Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

The development of the discipline of coordination chemistry owes a great deal to the use of Schiff-base metal chelates. Both Schiff base ligands and metal complexes are of interest due to their potential pharmacological effects. Schiff base derivatives have an extensive range of biological effects, including antitumor, antifungal, antibacterial, anticonvulsant, and antiviral properties.

Objective

This study aimed to study the inorganic compound-based metallodrugs that have recently come into existence to provide an effective mechanism for medications that depend on the metal used and its characteristics. An effective platform for diverse pharmacological and therapeutic uses can be found in medicinal complex substances.

Methods

The bi-molar reactions of zirconium tetrachloride with bidentate ligands were carried out in dry THF and were characterized by IR, UV-Visible, NMR and C, H, N, S analysis. The DFT method was used to investigate the molecular stability and bond strengths. Gaussian 09 and MolDock were used to optimise the geometry and to calculate the binding energy of all the complexes, respectively.

Results

The analysis of the data revealed that the Schiff base, which has bivalent ligands (NS), was coordinated to zirconium nitrogen and sulfur atoms. The optimum values for the structural parameters were calculated by density functional theory. Compound 5 showed the highest MolDock Score (-123.47 kcal/ mol) and H-bond interaction with active amino acids.

Conclusion

The spectroscopic result indicates that the zirconium compounds were all non-electrolyte monomers with deformed octahedral structures. Compound 5 was shown to be the most active and effective of the bunch by both Gaussian software calculations and molecular docking study.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/2210299X01666230721153433
2023-01-01
2025-04-18
The full text of this item is not currently available.

References

  1. RaczukE. DmochowskaB. Samaszko-FiertekJ. MadajJ. Different schiff bases—structure, importance and classification.Molecules202227378710.3390/molecules2703078735164049
    [Google Scholar]
  2. MohamedG.G. Synthesis, characterization and biological activity of bis(phenylimine) Schiff base ligands and their metal complexes.Spectrochim. Acta A Mol. Biomol. Spectrosc.200664118819510.1016/j.saa.2005.05.04416574474
    [Google Scholar]
  3. ChandraS. JainD. SharmaA.K. SharmaP. Coordination modes of a schiff base pentadentate derivative of 4-aminoantipyrine with cobalt(II), nickel(II) and copper(II) metal ions: Synthesis, spectroscopic and antimicrobial studies.Molecules200914117419010.3390/molecules1401017419127246
    [Google Scholar]
  4. GolcuA. TumerM. DemirelliH. WheatleyR.A. Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: Synthesis, characterization, properties and biological activity.Inorg. Chim. Acta200535861785179710.1016/j.ica.2004.11.026
    [Google Scholar]
  5. SinhaD. TiwariA.K. SinghS. ShuklaG. MishraP. ChandraH. MishraA.K. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde.Eur. J. Med. Chem.200843116016510.1016/j.ejmech.2007.03.02217532543
    [Google Scholar]
  6. ÜnaleroğluC. TemelliB. HökelekT. Conformational and structural analysis of N-N′-bis (4-methoxybenzylidene) ethylenediamine.J. Mol. Struct.20015701-3919510.1016/S0022‑2860(01)00469‑0
    [Google Scholar]
  7. PatilS. JadhavS.D. ShindeS.K. CES as an efficient natural catalyst for synthesis of schiff bases under solvent-free conditions: An innovative green approach.Org. Chem. Int.201220121510.1155/2012/153159
    [Google Scholar]
  8. SakhareD.T. ChondhekarT.K. ShankarwarS.G. ShankarwarA.G. Synthesis, characterization of some transition metal complexes of bidentate schiff base and their antifungal and antimicrobial studies.Adv. Appl. Sci. Res.201561016
    [Google Scholar]
  9. AlisherK.K. KhamzaT.S. IkbolY.S. Quantum-chemical study of geometric and energy characteristics of some bases of shiff gossipol.Progress in Chemical and Biochemical Research2019211510.33945/SAMI/PCBR.2019.2.15
    [Google Scholar]
  10. AbrahamK.G. LokhandeM.V. BhusareS. Synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 4-{(E)-[(2-chlorophenyl)imino]methyl} benzene-1,2-diamine.Biol. Phy. Sci20112137
    [Google Scholar]
  11. NagajothiA. KiruthikaA. ChitraS. ParameswariK. Synthesis and characterization of tetradentate Co(II) schiff base complexes: Antimicrobial and DNA cleavage studies.Int. J. Res. Pharm. Biomed. Sci.2012317681778
    [Google Scholar]
  12. GuptaY.K. AgarwalS.C. MadnawatS.P. NarainR. Synthesis, characterization and antimicrobial studies of some transition metal complexes of schiff bases.Res. J. Chem. Sci201226871
    [Google Scholar]
  13. AshrafM.A. MahmoodK. WajidA. Synthesis, characterization and biological activity of schiff bases.Int. Proc. Chem. Biol. Environ. Eng.2011101722029966
    [Google Scholar]
  14. PrakashA. AdhikariD. Application of schiff bases and their metal complexes-A Review.Int. J. Chemtech Res.20113891896
    [Google Scholar]
  15. KiranmaiK. PrashanthiY. SubhashiniN.J.P. Shivaraj, Synthesis, charcetrization and biological activity of metal complexes of 3– amino–5- methyl isoxazole schiff bases.J. Chem. Pharm. Res.20102375384
    [Google Scholar]
  16. HarohallyN.V. CheritaC. BhattP. Anu AppaiahK.A. Antiaflatoxigenic and antimicrobial activities of schiff bases of 2-hydroxy-4-methoxybenzaldehyde, cinnamaldehyde, and similar aldehydes.J. Agric. Food Chem.201765408773877810.1021/acs.jafc.7b0257628942637
    [Google Scholar]
  17. SinghH.L. Synthesis, spectral, and 3D molecular modeling of tin (II) and organotin (IV) complexes of biologically active Schiff bases having nitrogen and sulfur donor ligands.Phosphorus Sulfur Silicon Relat. Elem.200918471768177810.1080/10426500802340236
    [Google Scholar]
  18. GałczyńskaK. Drulis-KawaZ. ArabskiM. Antitumor Activity of Pt(II), Ru(III) and Cu(II) Complexes.Molecules20202515349210.3390/molecules2515349232751963
    [Google Scholar]
  19. WuS. WuZ. GeQ. ZhengX. YangZ. Antitumor activity of tridentate pincer and related metal complexes.Org. Biomol. Chem.202119245254527310.1039/D1OB00577D34059868
    [Google Scholar]
  20. ShanmugakalaR. TharmarajP. SheelaC.D. ChidambaranathanN. Transition metal complexes of s-triazine derivative: New class of anticonvulsant, anti-inflammatory, and neuroprotective agents.Med. Chem. Res.201423132934210.1007/s00044‑013‑0634‑0
    [Google Scholar]
  21. AlamM.M. VermaG. MarellaA. ShaquiquzzamanM. AkhtarM. AliM.R. A review exploring biological activities of hydrazones.J. Pharm. Bioallied Sci.201462698010.4103/0975‑7406.12917024741273
    [Google Scholar]
  22. KargesJ. CohenS.M. Metal complexes as antiviral agents for SARS‐CoV‐2.ChemBioChem202122162600260710.1002/cbic.20210018634002456
    [Google Scholar]
  23. ArshadR. BukhariI.H. AnumF. AftabZ. NoreenZ. Synthesis, spectral and biological studies of transition metal complexes of schiff base derived from ofloxacin.Int. J. Adv. Res. Biol. Sci.2016399108
    [Google Scholar]
  24. MalinowskiJ. ZychD. JacewiczD. GawdzikB. DrzeżdżonJ. Application of coordination compounds with transition metal ions in the chemical industry-a review.Int. J. Mol. Sci.20202115544310.3390/ijms2115544332751682
    [Google Scholar]
  25. Ferraz de PaivaR.E. VieiraE.G. Rodrigues da SilvaD. WegermannC.A. Costa FerreiraA.M. Anticancer Compounds Based on Isatin-Derivatives: Strategies to Ameliorate Selectivity and Efficiency.Front. Mol. Biosci.2021762727210.3389/fmolb.2020.62727233614708
    [Google Scholar]
  26. DeshpandeV.G. ShahS. DeshpandeM.M. HabibS.I. KulkarniP.A. Synthesis and antimicrobial evaluation of schiff bases derived from 2-amino-4, 6-dimethyl benzothiazole with 2-hydroxy-naphthalene-1-carb-aldehyde, 3-methyl-thiophene-2-carbaldehyde and their metal complexes.Int. J. Pharm. Chem. Sci20132801807
    [Google Scholar]
  27. WangY. RenH. ZhaoH. Expanding the boundary of biocatalysis: Design and optimization of in vitro tandem catalytic reactions for biochemical production.Crit. Rev. Biochem. Mol. Biol.201853211512910.1080/10409238.2018.143120129411648
    [Google Scholar]
  28. TakayaJ. Catalysis using transition metal complexes featuring main group metal and metalloid compounds as supporting ligands.Chem. Sci. (Camb.)20211261964198110.1039/D0SC04238B34163959
    [Google Scholar]
  29. NovoaN. ManzurC. RoisnelT. KahlalS. SaillardJ.Y. CarrilloD. HamonJ.R. Nickel(II)-based building blocks with schiff base derivatives: Experimental insights and DFT calculations.Molecules20212617531610.3390/molecules2617531634500754
    [Google Scholar]
  30. McDevittD. RosenbergM. Exploiting genomics to discover new antibiotics.Trends Microbiol.200191261161710.1016/S0966‑842X(01)02235‑111728875
    [Google Scholar]
  31. GerdesS.Y. ScholleM.D. D’SouzaM. BernalA. BaevM.V. FarrellM. KurnasovO.V. DaughertyM.D. MseehF. PolanuyerB.M. CampbellJ.W. AnanthaS. ShatalinK.Y. ChowdhuryS.A.K. FonsteinM.Y. OstermanA.L. From genetic footprinting to antimicrobial drug targets: Examples in cofactor biosynthetic pathways.J. Bacteriol.2002184164555457210.1128/JB.184.16.4555‑4572.200212142426
    [Google Scholar]
  32. OstermanA.L. BegleyT.P. A subsystems-based approach to the identification of drug targets in bacterial pathogens.Prog. Drug Res.200764131131170, 133-17010.1007/978‑3‑7643‑7567‑6_617195474
    [Google Scholar]
  33. SorciL. MartynowskiD. RodionovD.A. EyoboY. ZogajX. KloseK.E. NikolaevE.V. MagniG. ZhangH. OstermanA.L. Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis.Proc. Natl. Acad. Sci. USA200910693083308810.1073/pnas.081171810619204287
    [Google Scholar]
  34. JauchR. HummA. HuberR. WahlM.C. Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements.J. Biol. Chem.200528015151311514010.1074/jbc.M41319520015699042
    [Google Scholar]
  35. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. Gaussian032004Available From: https://www.cup.uni-muenchen.de/ch/compchem/gaussian03.html
  36. SharmaA. DhingraN. SinghH.L. KhaturiaS. BhardawajU. New Complexes of organotin (IV) and organosilicon (IV) with 2-{(3, 4-dimethoxybenzylidene) amino}-benzenethiol: Synthesis, spectral, theoretical, antibacterial, docking studies.J. Mol. Struct.2022126113281210.1016/j.molstruc.2022.132812
    [Google Scholar]
  37. VarshneyA.K. VarshneyS. SharmaM. SinghH.L. Spectral Studies Of Some Coordination Compounds Of Tin (II) With Benzothiazolines.Main Group Met. Chem.199821949550010.1515/MGMC.1998.21.9.495
    [Google Scholar]
  38. DhingraN. SinghJ.B. SinghH.L. Synthesis, spectroscopy, and density functional theory of organotin and organosilicon complexes of bioactive ligands containing nitrogen, sulfur donor atoms as antimicrobial agents: in vitro and in silico studies.Dalton Trans.202251228821883110.1039/D2DT01051H35620880
    [Google Scholar]
  39. SinghH.L. Synthesis, spectroscopic, and theoretical studies of tin(II) complexes with biologically active Schiff bases derived from amino acids.Main Group Met. Chem.2016393-4677610.1515/mgmc‑2015‑0039
    [Google Scholar]
  40. BhanukaS. KhaturiaS. ChaharM. SinghH.L. Design, spectroscopic characterization and theoretical studies of organotin (IV) and organosilicon (IV) complexes with schiff base ligands derived from amino acids.Asian J. Chem.202032112821282810.14233/ajchem.2020.22850
    [Google Scholar]
  41. SinghH.L. SinghJ. Synthesis of new zirconium (IV) complexes with amino acid schiff bases: Spectral, molecular modeling, and fluorescence studies.Int. J. Inorg. Chem.2013201311010.1155/2013/847071
    [Google Scholar]
  42. SrivastavaV. SenguptaS.K. TripathiS.C. Coordination compounds of zirconium(lV) with thiosemicarbazones.Synth. React. Inorg. Met.-Org. Chem.198515216317310.1080/00945718508059377
    [Google Scholar]
  43. BorzovD.P. VekslerM.N. (2-diphenylphosphinoethyl) cyclopentadienyl complexes of zirconium(IV): synthesis, crystal structure and dynamic behaviour in solutions.Polyhedron1999172238893901
    [Google Scholar]
  44. SinghH.L. SinghJ.B. BhanukaS. Synthesis and spectral, antibacterial, molecular studies of biologically active organosilicon(IV) complexes.J Associat Arab Uni Basic and Appl Sci20172311910.1016/j.jaubas.2016.05.003
    [Google Scholar]
  45. AkramT. AbbasiM.A. MahmoodA. Barboza de LimaE. PerveenF. AshrafM. AhmadI. Goumri-SaidS. Goumri-SaidS. Synthesis, molecular structure, spectroscopic properties and biological evaluation of 4-substituted-N-(1H-tetrazol-5-yl)benzenesulfonamides: Combined experimental, DFT and docking study.J. Mol. Struct.2019119511913010.1016/j.molstruc.2019.05.065
    [Google Scholar]
/content/journals/cis/10.2174/2210299X01666230721153433
Loading
/content/journals/cis/10.2174/2210299X01666230721153433
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): DFT; Gaussion software; Molecular docking; Schiff base; Spectral; Zirconium (IV) complexes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test