Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Human gesture recognition and motion representation have become a vital base of current intelligent human-machine interfaces because of ubiquitous and more comfortable interaction. Human-gesture recognition chiefly deals with recognizing meaningful, expressive body movements involving physical motions of the face, head, arms, fingers, hands, or body. This review article presents a concise overview of optimal human gesture and motion representation of medical images. It surveys various works undertaken on human gesture design and discusses various design methodologies used for image segmentation and gesture recognition. It further provides a general idea of modeling techniques for analyzing hand gesture images and even discusses the diverse techniques involved in motion recognition. This survey provides insight into various efforts and developments made in the gesture/motion recognition domain by analyzing and reviewing the procedures and approaches employed for identifying diverse human motions and gestures for supporting better and devising improved applications in the near future.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230530093026
2024-01-01
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e300523217435.html?itemId=/content/journals/cmir/10.2174/1573405620666230530093026&mimeType=html&fmt=ahah

References

  1. MitraS. AcharyaT. Gesture recognition: A survey.IEEE Trans. Syst. Man Cybern. C200737331132410.1109/TSMCC.2007.893280
    [Google Scholar]
  2. HolzC. WilsonA. Data miming: Inferring spatial object descriptions from human gesture.Proceedings of the SIGCHI Conference on Human Factors in Computing Systems201181182010.1145/1978942.1979060
    [Google Scholar]
  3. PavlovicV.I. SharmaR. HuangT.S. Visual interpretation of hand gestures for human-computer interaction: A review.IEEE Trans. Pattern Anal. Mach. Intell.199719767769510.1109/34.598226
    [Google Scholar]
  4. RabinerL.R. A tutorial on hidden Markov models and selected applications in speech recognition.Proc. IEEE198977225728610.1109/5.18626
    [Google Scholar]
  5. MitraS. AcharyaT. Data mining: multimedia, soft computing, and bioinformatics.John Wiley & Sons2005
    [Google Scholar]
  6. YangD. WangS. LiuH. LiuZ. SunF. Scene modeling and autonomous navigation for robots based on kinect system.Robot201234558158910.3724/SP.J.1218.2012.00581
    [Google Scholar]
  7. ZhangL. ZhangS. JiangF. QiY. ZhangJ. GuoY. ZhouH. BoMW: Bag of manifold words for one-shot learning gesture recognition from kinect.IEEE Trans. Circ. Syst. Video Tech.201828102562257310.1109/TCSVT.2017.2721108
    [Google Scholar]
  8. WangC. LiuZ. ChanS.C. Superpixel-based hand gesture recognition with kinect depth camera.IEEE Trans. Multimed.2015171293910.1109/TMM.2014.2374357
    [Google Scholar]
  9. SinopA.K. GradyL. A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm.In 2007 IEEE 11th international conference on computer vision (2007, October)20071810.1109/ICCV.2007.4408927
    [Google Scholar]
  10. GradyL. Multilabel random walker image segmentation using prior models.In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05)2005176377010.1109/CVPR.2005.239
    [Google Scholar]
  11. CouprieC. GradyL. NajmanL. TalbotH. Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest.In 2009 IEEE 12th international conference on computer vision (2009, September)200973173810.1109/ICCV.2009.5459284
    [Google Scholar]
  12. GulshanV. RotherC. CriminisiA. BlakeA. ZissermanA. Geodesic star convexity for interactive image segmentation.2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition20103129313610.1109/CVPR.2010.5540073
    [Google Scholar]
  13. Zhaojie Ju Honghai Liu A unified fuzzy framework for human-hand motion recognition.IEEE Trans. Fuzzy Syst.201119590191310.1109/TFUZZ.2011.2150756
    [Google Scholar]
  14. XuY. YuG. WangY. WuX. MaY. A hybrid vehicle detection method based on viola-jones and HOG+ SVM from UAV images.Sensors2016168132510.3390/s1608132527548179
    [Google Scholar]
  15. FernandoM. WijayanayakeJ. Novel approach to use HU moments with image processing techniques for real time sign language communication.arXiv2020
    [Google Scholar]
  16. PisharadyP.K. SaerbeckM. Recent methods and databases in vision-based hand gesture recognition: A review.Comput. Vis. Image Underst.201514115216510.1016/j.cviu.2015.08.004
    [Google Scholar]
  17. SapnaV. RituT. Neural network techniques applied on real time human gesture recognition: A Survey paper.International Journal of Exploring Emerging Trends in Engineering201526259270
    [Google Scholar]
  18. SarkarA.R. SanyalG. MajumderS.J.I.J.O.C.A. Hand gesture recognition systems: A survey.Int. J. Comput. Appl.20137115
    [Google Scholar]
  19. ChenL. WangF. DengH. JiK. A survey on hand gesture recognition.2013 International conference on computer sciences and applications201331331610.1109/CSA.2013.79
    [Google Scholar]
  20. YuM. LiG. JiangD. JiangG. ZengF. ZhaoH. ChenD. Application of PSO-RBF neural network in gesture recognition of continuous surface EMG signals.J. Intell. Fuzzy Syst.20203832469248010.3233/JIFS‑179535
    [Google Scholar]
  21. BilalS. AkmeliawatiR. ShafieA.A. SalamiM.J.E. Hidden Markov model for human to computer interaction: A study on human hand gesture recognition.Artif. Intell. Rev.201340449551610.1007/s10462‑011‑9292‑0
    [Google Scholar]
  22. ZengelerN. KopinskiT. HandmannU. Hand gesture recognition in automotive human–machine interaction using depth cameras.Sensors20181915910.3390/s1901005930586882
    [Google Scholar]
  23. SagayamK.M. HemanthD.J. Hand posture and gesture recognition techniques for virtual reality applications: a survey.Virtual Real.20172129110710.1007/s10055‑016‑0301‑0
    [Google Scholar]
  24. RautarayS.S. AgrawalA. Vision based hand gesture recognition for human computer interaction: a survey.Artif. Intell. Rev.201543115410.1007/s10462‑012‑9356‑9
    [Google Scholar]
  25. OudahM. Al-NajiA. ChahlJ. Hand gesture recognition based on computer vision: A review of techniques.J. Imag.20206873
    [Google Scholar]
  26. ChakrabortyB.K. SarmaD. BhuyanM.K. MacDormanK.F. Review of constraints on vision‐based gesture recognition for human–computer interaction.IET Comput. Vis.201812131510.1049/iet‑cvi.2017.0052
    [Google Scholar]
  27. ItkarkarR.R. NandiA.V. A survey of 2D and 3D imaging used in hand gesture recognition for human-computer interaction (HCI).2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)201618819310.1109/WIECON‑ECE.2016.8009115
    [Google Scholar]
  28. YasenM. JusohS. A systematic review on hand gesture recognition techniques, challenges and applications.PeerJ Comput. Sci.20195e21810.7717/peerj‑cs.21833816871
    [Google Scholar]
  29. Jaramillo-YánezA. BenalcázarM.E. Mena-MaldonadoE. Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review.Sensors2020209246710.3390/s2009246732349232
    [Google Scholar]
  30. LiuH. WangL. Gesture recognition for human-robot collaboration: A review.Int. J. Ind. Ergon.20186835536710.1016/j.ergon.2017.02.004
    [Google Scholar]
  31. ElboushakiA. HannaneR. AfdelK. KouttiL. MultiD-CNN: A multi-dimensional feature learning approach based on deep convolutional networks for gesture recognition in RGB-D image sequences.Expert Syst. Appl.202013911282910.1016/j.eswa.2019.112829
    [Google Scholar]
  32. ChungE.A. BenalcázarM.E. Real-time hand gesture recognition model using deep learning techniques and EMG signals.In 2019 27th European Signal Processing Conference (EUSIPCO)20191510.23919/EUSIPCO.2019.8903136
    [Google Scholar]
  33. IbraheemN.A. KhanR.Z. Vision based gesture recognition using neural networks approaches: a review.Int. J. Hum. Comput. Interact.201231114
    [Google Scholar]
  34. WuD. PigouL. KindermansP.J. LeN.D.H. ShaoL. DambreJ. OdobezJ.M. Deep dynamic neural networks for multimodal gesture segmentation and recognition.IEEE Trans. Pattern Anal. Mach. Intell.20163881583159710.1109/TPAMI.2016.253734026955020
    [Google Scholar]
  35. MunasingheM.I.N.P. Dynamic hand gesture recognition using computer vision and neural networks.In 2018 3rd International Conference for Convergence in Technology (I2CT)20181510.1109/I2CT.2018.8529335
    [Google Scholar]
  36. ChenF.S. FuC.M. HuangC.L. Hand gesture recognition using a real-time tracking method and hidden Markov models.Image Vis. Comput.200321874575810.1016/S0262‑8856(03)00070‑2
    [Google Scholar]
  37. AhujaM.K. SinghA. Static vision based Hand Gesture recognition using principal component analysis.2015 IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE)201510.1109/MITE.2015.7375353
    [Google Scholar]
  38. JalabH.A. OmerH.K. Human computer interface using hand gesture recognition based on neural network.2015 5th National Symposium on Information Technology: Towards New Smart World (NSITNSW)2015
    [Google Scholar]
  39. ShuklaJ. DwivediA. A method for hand gesture recognition.2014 Fourth International Conference on Communication Systems and Network Technologies201491992310.1109/CSNT.2014.189
    [Google Scholar]
  40. ChaoF. SunY. WangZ. YaoG. ZhuZ. ZhouC. A reduced classifier ensemble approach to human gesture classification for robotic Chinese handwriting.2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)20141720172710.1109/FUZZ‑IEEE.2014.6891656
    [Google Scholar]
  41. KarnN.K. JiangF. Improved GLOH approach for one-shot learning human gesture recognition.Chinese Conference on Biometric Recognition201644145210.1007/978‑3‑319‑46654‑5_49
    [Google Scholar]
  42. ChaudharyA. RahejaJ.L. DasK. RahejaS. Intelligent approaches to interact with machines using hand gesture recognition in natural way: a survey.arXiv2013
    [Google Scholar]
  43. MurthyG.R.S. JadonR.S. A review of vision based hand gestures recognition.International Journal of Information Technology and Knowledge Management200922405410
    [Google Scholar]
  44. Ohn-BarE. TrivediM.M. Hand gesture recognition in real time for automotive interfaces: A multimodal vision-based approach and evaluations.IEEE Trans. Intell. Transp. Syst.20141562368237710.1109/TITS.2014.2337331
    [Google Scholar]
  45. AmeurS. KhalifaA.B. BouhlelM.S. A comprehensive leap motion database for hand gesture recognition.7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)Hammamet, Tunisia201610.1109/SETIT.2016.7939924
    [Google Scholar]
  46. YewaleS.K. BharneP.K. Hand gesture recognition using different algorithms based on artificial neural network.2011 International conference on emerging trends in networks and computer communications (ETNCC)201128729210.1109/ETNCC.2011.6255906
    [Google Scholar]
  47. TruongD.M. DoanH.G. TranT.H. VuH. LeT.L. Robustness analysis of 3D convolutional neural network for human hand gesture recognition.Int. J. Mach. Learn. Comput.20199213514210.18178/ijmlc.2019.9.2.777
    [Google Scholar]
  48. ZhangJ. ShiZ. Deformable deep convolutional generative adversarial network in microwave based hand gesture recognition system.2017 9th International Conference on Wireless Communications and Signal Processing (WCSP)201710.1109/WCSP.2017.8170976
    [Google Scholar]
  49. QiJ. JiangG. LiG. SunY. TaoB. Surface EMG hand gesture recognition system based on PCA and GRNN.Neural Comput. Appl.202032106343635110.1007/s00521‑019‑04142‑8
    [Google Scholar]
  50. CaoZ. XuX. HuB. ZhouM. LiQ. Real-time gesture recognition based on feature recalibration network with multi-scale information.Neurocomputing201934711913010.1016/j.neucom.2019.03.019
    [Google Scholar]
  51. LeeA. ChoY. JinS. KimN. Enhancement of surgical hand gesture recognition using a capsule network for a contactless interface in the operating room.Comput. Methods Programs Biomed.202019010538510.1016/j.cmpb.2020.10538532062090
    [Google Scholar]
  52. vA. RR. A Deep Convolutional Neural Network Approach for Static Hand Gesture Recognition.Procedia Comput. Sci.20201712353236110.1016/j.procs.2020.04.255
    [Google Scholar]
  53. AragaY. ShirabayashiM. KaidaK. HikawaH. Real time gesture recognition system using posture classifier and Jordan recurrent neural network.Neural Networks (IJCNN), The 2012 International Joint Conference201210.1109/IJCNN.2012.6252595
    [Google Scholar]
  54. AlnaimN. AbbodM. AlbarA. Hand gesture recognition using convolutional neural network for people who have experienced a stroke.2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)201910.1109/ISMSIT.2019.8932739
    [Google Scholar]
  55. AzadR. Asadi-AghbolaghiM. KasaeiS. EscaleraS. Dynamic 3D hand gesture recognition by learning weighted depth motion maps.IEEE Trans. Circ. Syst. Video Tech.20192961729174010.1109/TCSVT.2018.2855416
    [Google Scholar]
  56. HasanH. Abdul-KareemS. RETRACTED ARTICLE: Human–computer interaction using vision-based hand gesture recognition systems: A survey.Neural Comput. Appl.201425225126110.1007/s00521‑013‑1481‑0
    [Google Scholar]
  57. ChenD. LiG. SunY. KongJ. JiangG. TangH. JuZ. YuH. LiuH. An interactive image segmentation method in hand gesture recognition.Sensors201717225310.3390/s1702025328134818
    [Google Scholar]
  58. BobićV. TadićP. KvaščevG. Hand gesture recognition using neural network based techniques.2016 13th Symposium on Neural Networks and Applications (NEUREL)201610.1109/NEUREL.2016.7800104
    [Google Scholar]
  59. AlaniA.A. CosmaG. TaherkhaniA. McGinnityT.M. Hand gesture recognition using an adapted convolutional neural network with data augmentation.2018 4th International Conference on Information Management (ICIM)201810.1109/INFOMAN.2018.8392660
    [Google Scholar]
  60. JiaJ. Interactive imaging via hand gesture recognition.2010
    [Google Scholar]
  61. HolteM.B. TranC. TrivediM.M. MoeslundT.B. Human action recognition using multiple views: A comparative perspective on recent developments.Proceedings of the 2011 joint ACM workshop on Human gesture and behavior understanding2011475210.1145/2072572.2072588
    [Google Scholar]
  62. MengZ. ZhangM. GuoC. FanQ. ZhangH. GaoN. ZhangZ. Recent progress in sensing and computing techniques for human activity recognition and motion analysis.Electronics202099135710.3390/electronics9091357
    [Google Scholar]
  63. Asadi-AghbolaghiM. ClapesA. BellantonioM. EscalanteH.J. Ponce-LópezV. BaróX. A survey on deep learning based approaches for action and gesture recognition in image sequences.2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)20171210.1109/FG.2017.150
    [Google Scholar]
  64. LunR. ZhaoW. A survey of applications and human motion recognition with microsoft kinect.Int. J. Pattern Recognit. Artif. Intell.2015295155500810.1142/S0218001415550083
    [Google Scholar]
  65. SongY. DemirdjianD. DavisR. Continuous body and hand gesture recognition for natural human-computer interaction.ACM Trans. Interact. Intell. Syst.201221128[TiiS].10.1145/2133366.2133371
    [Google Scholar]
  66. BuX. Human motion gesture recognition algorithm in video based on convolutional neural features of training images.IEEE Access2020816002516003910.1109/ACCESS.2020.3020141
    [Google Scholar]
  67. ZhouY. GaoZ. Intelligent recognition of medical motion image combining convolutional neural network with Internet of Things.IEEE Access2019714546214547610.1109/ACCESS.2019.2945313
    [Google Scholar]
  68. PatronaF. ChatzitofisA. ZarpalasD. DarasP. Motion analysis: Action detection, recognition and evaluation based on motion capture data.Pattern Recognit.20187661262210.1016/j.patcog.2017.12.007
    [Google Scholar]
  69. RimkusK. BukisA. LipnickasA. SinkevičiusS. 3D human hand motion recognition system.In 2013 6th International Conference on Human System Interactions (HSI)2013180183
    [Google Scholar]
  70. GaoL. ZhangG. YuB. QiaoZ. WangJ. Wearable human motion posture capture and medical health monitoring based on wireless sensor networks.Measurement202016610825210.1016/j.measurement.2020.108252
    [Google Scholar]
  71. TranD.S. HoN.H. YangH.J. BaekE.T. KimS.H. LeeG. Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network.Appl. Sci.202010272210.3390/app10020722
    [Google Scholar]
  72. Pinzón-ArenasJ.O. Jiménez-MorenoR. Herrera-BenavidesJ.E. Convolutional neural network for hand gesture recognition using 8 different emg signals.2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA)20191510.1109/STSIVA.2019.8730272
    [Google Scholar]
  73. WeiW. WongY. DuY. HuY. KankanhalliM. GengW. A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface.Pattern Recognit. Lett.201911913113810.1016/j.patrec.2017.12.005
    [Google Scholar]
  74. MaY. LiuY. JinR. YuanX. SekhaR. WilsonS. VaidyanathanR. Hand gesture recognition with convolutional neural networks for the multimodal UAV control.2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)201719820310.1109/RED‑UAS.2017.8101666
    [Google Scholar]
  75. SiddiquiN. ChanR.H. A wearable hand gesture recognition device based on acoustic measurements at wrist.2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)201710.1109/EMBC.2017.8037842
    [Google Scholar]
  76. SombandithV. WalairachtA. WalairachtS. Hand gesture recognition for Lao alphabet sign language using HOG and correlation.14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)201710.1109/ECTICon.2017.8096321
    [Google Scholar]
  77. BarrosP. ParisiG.I. JirakD. WermterS. Real-time gesture recognition using a humanoid robot with a deep neural architecture.2014 IEEE-RAS International Conference on Humanoid Robots201464665110.1109/HUMANOIDS.2014.7041431
    [Google Scholar]
  78. MotocheC. BenalcázarM.E. Real-time hand gesture recognition based on electromyographic signals and artificial neural networks.International Conference on Artificial Neural Networks201835236110.1007/978‑3‑030‑01418‑6_35
    [Google Scholar]
  79. NagarajanS. SubashiniT.S. Static hand gesture recognition for sign language alphabets using edge oriented histogram and multi class SVM.Int. J. Comput. Appl.201382410.5120/14106‑2145
    [Google Scholar]
  80. GhotkarA.S. KharateG.K. Vision based real time hand gesture recognition techniques for human computer interaction.Int. J. Comput. Appl.201370161810.5120/12148‑8103
    [Google Scholar]
  81. TamS. BoukadoumM. Campeau-LecoursA. GosselinB. A fully embedded adaptive real-time hand gesture classifier leveraging HD-sEMG and deep learning.IEEE Trans. Biomed. Circuits Syst.202014223224310.1109/TBCAS.2019.295564131765319
    [Google Scholar]
  82. LupinettiK. RanieriA. GianniniF. MontiM. 3D dynamic hand gestures recognition using the Leap Motion sensor and convolutional neural networks.International Conference on Augmented Reality, Virtual Reality and Computer Graphics202042043910.1007/978‑3‑030‑58465‑8_31
    [Google Scholar]
  83. DongJ. XiaZ. YanW. ZhaoQ. Dynamic gesture recognition by directional pulse coupled neural networks for human-robot interaction in real time.J. Vis. Commun. Image Represent.20196310258310.1016/j.jvcir.2019.102583
    [Google Scholar]
  84. DhingraN. KunzA. 2019Res3ATN-deep 3D residual attention network for hand gesture recognition in videos.2019 International Conference on 3D Vision (3DV)49150110.1109/3DV.2019.00061
    [Google Scholar]
  85. OzcanT. BasturkA. Transfer learning-based convolutional neural networks with heuristic optimization for hand gesture recognition.Neural Comput. Appl.201931128955897010.1007/s00521‑019‑04427‑y
    [Google Scholar]
  86. BenalcázarM.E. AnchundiaC.E. ZeaJ.A. ZambranoP. JaramilloA.G. SeguraM. Real-time hand gesture recognition based on artificial feed-forward neural networks and emg.2018 26th European Signal Processing Conference (EUSIPCO)201810.23919/EUSIPCO.2018.8553126
    [Google Scholar]
  87. ChevtchenkoS.F. ValeR.F. MacarioV. CordeiroF.R. A convolutional neural network with feature fusion for real-time hand posture recognition.Appl. Soft Comput.20187374876610.1016/j.asoc.2018.09.010
    [Google Scholar]
  88. SahaS. PalM. KonarA. JanarthananR. Neural network based gesture recognition for elderly health care using kinect sensor.International Conference on Swarm, Evolutionary, and Memetic Computing201337638610.1007/978‑3‑319‑03756‑1_34
    [Google Scholar]
  89. TuY.J. KaoC.C. LinH.Y. Human computer interaction using face and gesture recognition.Human computer interaction using face and gesture recognition201310.1109/APSIPA.2013.6694276
    [Google Scholar]
  90. AvolaD. BernardiM. CinqueL. ForestiG.L. MassaroniC. Exploiting recurrent neural networks and leap motion controller for the recognition of sign language and semaphoric hand gestures.IEEE Trans. Multimed.201921123424510.1109/TMM.2018.2856094
    [Google Scholar]
  91. MishraS.K. SinhaS. SinhaS. BilgaiyanS. Recognition of Hand Gestures and Conversion of Voice for Betterment of Deaf and Mute People.International Conference on Advances in Computing and Data SciencesSingapore2019465710.1007/978‑981‑13‑9942‑8_5
    [Google Scholar]
  92. SmithK.A. CsechC. MurdochD. ShakerG. Gesture recognition using mm-wave sensor for human-car interface.IEEE Sens. Lett.2018221410.1109/LSENS.2018.2810093
    [Google Scholar]
  93. KirishimaT. SatoK. ChiharaK. Real-time gesture recognition by learning and selective control of visual interest points.IEEE Trans. Pattern Anal. Mach. Intell.200527335136410.1109/TPAMI.2005.6115747791
    [Google Scholar]
  94. XingY. Di CaterinaG. SoraghanJ. A new spiking convolutional recurrent neural network (SCRNN) with applications to event-based hand gesture recognition.Front. Neurosci.20201459016410.3389/fnins.2020.59016433324153
    [Google Scholar]
  95. MalassiotisS. StrintzisM.G. Real-time hand posture recognition using range data.Image Vis. Comput.20082671027103710.1016/j.imavis.2007.11.007
    [Google Scholar]
  96. PengZ. LiC. Muñoz-FerrerasJ.M. Gómez-GarcíaR. An FMCW radar sensor for human gesture recognition in the presence of multiple targets.2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC)20171310.1109/IMBIOC.2017.7965798
    [Google Scholar]
  97. DekkerB. JacobsS. KossenA.S. KruithofM.C. HuizingA.G. GeurtsM. Gesture recognition with a low power FMCW radar and a deep convolutional neural network.2017 European Radar Conference (EURAD)201716316610.23919/EURAD.2017.8249172
    [Google Scholar]
  98. JibuS. OsaA. MiikeH. Visualizing characteristics of human gesture-Proposal of a ‘ movement-print ’.Art2003Preprint
    [Google Scholar]
  99. ShenX. KimH. SatoruK. MarkmanA. JavidiB. Spatial-temporal human gesture recognition under degraded conditions using three-dimensional integral imaging.Opt. Express20182611139381395110.1364/OE.26.01393829877439
    [Google Scholar]
  100. SimonyanKaren Two-stream convolutional networks for action recognition in videos.arXiv2014
    [Google Scholar]
  101. MaRui Human motion gesture recognition based on computer vision. Cognitive Computing Solutions for Complexity Problems in Computational Social Systems20212021
    [Google Scholar]
  102. DebajitS BhuyanM.K Methods, databases and recent advancement of vision-based hand gesture recognition for HCI systems: A review.SN Computer Science20212436
    [Google Scholar]
  103. BakheetS Al-HamadiA Robust hand gesture recognition using multiple shape-oriented visual cues.EURASIP Journal on Image and Video Processing20212021
    [Google Scholar]
  104. MushtaqS NadeemA ZahraS Hand Gesture Recognition: A Review.International Journal Of Scientific & Technology Research2021105
    [Google Scholar]
  105. Pansare1J AocharG SalviT BraganzaJ TiwariA KesharkarD Effective computer vision techniques for real-time hand gesture recognition and detection.International Research Journal of Engineering and Technology (IRJET)202184
    [Google Scholar]
  106. BuluguI Real-time complex hand gestures recognition based on multidimensional features.Tanzania Journal of Engineering and Technology20214024557
    [Google Scholar]
  107. BruckerBirgit de KoningBjörn The influence of gestures and visuospatial ability during learning about movements with dynamic visualizations.Computers in Human Behavior2021129107151
    [Google Scholar]
  108. LazarouMichalis LiBo A novel shape matching descriptor for real-time static hand gesture recognition.Computer Vision and Image Understanding2021210103241
    [Google Scholar]
  109. OvurSalih Ertug ZhouXuanyi A novel autonomous learning framework to enhance sEMG-based hand gesture recognition using depth information.Biomedical Signal Processing and Control2021662102444
    [Google Scholar]
  110. CaputoA. SHREC 2021: Skeleton-based hand gesture recognition in the wild.Computers & Graphics202199201211
    [Google Scholar]
  111. KhohWee How YingHan Pang ShihYin Ooi On In-air hand gesture signature using transfer learning and its forgery attackApplied Soft Computing202111310803310.1016/j.asoc.2021.108033
    [Google Scholar]
  112. WangLeran The effectiveness of zoom touchscreen gestures for authentication and identification and its changes over time.Computers & Security2021111102462
    [Google Scholar]
  113. TanY.R. LimK.M. LeeC.P. Hand gesture recognition via enhanced densely connected convolutional neural network.Expert Systems with Applications2021175114797
    [Google Scholar]
  114. JessicaR. DebraC. RalphC. Frequency of gesture use and language in typically developing prelinguistic children.Infant Behav Dev.202162101527
    [Google Scholar]
  115. EliseC. The interaction of fine motor, gesture, and structural language skills: The case of autism spectrum disorder.Res Autism Spectr Disord.202186101824
    [Google Scholar]
  116. MarlenaR. Developing future wearable interfaces for human-drone teams through a virtual drone search game.International Journal of Human-Computer Studies2021147102573
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230530093026
Loading
/content/journals/cmir/10.2174/1573405620666230530093026
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test