Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

The study was conducted on patients who received diagnostic X-rays in King Khalid Hospital (KKH), Majmaah.

Introduction

The study included the seven most frequently performed investigations, which were carried out on over 1504 patients using digital radiography equipment.

Methods

The X-ray tube's output and exposure parameters were used to calculate the effective dose (ED) and patient entry surface air kerma (ESAK). Additionally, based on these results, conversion coefficients were determined. This study also examined the 75th percentile distributions of ESAK and KAP. The findings of this research were compared with the findings of other researchers throughout the country and the world. The study presents the uncertainty U values, as well as the mean ESAK, KAP, and ED values.

Results

The results of the ESAK, KAP, and ED values were 0.12-5.74 mGy, 0.9-1.84 Gy cm2, and 0.01-0.23 mSv, respectively. As a result, the dosages were much lower than those previously published for the European DRL, national standards, and other studies.

Conclusion

The study concludes that during dose surveys, the importance of detecting and comprehending radiation doses, as well as the proper technique for taking the finest photos possible, can be emphasized to patients in order to assist them in avoiding radioactive particles and radiation exposure.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405619666230322102011
2024-01-01
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e220323214857.html?itemId=/content/journals/cmir/10.2174/1573405619666230322102011&mimeType=html&fmt=ahah

References

  1. EfthymiouF.O. MetaxasV.I. DimitroukasC.P. PanayiotakisG.S. Low BMI patient dose in digital radiography.Radiat. Prot. Dosimet2020189111210.1093/rpd/ncaa00732043128
    [Google Scholar]
  2. VasileiosI.M. GerasimosA.M. AristeaN.L. TheodoreG.P. GeorgeS.P. Patient doses in common diagnostic x-rays examinations.Radiat. Prot. Dosimet20191841122730289498
    [Google Scholar]
  3. HendeeW.R. O’ConnorM.K. Radiation risks of medical imaging: Separating fact from fantasy.Radiology2012264231232110.1148/radiol.1211267822821690
    [Google Scholar]
  4. AlqahtaniS.J.M. WelbournR. MeakinJ.R. PalfreyR.M. RimesS.J. ThomsonK. KnappK.M. Increased radiation dose and projected radiation-related lifetime cancer risk in patients with obesity due to projection radiography.J. Radiol. Prot.2019391385310.1088/1361‑6498/aaf1dd30569898
    [Google Scholar]
  5. de OliveiraP.M.C. do Carmo SantanaP. de Sousa LacerdaM.A. da SilvaT.A. Radiation levels and image quality in patients undergoing chest X-ray examinations.Radiat. Phys. Chem.201714030530810.1016/j.radphyschem.2016.12.016
    [Google Scholar]
  6. Mc FaddenS. RodingT. de VriesG. BenwellM. BijwaardH. ScheurleerJ. Digital imaging and radiographic practise in diagnostic radiography: An overview of current knowledge and practice in Europe.Radiography201824213714110.1016/j.radi.2017.11.00429605110
    [Google Scholar]
  7. Al-MurshediS. HoggP. EnglandA. Relationship between body habitus and image quality and radiation dose in chest X-ray examinations: A phantom study.Phys. Med.201957657110.1016/j.ejmp.2018.12.00930738533
    [Google Scholar]
  8. AlzyoudK. HoggP. SnaithB. FlinthamK. EnglandA. Impact of body part thickness on AP pelvis radiographic image quality and effective dose.Radiography2019251e11e1710.1016/j.radi.2018.09.00130599841
    [Google Scholar]
  9. TsaiH.Y. YangC.H. HuangK.M. LiM.J. TungC.J. Analyses of patient dose and image quality for chest digital radiography.Radiat. Meas.2010453-672272510.1016/j.radmeas.2010.01.029
    [Google Scholar]
  10. International Electrotechnical CommissionMedical electrical equipment—part 2–44: particular requirements for the safety of X-ray equipment for computed tomography.Geneva, SwitzerlandIEC2002121129
    [Google Scholar]
  11. Guidance on the establishment and use of diagnostic reference levels for medical X-ray examinations. IPEM report no. 88.York, UKIPEM20045669
    [Google Scholar]
  12. WallB.F. Diagnostic reference levels in the X–ray department.Eur. Radiol. Suppl.200414S1667310.1007/s10406‑004‑0010‑8
    [Google Scholar]
  13. McColloughC.H. LengS. YuL. CodyD.D. BooneJ.M. McNitt-GrayM.F. CT dose index and patient dose: They are not the same thing.Radiology2011259231131610.1148/radiol.1110180021502387
    [Google Scholar]
  14. RizzoS. KalraM. SchmidtB. DalalT. SuessC. FlohrT. BlakeM. SainiS. Comparison of angular and combined automatic tube current modulation techniques with constant tube current CT of the abdomen and pelvis.AJR Am. J. Roentgenol.2006186367367910.2214/AJR.04.151316498094
    [Google Scholar]
  15. KalraM.K. MaherM.M. TothT.L. SchmidtB. WestermanB.L. MorganH.T. SainiS. Techniques and applications of automatic tube current modulation for CT.Radiology2004233364965710.1148/radiol.233303115015498896
    [Google Scholar]
  16. TreierR. ArouaA. VerdunF.R. SamaraE. StuessiA. TruebP.R. Patient doses in CT examinations in Switzerland: Implementation of national diagnostic reference levels.Radiat. Prot. Dosimetry20101422-424425410.1093/rpd/ncq27920926508
    [Google Scholar]
  17. SegotaD. DiklicA. JurkovicS. Establishment of local diagnostic reference levels for typical radiography examinations in the west region of Croatia.Nucl. Technol. Radiat. Prot.201934110210610.2298/NTRP180831015S
    [Google Scholar]
  18. NgaileJ.E. MsakiP. KazemaR. Towards establishment of the national reference dose levels from computed tomography examinations in Tanzania.J. Radiol. Prot.200626221322510.1088/0952‑4746/26/2/00616738417
    [Google Scholar]
  19. KalraM.K. MaherM.M. TothT.L. HambergL.M. BlakeM.A. ShepardJ.A. SainiS. Strategies for CT radiation dose optimization.Radiology2004230361962810.1148/radiol.230302172614739312
    [Google Scholar]
  20. FribergE.G. WidmarkA. Ryste HaugeI.H. National collection of local diagnostic reference levels in Norway and their role in optimization of X-ray examinations.Osteras, NorwayNorwegian Radiation Protection Authority20096878
    [Google Scholar]
  21. Federal Office for Radiation ProtectionNotice of diagnostic reference levels for radiology and nuclear medicine examinations.Salzgitter, GermanyFederal Office for Radiation Protection2010112126
    [Google Scholar]
  22. KarimM. HashimS. BakarK. MuhammadH. SabarudinA. AngW. BahruddinN. Establishment of multi-slice computed tomography (MSCT) reference level in Johor, Malaysia, 13th South-East Asian Congress of Medical Physics 2015 (SEACOMP).J. Phys. Conf. Ser.2016694124129
    [Google Scholar]
  23. UNSCEAR 2010 Report of the United Nations Scientific Committee on the Effects of Atomic Radiation United Nations Assem. New York.20116581
    [Google Scholar]
  24. ColesD.R. SmailM.A. NegusI.S. WildeP. OberhoffM. KarschK.R. BaumbachA. Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography.J. Am. Coll. Cardiol.20064791840184510.1016/j.jacc.2005.11.07816682310
    [Google Scholar]
  25. QurashiA. RainfordL. FoleyS. Establishment of diagnostic reference levels for CT trunk examinations in the western region of Saudi Arabia.Radiat Prot Dosimetry2015167456975
    [Google Scholar]
  26. FoleyS.J. McEnteeM.F. RainfordL.A. Establishment of CT diagnostic reference levels in Ireland.Br. J. Radiol.20128510181390139710.1259/bjr/1583954922595497
    [Google Scholar]
  27. ShrimptonP.C. HillierM.C. LewisM.A. DunnM. National survey of doses from CT in the UK: 2003.Br. J. Radiol.20067994896898010.1259/bjr/9327743417213302
    [Google Scholar]
  28. ZarbF. RainfordL. McEnteeM.F. AP diameter shows the strongest correlation with CTDI and DLP in abdominal and chest CT.Radiat. Prot. Dosimetry2010140326627310.1093/rpd/ncq11520332128
    [Google Scholar]
  29. van der MolenA.J. SchilhamA. StoopP. ProkopM. GeleijnsJ. A national survey on radiation dose in CT in The Netherlands.Insights Imaging20134338339010.1007/s13244‑013‑0253‑923673455
    [Google Scholar]
  30. ChristeA. HeverhagenJ. OzdobaC. WeisstannerC. UlzheimerS. EbnerL. CT dose and image quality in the last three scanner generations.World J. Radiol.201351142142910.4329/wjr.v5.i11.42124349646
    [Google Scholar]
  31. RubinG.D. DakeM.D. NapelS.A. McDonnellC.H. JeffreyR.B.Jr Three-dimensional spiral CT angiography of the abdomen: Initial clinical experience.Radiology1993186114715210.1148/radiology.186.1.84165568416556
    [Google Scholar]
  32. MillerJ.M. RochitteC.E. DeweyM. Arbab-ZadehA. NiinumaH. GottliebI. PaulN. ClouseM.E. ShapiroE.P. HoeJ. LardoA.C. BushD.E. de RoosA. CoxC. BrinkerJ. LimaJ.A.C. Diagnostic performance of coronary angiography by 64-row CT.N. Engl. J. Med.2008359222324233610.1056/NEJMoa080657619038879
    [Google Scholar]
  33. BiesbroekJ.M. NiestenJ.M. DankbaarJ.W. BiesselsG.J. VelthuisB.K. ReitsmaJ.B. van der SchaafI.C. Diagnostic accuracy of CT perfusion imaging for detecting acute ischemic stroke: A systematic review and meta-analysis.Cerebrovasc. Dis.201335649350110.1159/00035020023736122
    [Google Scholar]
  34. RuzsicsB. LeeH. PowersE.R. FlohrT.G. CostelloP. SchoepfU.J. Images in cardiovascular medicine. Myocardial ischemia diagnosed by dual-energy computed tomography: Correlation with single-photon emission computed tomography.Circulation200811791244124510.1161/CIRCULATIONAHA.107.74571118316501
    [Google Scholar]
  35. SmithR.C. VergaM. McCarthyS. RosenfieldA.T. Diagnosis of acute flank pain: Value of unenhanced helical CT.AJR Am. J. Roentgenol.199616619710110.2214/ajr.166.1.85719158571915
    [Google Scholar]
  36. BushbergT. SeibertA. LeidholdtM. The Essential Physics of Medical Imaging.2nd edPhiladelphia, USALippincott William and Wilkins2003102123
    [Google Scholar]
  37. DowdS. TilsonR. Practical Radiation Protection and Applied Radiobiology.2nd edPennsylvaniaSunders Company2009122132
    [Google Scholar]
  38. EdwardJ. FawzyE. KaczynskiJ. A comparative study of radiation dose and screening time between mini C-arm and standard fluoroscopy in elective foot and ankle surgery.Foot Ankle Surg.201010514421276563
    [Google Scholar]
  39. CompagnoneG. BaleniM.C. PaganL. CalzolaioF.L. BarozziL. BergaminiC. Comparison of radiation doses to patients undergoing standard radiographic examinations with conventional screen–film radiography, computed radiography and direct digital radiography.Br. J. Radiol.20067994789990410.1259/bjr/5713858317065288
    [Google Scholar]
  40. HartD. HillierM. WallB. Dose to patients from medical x-ray /examinations in the UK-1995 review, NRPB-R289, London: HMSO. Henner Anja, Radiographer students learning dose management of the patientsProceedings of Third European IRPA Congress20101418
    [Google Scholar]
  41. HenshawP. HawkinsJ. Incidence of leukemia in physicians.J Natl Cancer Inst Helsinki, Finland.20104339346
    [Google Scholar]
  42. HerrmannK. BonélH. StäblerA. KulinnaC. GlaserC. HolzknechtN. GeigerB. SchätzlM. ReiserM. Chest imaging with flat-panel detector at low and standard doses: Comparison with storage phosphor technology in normal patients.Eur. Radiol.200212238539010.1007/s00330‑001‑1166‑411870439
    [Google Scholar]
  43. JonesD.G. StoddartJ. Radiation use in the orthopaedic theatre: A prospective audit.ANZ J. Surg.1998681178278410.1111/j.1445‑2197.1998.tb04676.x9814741
    [Google Scholar]
  44. AbuK. LooganeM. RanaM. A quantitative analysis of ionizing radiation exposure to the hands, thyroid and whole body of orthopaedic registrars At King Edward Viii Hospital during Fluoroscopic Internal Fixation of The Lower Limbs.J Al-Aqsa Unv200610 1019
    [Google Scholar]
  45. AbdelhalimM. The formulation of local diagnostic reference levels for several diagnostic X-ray examinations at Security Forces Hospital in Riyadh (A survey for the doses received by patients undergoing diagnostic X-ray at Security Forces Hospital in Riyadh and identifying the factors required for lowering the patient doses).J. Am. Soc. Hortic. Sci.201393643
    [Google Scholar]
  46. AbdelhalimM. Al-AyedM. Assessment of patient doses levels during x-ray diagnostic imaging using TL dosimeters and comparison with local and international levels.Trends Med Res.20083728110.3923/tmr.2008.72.81
    [Google Scholar]
  47. VañoE. MillerL. MartinC. ICRP, Diagnostic reference levels in medical imaging. ICRP Publication 135.Ann. ICRP201746110.1177/014664531771720929065694
    [Google Scholar]
  48. Education and Training in Radiological Protection for Diagnostic and Interventional ProceduresInternational Commission on Radiological Protection (ICRP) Publication2009395
    [Google Scholar]
  49. ICRPAvoidance of Radiation Injuries from Interventional Procedures; International Commission on Radiation Protection, ICRP Publication 85. Annals of the ICRP.OxfordPergman Press20003039
    [Google Scholar]
/content/journals/cmir/10.2174/1573405619666230322102011
Loading
/content/journals/cmir/10.2174/1573405619666230322102011
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Diagnostic; Dosage; Patient; Radiation; Radiation doses; X-rays
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test