM.F. PontesM.J.C. HonoratoR.S. PasquiniC. Classification of blue pen ink using infrared spectroscopy and linear discriminant analysis.Microchem. J.201310912212710.1016/j.microc.2012.03.025
    [Google Scholar]
  62. SaidH.M. IsmailD. Study on the effect of ageing to gel pen ink on papers using attenuated Reflectant mode Fourier transform infrared (ATR-FTIR) spectroscopy.Int. J. Med. Sci.2018313843
    [Google Scholar]
  63. SinghF.V.N. AgrawalS.N. Forensic identification and differentiation of different indian brands of gel pen inks.IJSRD20153123210613
    [Google Scholar]
  64. SharmaN. AgarwalA. NegiY. Analysis of black ballpoint pen inks.Int. J. Pharm. Res. Scho.20143I-2
    [Google Scholar]
  65. Mohamad AsriM.N. Mat DesaW.N.S. IsmailD. Source determination of red gel pen inks using raman spectroscopy and attenuated total reflectance fourier transform infrared spectroscopy combined with pearson’s product moment correlation coefficients and principal component analysis.J. Forensic Sci.201863128529110.1111/1556‑4029.1352228480527
    [Google Scholar]
  66. Mohamad AsriM.N. VermaR. MahatN.A. NorN.A.M. Mat DesaW.N.S. IsmailD. Discrimination and source correspondence of black gel inks using Raman spectroscopy and chemometric analysis with UMAP and PLS-DA.Chemom. Intell. Lab. Syst.202222510455710.1016/j.chemolab.2022.104557
    [Google Scholar]
  67. SahuM. SinhaM. RaoI.A. SallawadS.S. AhirwarB. A study of variation in ball point ink of different brands by thin layer chromatography.Res. J Phar. Tech.201710124261426310.5958/0974‑360X.2017.00780.6
    [Google Scholar]
  68. MegahedA. FadlS.M. HanQ. LiQ. Handwriting forgery detection based on ink colour features.2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)24-26 November 2017Beijing, China201710.1109/ICSESS.2017.8342883
    [Google Scholar]
  69. FeraruD.L. MegheaA. Possibilities to differentiate ballpoint pen inks by chromatographic techniques.U.P.B. Sci. Bull.20147614542331
    [Google Scholar]
  70. AdamC.D. SherrattS.L. ZholobenkoV.L. Classification and individualisation of black ballpoint pen inks using principal component analysis of UV–vis absorption spectra.Forensic Sci. Int.20081741162510.1016/j.forsciint.2007.02.02917418989
    [Google Scholar]
  71. GawadA.A. SalamaT.M. MeshrefM. MohamedG.G. ZedanA.F. Coupling ATR-FTIR spectroscopy and chemometric analysis for rapid and non-destructive ink discrimination of forensic documents.Egypt. J. Chem.202200010.21608/ejchem.2022.105668.4865
    [Google Scholar]
  72. KesarwaniS. TripathyD. Advancements in potential preservation and decipherment techniques of charred documents.IJFMP202114S2359366
    [Google Scholar]
  73. KesarwaniS. TripathyD.B. KumarS. Application of starch based coatings as a sustainable solution to preserve and decipher the charred documents.Coatings2023139152110.3390/coatings13091521
    [Google Scholar]
  74. ParjuanganS. HafifM. SuhardiS. Forensics investigation on image files using quantization value.Proceeding International Conference on Information Technology and Business2020139146
    [Google Scholar]
  75. DjozanD. BaheriT. KarimianG. ShahidiM. Forensic discrimination of blue ballpoint pen inks based on thin layer chromatography and image analysis.Forensic Sci. Int.20081792-319920510.1016/j.forsciint.2008.05.01318639403
    [Google Scholar]
  76. GautamR. ChauhanR. KumarR. SharmaV. PLS-DA and infrared spectroscopy-based rapid and non-destructive discrimination of black ball and gel pen inks for forensic application.Forensic Sci. Int.20213100162
    [Google Scholar]
/content/journals/cms/10.2174/0126661454271054240102101302
Loading
/content/journals/cms/10.2174/0126661454271054240102101302
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ATR-FTIR; computational technique; ImageJ; intensity profile; MATLAB; TLC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test