Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Subchondral insufficiency fractures (SIF) of the knee joint are prevalent in osteoporosis patients over the age of 55. Early diagnosis of SIF fracture of the medial femoral condyle is crucial for delaying disease progression, early therapy, and potential disease reversal. Magnetic resonance imaging (MRI) is useful in detecting SIF, which is often undetectable on initial radiographs.

This study aimed at developing a grading system for subchondral insufficiency fractures (SIF) based on MRI to predict outcomes and evaluate risk factors.

Methods

In this study, MRI was used to examine SIF risk variables in the medial condyle of the femur to help clinicians diagnose, treat, and delay the condition. A total of 386 patients with SIF from 2019 to 2021 were retrospectively analyzed and divided into 106 patients in the disease group and 280 patients in the control group according to whether they had SIF. The lesion site, meniscus, ligament, and other parameters were evaluated and compared. At the same time, a grading system was introduced to stratify and statistically analyze the size of the lesion area, the degree of bone marrow edema (BME), meniscus tears, and other parameters in the patients.

Results

Most SIF were low-grade (LG) fractures, and the predictors of LG and high-grade (HG) fractures included heel tear (P =0.031), degree of medial malleolus degeneration (P < 0.001), advanced age (P < 0.001), and lesion size (P < 0.001). The prognostic factors that showed significant differences between the two groups included age (P =0.027), gender (P =0.005), side (P =0.005), medial tibial plateau injury (P < 0.0001), femoral medullary bone marrow edema (P < 0.0001), medial tibial plateau bone marrow edema (P < 0.0001), meniscus body partial injury (P =0.016), heel tear (P =0.001), anterior cruciate ligament injury (P =0.002), and medial collateral ligament injury (P < 0.0001).

Conclusion

This current study proposed an MRI-based grading system for inferior condylar fractures of the femur, in which HG inferior condylar fractures are associated with severe medial malleolus degeneration, advanced age, lesion size (correlation), and meniscus heel tears.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230704092752
2023-07-25
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e040723218388.html?itemId=/content/journals/cmir/10.2174/1573405620666230704092752&mimeType=html&fmt=ahah

References

  1. PathriaM.N. ChungC.B. ResnickD.L. Acute and stress-related injuries of bone and cartilage: Pertinent anatomy, basic biomechanics, and imaging perspective.Radiology20162801213810.1148/radiol.1614230527322971
    [Google Scholar]
  2. AhlbäckS. BauerG.C.H. BohneW.H. Spontaneous osteonecrosis of the knee.Arthritis Rheum.196811670573310.1002/art.17801106025700639
    [Google Scholar]
  3. IwasakiK. YamamotoT. NakashimaY. MawatariT. MotomuraG. IkemuraS. IwamotoY. Subchondral insufficiency fracture of the femoral head after liver transplantation.Skeletal Radiol.200938992592810.1007/s00256‑009‑0706‑x19418050
    [Google Scholar]
  4. IkemuraS. YamamotoT. NakashimaY. ShutoT. JingushiS. IwamotoY. Bilateral subchondral insufficiency fracture of the femoral head after renal transplantation: A case report.Arthritis Rheum.20055241293129610.1002/art.2099415818681
    [Google Scholar]
  5. YamamotoT. Subchondral insufficiency fractures of the femoral head.Clin. Orthop. Surg.20124317318010.4055/cios.2012.4.3.17322949947
    [Google Scholar]
  6. GourlayM.L. RennerJ.B. SpangJ.T. RubinJ.E. Subchondral insufficiency fracture of the knee: A non-traumatic injury with prolonged recovery time.BMJ Case Rep.20152015jun08 1bcr201520939910.1136/bcr‑2015‑20939926055598
    [Google Scholar]
  7. SehajpalS. PrasadD.N. SinghR.K. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): A long march towards synthesis of safer NSAIDs.Mini Rev. Med. Chem.201818141199121910.2174/138955751866618033011241629600762
    [Google Scholar]
  8. SehajpalS. PrasadD.N. SinghR.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation.Arch. Pharm.20193527180033910.1002/ardp.20180033931231875
    [Google Scholar]
  9. JoshiT. GuptaG. Effect of dynamic loading on hip implant using finite element method.Mater. Today Proc.202146102111021610.1016/j.matpr.2020.11.378
    [Google Scholar]
  10. JoshiT. SharmaR. Kumar MittalV. GuptaV. Comparative investigation and analysis of hip prosthesis for different bio-compatible alloys.Mater. Today Proc.20214310511110.1016/j.matpr.2020.11.222
    [Google Scholar]
  11. SongW.S. YooJ.J. KooK.H. YoonK.S. KimY.M. KimH.J. Subchondral fatigue fracture of the femoral head in military recruits.J. Bone Joint Surg. Am.20048691917192410.2106/00004623‑200409000‑0000915342753
    [Google Scholar]
  12. YamamotoT. IwamotoY. SchneiderR. BulloughP.G. Histopathological prevalence of subchondral insufficiency fracture of the femoral head.Ann. Rheum. Dis.200867215015310.1136/ard.2006.06687817526549
    [Google Scholar]
  13. MiyanishiK. HaraT. KaminomachiS. MaedaH. WatanabeH. TorisuT. Contrast-enhanced MR imaging of subchondral insufficiency fracture of the femoral head: A preliminary comparison with that of osteonecrosis of the femoral head.Arch. Orthop. Trauma Surg.2009129558358910.1007/s00402‑008‑0642‑618542974
    [Google Scholar]
  14. PapeD. SeilR. FritschE. RuppS. KohnD. Prevalence of spontaneous osteonecrosis of the medial femoral condyle in elderly patients.Knee Surg. Sports Traumatol. Arthrosc.200210423324010.1007/s00167‑002‑0285‑z12172718
    [Google Scholar]
  15. RobertsonD.D. ArmfieldD.R. TowersJ.D. IrrgangJ.J. MaloneyW.J. HarnerC.D. Meniscal root injury and spontaneous osteonecrosis of the knee.J. Bone Joint Surg. Br.200991-B219019510.1302/0301‑620X.91B2.2109719190052
    [Google Scholar]
  16. YamagamiR. TaketomiS. InuiH. TaharaK. TanakaS. The role of medial meniscus posterior root tear and proximal tibial morphology in the development of spontaneous osteonecrosis and osteoarthritis of the knee.Knee201724239039510.1016/j.knee.2016.12.00428169099
    [Google Scholar]
  17. RamnathR.R. KattapuramS. MR appearance of SONK-like subchondral abnormalities in the adult knee: SONK redefined.Skeletal Radiol.2004331057558110.1007/s00256‑004‑0777‑715249985
    [Google Scholar]
  18. LotkeP.A. EckerM.L. Osteonecrosis of the knee.J. Bone Joint Surg. Am.198870347047310.2106/00004623‑198870030‑000273279040
    [Google Scholar]
  19. YasudaT. OtaS. FujitaS. OnishiE. IwakiK. YamamotoH. Association between medial meniscus extrusion and spontaneous osteonecrosis of the knee.Int. J. Rheum. Dis.201821122104211110.1111/1756‑185X.1307428378451
    [Google Scholar]
  20. VianaS.L. MachadoB.B. MendlovitzP.S. MRI of subchondral fractures: A review.Skeletal Radiol.201443111515152710.1007/s00256‑014‑1946‑y25001872
    [Google Scholar]
  21. WilmotA.S. RuutiainenA.T. BakhruP.T. SchweitzerM.E. ShabshinN. Subchondral insufficiency fracture of the knee: A recognizable associated soft tissue edema pattern and a similar distribution among men and women.Eur. J. Radiol.201685112096210310.1016/j.ejrad.2016.08.01627776664
    [Google Scholar]
  22. SungJ.H. HaJ.K. LeeD.W. SeoW.Y. KimJ.G. Meniscal extrusion and spontaneous osteonecrosis with root tear of medial meniscus: Comparison with horizontal tear.Arthroscopy201329472673210.1016/j.arthro.2012.11.01623395469
    [Google Scholar]
  23. SayyidS. YounanY. SharmaG. SingerA. MorrisonW. ZogaA. GonzalezF.M. Subchondral insufficiency fracture of the knee: Grading, risk factors, and outcome.Skeletal Radiol.201948121961197410.1007/s00256‑019‑03245‑631250037
    [Google Scholar]
  24. LiuX. ZhuB. LiuX. LiuZ. DangG. Circumferential decompression via the posterior approach for the surgical treatment of multilevel thoracic ossification of the posterior longitudinal ligaments: A single institution comparative study.Chin. Med. J.2014127193371337725269897
    [Google Scholar]
  25. NormanA. BakerN.D. Spontaneous osteonecrosis of the knee and medial meniscal tears.Radiology1978129365365610.1148/129.3.653581522
    [Google Scholar]
  26. FeldsteinA. ElmerP.J. OrwollE. HersonM. HillierT. Bone mineral density measurement and treatment for osteoporosis in older individuals with fractures: a gap in evidence-based practice guideline implementation.Arch. Intern. Med.2003163182165217210.1001/archinte.163.18.216514557214
    [Google Scholar]
  27. RavikantM.V.K. GuptaV. Homogeneous and heterogeneous modeling of patient-specific hip implant under static and dynamic loading condition using finite element analysis.J. Inst. Eng. India Ser. D202310.1007/s40033‑023‑00447‑0
    [Google Scholar]
  28. LotkeP.A. AbendJ.A. EckerM.L. The treatment of osteonecrosis of the medial femoral condyle.Clin. Orthop. Relat. Res.1982171&NA;10911610.1097/00003086‑198211000‑000197140057
    [Google Scholar]
  29. AgliettiP. InsallJ.N. BuzziR. DeschampsG. Idiopathic osteonecrosis of the knee. Aetiology, prognosis and treatment.J. Bone Joint Surg. Br.198365-B558859710.1302/0301‑620X.65B5.66435636643563
    [Google Scholar]
  30. SatkuK. KumarV.P. ChongS.M. ThambyahA. The natural history of spontaneous osteonecrosis of the medial tibial plateau.J. Bone Joint Surg. Br.200385-B798398810.1302/0301‑620X.85B7.1458014516032
    [Google Scholar]
  31. ArtulS. Jabaly-HabibH. ArtoulF. HabibG. The association between Baker’s cyst and medial meniscal tear in patients with symptomatic knee using ultrasonography.Clin. Imaging201539465966110.1016/j.clinimag.2015.03.00325825346
    [Google Scholar]
  32. MartiC.B. RodriguezM. ZanettiM. RomeroJ. Spontaneous osteonecrosis of the medial compartment of the knee: a MRI follow-up after conservative and operative treatment, preliminary results.Knee Surg. Sports Traumatol. Arthrosc.200082838810.1007/s00167005019110795669
    [Google Scholar]
  33. ForstJ. ForstR. HellerK.D. AdamG. Spontaneous osteonecrosis of the femoral condyle: causal treatment by early core decompression.Arch. Orthop. Trauma Surg.19981171-2182210.1007/BF007034339457330
    [Google Scholar]
  34. MontM.A. TomekI.M. HungerfordD.S. Core decompression for avascular necrosis of the distal femur: long term followup.Clin. Orthop. Relat. Res.199733412413010.1097/00003086‑199705000‑000199005904
    [Google Scholar]
  35. Valentí NínJ.R. LeyesM. SchweitzerD. Spontaneous osteonecrosis of the knee.Knee Surg. Sports Traumatol. Arthrosc.199861121510.1007/s0016700500659507464
    [Google Scholar]
  36. GorbachovaT. MelenevskyY. CohenM. CernigliaB.W. Osteochondral lesions of the knee: Differentiating the most common entities at MRI.Radiographics20183851478149510.1148/rg.201818004430118392
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230704092752
Loading
/content/journals/cmir/10.2174/1573405620666230704092752
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test