Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Standard multidetector computed tomography (MDCT) uses a single X-ray tube to emit a mixed energy X-ray beam, which is received by a single detector. The difference is that dual-energy CT (DECT), a new equipment in recent years, employs a single X-ray tube or two X-ray tubes to emit two single-energy X-ray beams, which are received by a single or two detectors. The application of dual-energy technology to portal venography has become one of the research hotspots. This paper will elaborate on the clinical application values of DECT portal venography in improving portal vein image quality, distinguishing the nature of portal vein thrombus, reducing contrast agent dose and radiation dose, and will discuss the possibility of its movement from research to routine practice and future development opportunities.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056248152231205045231
2024-02-20
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/e15734056248152.html?itemId=/content/journals/cmir/10.2174/0115734056248152231205045231&mimeType=html&fmt=ahah

References

  1. GaddamD.S. DattwylerM. FleiterT.R. BodanapallyU.K. Principles and applications of dual energy computed tomography in neuroradiology.Semin. Ultrasound CT MR202142541843310.1053/j.sult.2021.07.00134537112
    [Google Scholar]
  2. MangesiusS. JanjicT. SteigerR. HaiderL. RehwaldR. KnoflachM. WidmannG. GizewskiE. GramsA. Dual-energy computed tomography in acute ischemic stroke: State-of-the-art.Eur. Radiol.20213164138414710.1007/s00330‑020‑07543‑933319330
    [Google Scholar]
  3. TarkowskiP. Czekajska-ChehabE. Dual-energy heart CT: Beyond better angiography-review.J. Clin. Med.20211021519310.3390/jcm1021519334768713
    [Google Scholar]
  4. FuchsT.A. StehliJ. FiechterM. DougoudS. GebhardC. GhadriJ.R. HusmannL. GaemperliO. KaufmannP.A. First experience with monochromatic coronary computed tomography angiography from a 64-slice CT scanner with Gemstone Spectral Imaging (GSI).J. Cardiovasc. Comput. Tomogr.201371253110.1016/j.jcct.2013.01.00423452997
    [Google Scholar]
  5. RajiahP. AbbaraS. HalliburtonS.S. Spectral detector CT for cardiovascular applications.Diagn. Interv. Radiol.201723318719310.5152/dir.2016.1625528302592
    [Google Scholar]
  6. MegibowA.J. KambadakoneA. AnanthakrishnanL. Dual-energy computed tomography.Radiol. Clin. North Am.201856450752010.1016/j.rcl.2018.03.00129936944
    [Google Scholar]
  7. XinL. YangX. HuangN. DuX. ZhangJ. WangY. HouL. GaoJ. The initial experience of the upper abdominal CT angiography using low-concentration contrast medium on dual energy spectral CT.Abdom. Imaging20154072894289910.1007/s00261‑015‑0462‑426036793
    [Google Scholar]
  8. YinX.P. GaoB.L. LiC.Y. ZhouH. ZhaoL. ZhengY.T. ZhaoY.X. Optimal monochromatic imaging of spectral computed tomography potentially improves the quality of hepatic vascular imaging.Korean J. Radiol.201819457858410.3348/kjr.2018.19.4.57829962864
    [Google Scholar]
  9. ZhaoL. HeW. LiJ. ChenJ. WangK. TanL. Improving image quality in portal venography with spectral CT imaging.Eur. J. Radiol.20128181677168110.1016/j.ejrad.2011.02.06321444170
    [Google Scholar]
  10. ZhaoY. WuY. ZuoZ. SuoH. ZhaoS. HanJ. ChangX. ChengS. Application of low concentration contrast medium in spectral CT imaging for CT portal venography.J. XRay Sci. Technol.201725113514310.3233/XST‑1618827768006
    [Google Scholar]
  11. HuD. YuT. DuanX. PengY. ZhaiR. Determination of the optimal energy level in spectral CT imaging for displaying abdominal vessels in pediatric patients.Eur. J. Radiol.201483358959410.1016/j.ejrad.2013.10.01624238938
    [Google Scholar]
  12. ZhouY.Y. LinY.L. Study on the improvement of portal vein imaging quality with different keV values of dual-source CT virtual single-energy imaging technology.Modern Med. Imagel.2022312199203
    [Google Scholar]
  13. HuB ChenJJ XuWJ Evaluation of portal vein image quality based on improved virtual single-energy imaging reconstruction algorithm of dual-energy CT.J Capital Med Univ20194069437
    [Google Scholar]
  14. WilleminkM.J. NoëlP.B. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence.Eur. Radiol.20192952185219510.1007/s00330‑018‑5810‑730377791
    [Google Scholar]
  15. RampadoO. BossiL. GarabelloD. DaviniO. RopoloR. Characterization of a computed tomography iterative reconstruction algorithm by image quality evaluations with an anthropomorphic phantom.Eur. J. Radiol.201281113172317710.1016/j.ejrad.2012.06.01722817847
    [Google Scholar]
  16. ZhaoL. WinklhoferS. YangZ. WangK. HeW. Optimal adaptive statistical iterative reconstruction percentage in dual-energy monochromatic CT portal venography.Acad. Radiol.201623333734310.1016/j.acra.2015.11.00426777591
    [Google Scholar]
  17. SuL. ChangL. SunQ. HuL. WuY. GaoJ. Effects of low-dose energy spectrum scanning combined with adaptive statistical iterative reconstruction on the quality of imaging in Budd-Chiari syndrome.PLoS One20181310e020479710.1371/journal.pone.020479730335782
    [Google Scholar]
  18. ZhaoL. WinklhoferS. JiangR. WangX. HeW. Dual Energy CT (DECT) monochromatic imaging: Added value of Adaptive Statistical Iterative Reconstructions (ASIR) in portal venography.PLoS One2016116e015683010.1371/journal.pone.015683027315158
    [Google Scholar]
  19. WangW. HuangJ. WangA. LiY. PengJ. HuX. LiuY. ZhangH. LiX. Dual-energy spectral computed tomography with adaptive statistical iterative reconstruction for improving image quality of portal venography.J. Comput. Assist. Tomogr.201842695495810.1097/RCT.000000000000078530119062
    [Google Scholar]
  20. WangJ.J. ChiX.T. WangW.W. DengK. Analysis of contrast-enhanced spectral chest CT optimal monochromatic imaging combined with ASIR and ASIR-V.Eur. Rev. Med. Pharmacol. Sci.20222661930193810.26355/eurrev_202203_2833935363342
    [Google Scholar]
  21. DabliD. FrandonJ. BelaouniA. AkessoulP. AddalaT. BernyL. BeregiJ.P. GreffierJ. Optimization of image quality and accuracy of low iodine concentration quantification as function of dose level and reconstruction algorithm for abdominal imaging using dual-source CT: A phantom study.Diagn. Interv. Imaging20221031314010.1016/j.diii.2021.08.00434625394
    [Google Scholar]
  22. MarinD. BollD.T. MiletoA. NelsonR.C. State of the art: Dual-energy CT of the abdomen.Radiology2014271232734210.1148/radiol.1413148024761954
    [Google Scholar]
  23. PonzianiF.R. ZoccoM.A. CampanaleC. RinninellaE. TortoraA. Di MaurizioL. BombardieriG. De CristofaroR. De GaetanoA.M. LandolfiR. GasbarriniA. Portal vein thrombosis: Insight into physiopathology, diagnosis, and treatment.World J. Gastroenterol.201016214315510.3748/wjg.v16.i2.14320066733
    [Google Scholar]
  24. QianL.J. ZhuJ. ZhuangZ.G. XiaQ. ChengY.F. LiJ.Y. XuJ.R. Differentiation of neoplastic from bland macroscopic portal vein thrombi using dual-energy spectral CT imaging: A pilot study.Eur. Radiol.201222102178218510.1007/s00330‑012‑2477‑322622347
    [Google Scholar]
  25. WeissJ. SchabelC. OthmanA.E. BierG. NikolaouK. BambergF. BongersM.N. Impact of dual-energy CT post-processing to differentiate venous thrombosis from iodine flux artefacts.Eur. Radiol.201828125076508210.1007/s00330‑018‑5534‑829869173
    [Google Scholar]
  26. ChenJ. ZhuJ. ZhangC. SongY. HuangP. Contrast-enhanced ultrasound for the characterization of portal vein thrombosis vs tumor-in-vein in HCC patients: A systematic review and meta-analysis.Eur. Radiol.20203052871288010.1007/s00330‑019‑06649‑z32020403
    [Google Scholar]
  27. AscentiG SofiaC MazziottiS Dual-energy CT with iodine quantification in distinguishing between bland and neoplastic portal vein thrombosis in patients with hepatocellular carcinoma.Clin Radiol201671993810.1016/j.crad.2016.05.002
    [Google Scholar]
  28. TajimaT. HondaH. TaguchiK. AsayamaY. KuroiwaT. YoshimitsuK. IrieH. AibeH. ShimadaM. MasudaK. Sequential hemodynamic change in hepatocellular carcinoma and dysplastic nodules: CT angiography and pathologic correlation.AJR Am. J. Roentgenol.2002178488589710.2214/ajr.178.4.178088511906868
    [Google Scholar]
  29. AscentiG. SofiaC. SilipigniS. VinciS. PergolizziS. MarinD. MiletoA. MazziottiS. Dual-energy multidetector computed tomography with iodine quantification in the evaluation of portal vein thrombosis: Is it possible to discard the unenhanced phase?Can. Assoc. Radiol. J.201566434835510.1016/j.carj.2015.04.00126277236
    [Google Scholar]
  30. KooimanJ. PashaS.M. ZondagW. SijpkensY.W.J. van der MolenA.J. HuismanM.V. DekkersO.M. Meta-analysis: Serum creatinine changes following contrast enhanced CT imaging.Eur. J. Radiol.201281102554256110.1016/j.ejrad.2011.11.02022177326
    [Google Scholar]
  31. ZhangH.L. ErsoyH. PrinceM.R. Effects of gadopentetate dimeglumine and gadodiamide on serum calcium, magnesium, and creatinine measurements.J. Magn. Reson. Imaging200623338338710.1002/jmri.2051716463306
    [Google Scholar]
  32. HoffmannU. FischerederM. ReilA. FischerM. LinkJ. KrämerB.K. Renal effects of gadopentetate dimeglumine in patients with normal and impaired renal function.Eur. J. Med. Res.2005104149154http://dx.doi.org/15946910
    [Google Scholar]
  33. SamA.D.II MoraschM.D. CollinsJ. SongG. ChenR. PerelesF.S. Safety of gadolinium contrast angiography in patients with chronic renal insufficiency.J. Vasc. Surg.200338231331810.1016/S0741‑5214(03)00315‑X12891113
    [Google Scholar]
  34. StaculF. van der MolenA.J. ReimerP. WebbJ.A.W. ThomsenH.S. MorcosS.K. AlménT. AspelinP. BellinM.F. ClementO. Heinz-PeerG. Contrast induced nephropathy: Updated esur contrast media safety committee guidelines.Eur. Radiol.201121122527254110.1007/s00330‑011‑2225‑021866433
    [Google Scholar]
  35. BehrendtF.F. MahnkenA.H. KeilS. DasM. HohlC. BauerD. SeidenstickerP. JostE. WildbergerJ.E. GüntherR.W. MühlenbruchG. Contrast enhancement in multidetector-row computed tomography (MDCT) of the abdomen: intraindividual comparison of contrast media containing 300 mg versus 370 mg iodine per ml.Eur. Radiol.20081861199120510.1007/s00330‑008‑0861‑918228023
    [Google Scholar]
  36. PaparoF. GarelloI. BacigalupoL. MarzianoA. Galletto PregliascoA. RollandiL. PuppoC. MattioliF. PuntoniM. RollandiG.A. CT of the abdomen: Degree and quality of enhancement obtained with two concentrations of the same iodinated contrast medium with fixed iodine delivery rate and total iodine load.Eur. J. Radiol.201483111995200010.1016/j.ejrad.2014.07.01025174776
    [Google Scholar]
  37. FleischmannD. Use of high concentration contrast media: Principles and rationale-vascular district.Euro. J. Radiol200345S88S9310.1016/S0720‑048X(02)00365‑0
    [Google Scholar]
  38. LiuY LiuA LiuL Feasibility of spectral imaging with low-concentration contrast medium in abdominal CT angiography of obese patients.Int J Clin Pract201670S 9B374310.1111/ijcp.12856
    [Google Scholar]
  39. HeJ. WangQ. MaX. SunZ. Dual-energy CT angiography of abdomen with routine concentration contrast agent in comparison with conventional single-energy CT with high concentration contrast agent.Eur. J. Radiol.201584222122710.1016/j.ejrad.2014.11.02525487820
    [Google Scholar]
  40. VerburgF.A. ApitzschJ. LensingC. KuhlC.K. PietschH. MottaghyF.M. BehrendtF.F. Body surface area adapted iopromide 300mg/ml versus 370mg/ml contrast medium injection protocol: Influence on quantitative and clinical assessment in combined PET/CT.Eur. J. Radiol.201382122348235210.1016/j.ejrad.2013.09.01324113432
    [Google Scholar]
  41. MaC.L. ChenX.X. LeiY.X. ZhangX.R. JiaY.J. TianX. TianQ. Clinical value of dual-energy spectral imaging with adaptive statistical iterative reconstruction for reducing contrast medium dose in CT portal venography: In comparison with standard 120-kVp imaging protocol.Br. J. Radiol.20168910622015102210.1259/bjr.2015102227031376
    [Google Scholar]
  42. HanD. ChenX. LeiY. MaC. ZhouJ. XiaoY. YuY. Iodine load reduction in dual-energy spectral CT portal venography with low energy images combined with adaptive statistical iterative reconstruction.Br. J. Radiol.20199211002018041410.1259/bjr.2018041430894009
    [Google Scholar]
  43. ZhuZ. ZhaoX. ZhaoY. WangX. ZhouC. Feasibility Study of Using Gemstone Spectral Imaging (GSI) and Adaptive Statistical Iterative Reconstruction (ASIR) for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values.PLoS One2015106e012920110.1371/journal.pone.012920126079259
    [Google Scholar]
  44. LennartzS. Große HokampN. ZäskeC. ZopfsD. BratkeG. GlaunerA. MaintzD. PersigehlT. ChangD.H. HickethierT. Virtual monoenergetic images preserve diagnostic assessability in contrast media reduced abdominal spectral detector CT.Br. J. Radiol.20209311132020034010.1259/bjr.2020034032644824
    [Google Scholar]
  45. LvP. LiuJ. ChaiY. YanX. GaoJ. DongJ. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: Initial experience.Eur. Radiol.201727137438310.1007/s00330‑016‑4349‑827097790
    [Google Scholar]
  46. YoonJ.H. ChangW. LeeE.S. LeeS.M. LeeJ.M. Double low-dose dual-energy liver CT in patients at high-risk of HCC.Invest. Radiol.202055634034810.1097/RLI.000000000000064331917765
    [Google Scholar]
  47. WalgraeveMS PyfferoenL Van De MoorteleK Implementation of patient-tailored contrast volumes based on body surface area and heart rate harmonizes contrast enhancement and reduces contrast load in small patients in portal venous phase abdominal CT.Eur J Radiol201912110863010.1016/j.ejrad.2019.07.031
    [Google Scholar]
  48. UhrigM. SimonsD. KachelrießM. PisanaF. KuchenbeckerS. SchlemmerH.P. Advanced abdominal imaging with dual energy CT is feasible without increasing radiation dose.Cancer Imaging20161611510.1186/s40644‑016‑0073‑527329159
    [Google Scholar]
  49. SchmidtD. SöderbergM. NilssonM. LindvallH. ChristoffersenC. LeanderP. Evaluation of image quality and radiation dose of abdominal dual-energy CT.Acta Radiol.201859784585210.1177/028418511773280628927299
    [Google Scholar]
  50. WortmanJ.R. ShyuJ.Y. DileoJ. UyedaJ.W. SodicksonA.D. Dual-energy CT for routine imaging of the abdomen and pelvis: Radiation dose and image quality.Emerg. Radiol.2020271455010.1007/s10140‑019‑01733‑931673838
    [Google Scholar]
  51. JohnD Does dual-energy abdominal computed tomography increase the radiation dose to patients: A prospective observational study.Pol J Radiol202186e2081610.5114/pjr.2021.105594
    [Google Scholar]
  52. MarcusRP KoernerE AydinRC The evolution of radiation dose over time: Measurement of a patient cohort undergoing whole-body examinations on three computer tomography generations.Eur J Radiol201786636910.1016/j.ejrad.2016.11.002
    [Google Scholar]
  53. FangT. DengW. LawM.W.M. LuoL. ZhengL. GuoY. ChenH. HuangB. Comparison of image quality and radiation exposure between conventional imaging and gemstone spectral imaging in abdominal CT examination.Br. J. Radiol.20189110882017044810.1259/bjr.2017044829762057
    [Google Scholar]
  54. YinX.P. GaoB.L. LiC.Y. ZuoZ.W. XuY.J. WangJ.N. LiuH.J. LiangG.L. Automatic spectral imaging protocol selection combined with iterative reconstruction can enhance image quality and decrease radiation and contrast dosage in abdominal CT angiography.Jpn. J. Radiol.201836534535010.1007/s11604‑018‑0734‑329616398
    [Google Scholar]
  55. HanederS. SiedekF. DoernerJ. PahnG. Grosse HokampN. MaintzD. WybranskiC. Thoracic-abdominal imaging with a novel dual-layer spectral detector CT: intra-individual comparison of image quality and radiation dose with 128-row single-energy acquisition.Acta Radiol.201859121458146510.1177/028418511876261129569933
    [Google Scholar]
  56. DuanX. AnanthakrishnanL. GuildJ.B. XiY. RajiahP. Radiation doses and image quality of abdominal CT scans at different patient sizes using spectral detector CT scanner: A phantom and clinical study.Abdom. Radiol.202045103361336810.1007/s00261‑019‑02247‑131587100
    [Google Scholar]
  57. PetritschB. KosmalaA. GassenmaierT. WengA. VeldhoenS. KunzA. BleyT. Diagnosis of pulmonary artery embolism: Comparison of single-source CT and 3rd generation dual-source CT using a dual-energy protocol regarding image quality and radiation Dose.Röfo Fortschr. Geb. Röntgenstr. Neuen Bildgeb. Verfahr.2017189652753610.1055/s‑0043‑10308928445908
    [Google Scholar]
  58. WichmannJ.L. HuX. EnglerA. KerlJ.M. BeeresM. FrellesenC. LuboldtW. VoglT.J. BauerR.W. LehnertT. Dose levels and image quality of second-generation 128-slice dual-source coronary CT angiography in clinical routine.Radiol. Med.2015120121112112110.1007/s11547‑015‑0546‑925981379
    [Google Scholar]
  59. LengaL. TrappF. AlbrechtM.H. WichmannJ.L. JohnsonA.A. YelI. D’AngeloT. BoozC. VoglT.J. MartinS.S. Single- and dual-energy CT pulmonary angiography using second- and third-generation dual-source CT systems: Comparison of radiation dose and image quality.Eur. Radiol.20192994603461210.1007/s00330‑018‑5982‑130666446
    [Google Scholar]
  60. ZhaoY. WuY. ZuoZ. ChengS. CT angiography of the kidney using routine CT and the latest Gemstone Spectral Imaging combination of different noise indexes: image quality and radiation dose.Radiol. Med.2017122532733610.1007/s11547‑017‑0739‑528197873
    [Google Scholar]
  61. JamaliS. MichouxN. CocheE. DrageanC.A. Virtual unenhanced phase with spectral dual-energy CT: Is it an alternative to conventional true unenhanced phase for abdominal tissues?Diagn. Interv. Imaging2019100950351110.1016/j.diii.2019.04.00731155514
    [Google Scholar]
  62. De CeccoC.N. MuscogiuriG. SchoepfU.J. CarusoD. WichmannJ.L. CannaòP.M. CansteinC. FullerS.R. SniderL. Varga-SzemesA. HardieA.D. Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction.Eur. J. Radiol.20168571257126410.1016/j.ejrad.2016.04.01227235872
    [Google Scholar]
  63. ToepkerM. MoritzT. KraussB. WeberM. EullerG. MangT. WolfF. HeroldC.J. RinglH. Virtual non-contrast in second-generation, dual-energy computed tomography: Reliability of attenuation values.Eur. J. Radiol.2012813e398e40510.1016/j.ejrad.2011.12.01122236702
    [Google Scholar]
  64. SahniV.A. ShinagareA.B. SilvermanS.G. Virtual unenhanced CT images acquired from dual-energy CT urography: Accuracy of attenuation values and variation with contrast material phase.Clin. Radiol.201368326427110.1016/j.crad.2012.08.00422974566
    [Google Scholar]
  65. LehtiL. SöderbergM. HöglundP. NymanU. GottsäterA. WasséliusJ. Reliability of virtual non-contrast computed tomography angiography: Comparing it with the real deal.Acta Radiol. Open201877-810.1177/205846011879011530181911
    [Google Scholar]
  66. De CeccoC.N. DarnellA. MacíasN. AyusoJ.R. RodríguezS. RimolaJ. PagésM. García-CriadoÁ. RengoM. LaghiA. AyusoC. Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: Image quality and liver lesion detection.Invest. Radiol.20134811910.1097/RLI.0b013e31826e790223070097
    [Google Scholar]
  67. PourmortezaA. SymonsR. SandfortV. MallekM. FuldM.K. HendersonG. JonesE.C. MalayeriA.A. FolioL.R. BluemkeD.A. Abdominal imaging with contrast-enhanced photon-counting CT: First human experience.Radiology2016279123924510.1148/radiol.201615260126840654
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056248152231205045231
Loading
/content/journals/cmir/10.2174/0115734056248152231205045231
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test