Skip to content
2000
image of The Potential of Phytomolecules in Countering Biofilm Formation and Quorum Sensing

Abstract

The excessive exploitation of antibiotics for the treatment of bacterial illnesses has resulted in the emergence of several strains that are resistant to different drugs. Due to the widespread occurrence of antibiotic resistance and the emergence of bacterial strains that are resistant to various drugs, significant efforts are being made to identify appropriate alternative medicines to combat harmful microorganisms. Given the observed link between biofilm formation and antibiotic resistance, recent efforts have been directed towards a promising strategy that aims to control and prevent biofilm formation. This strategy involves targeting and inhibiting the quorum sensing system, which has been extensively shown to play a central role in biofilm formation. The conventional approach to controlling infectious disorders involves the use of substances that are designed to either kill or inhibit the growth of bacteria. Bacterial resistance to antibiotics poses a significant challenge to public health. This therapeutic target has been extensively explored globally. However, the scientific data on it are not up-to-date, and only recent studies have begun to explore its potential as a target for combating infectious diseases. An important issue with this strategy is the commonly observed emergence of resistance to antimicrobial agents. This paper aimed to present a comprehensive overview of the quorum sensing system in bacteria, focusing on its role in biofilm formation and the development of antibiotic resistance. Additionally, it provides an update on the significance of targeting this system with natural substances for therapeutic purposes.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X355078241230061234
2025-01-09
2025-07-04
The full text of this item is not currently available.

References

  1. McMaster R.W. Morrison C.J. Kobor M.S. Epigenetics: A new model for intracellular parasite–host cell regulation. Trends Parasitol. 2016 32 7 515 521 10.1016/j.pt.2016.04.002 27142564
    [Google Scholar]
  2. Trosko J. Evolution of microbial quorum sensing to human global quorum sensing: An insight into how gap junctional intercellular communication might be linked to the global metabolic disease crisis. Biology 2016 5 2 29 10.3390/biology5020029 27314399
    [Google Scholar]
  3. Bouyahya A. Dakka N. Touys E.A. Abrini J. Bakri Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac. J. Trop. Med. 2017 10 8 729 743 10.1016/j.apjtm.2017.07.021 28942821
    [Google Scholar]
  4. Koh C.L. Sam C.K. Yin W.F. Tan L. Krishnan T. Chong Y. Chan K.G. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 2013 13 5 6217 6228 10.3390/s130506217 23669710
    [Google Scholar]
  5. Sarkar A. Saha R. Saha S. Bhowmik R. Chatterjee A. Paul A. Maji A. Shaharyar M.A. Karmakar S. Sarkar B. Maity T.K. Transesterification, GC-MS profiling, and in vitro antimicrobial potential of oil obtained from seeds of Citrus maxima (Burm.) Merr. Ind. Crops Prod. 2022 189 115764 10.1016/j.indcrop.2022.115764
    [Google Scholar]
  6. Khare T. Anand U. Dey A. Assaraf Y.G. Chen Z.S. Liu Z. Kumar V. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front. Pharmacol. 2021 12 720726 10.3389/fphar.2021.720726 34366872
    [Google Scholar]
  7. Alibi S. Selma B.W. Vivas R.J. Smach M.A. Touati R. Boukadida J. Navas J. Mansour B.H. Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Curr. Res. Transl. Med. 2020 68 2 59 66 10.1016/j.retram.2020.01.001 32192922
    [Google Scholar]
  8. Mohammed M.J. Anand U. Altemimi A.B. Tripathi V. Guo Y. Singh P.A. Phenolic composition, antioxidant capacity and antibacterial activity of white wormwood (Artemisia herba-alba). Plants 2021 10 1 164 10.3390/plants10010164 33467047
    [Google Scholar]
  9. Chamkhi I. Omari E.N. Benali T. Bouyahya A. Quorum sensing and plant-bacteria interaction: Role of quorum sensing in the rhizobacterial community colonization in the rhizosphere. ACS Symposium Series Dhiman SS American Chemical Society Washington, DC 2020 139 153 10.1021/bk‑2020‑1374.ch008
    [Google Scholar]
  10. Patwardhan S.B. Pandit C. Pandit S. Verma D. Lahiri D. Nag M. Ray R.R. Jha P. Prasad R. Illuminating the signalomics of microbial biofilm on plant surfaces. Biocatal. Agric. Biotechnol. 2023 47 102537 10.1016/j.bcab.2022.102537
    [Google Scholar]
  11. Shrestha A. Grimm M. Ojiro I. Krumwiede J. Schikora A. Impact of quorum sensing molecules on plant growth and immune system. Front. Microbiol. 2020 11 1545 10.3389/fmicb.2020.01545 32765447
    [Google Scholar]
  12. Churchill M.E.A. Chen L. Structural basis of acyl-homoserine lactone-dependent signaling. Chem. Rev. 2011 111 1 68 85 10.1021/cr1000817 21125993
    [Google Scholar]
  13. Amara N. Krom B.P. Kaufmann G.F. Meijler M.M. Macromolecular inhibition of quorum sensing: Enzymes, antibodies, and beyond. Chem. Rev. 2011 111 1 195 208 10.1021/cr100101c 21087050
    [Google Scholar]
  14. Okada M. Sato I. Cho S.J. Iwata H. Nishio T. Dubnau D. Sakagami Y. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nat. Chem. Biol. 2005 1 1 23 24 10.1038/nchembio709 16407988
    [Google Scholar]
  15. Lyon G.J. Wright J.S. Muir T.W. Novick R.P. Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry 2002 41 31 10095 10104 10.1021/bi026049u 12146974
    [Google Scholar]
  16. Vadakkan K. Choudhury A.A. Gunasekaran R. Hemapriya J. Vijayanand S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J. Genet. Eng. Biotechnol. 2018 16 2 239 252 10.1016/j.jgeb.2018.07.001 30733731
    [Google Scholar]
  17. Saenz H.L. Augsburger V. Vuong C. Jack R.W. Götz F. Otto M. Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone. Arch. Microbiol. 2000 174 6 452 455 10.1007/s002030000223 11195102
    [Google Scholar]
  18. Li Y.H. Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors 2012 12 3 2519 2538 10.3390/s120302519 22736963
    [Google Scholar]
  19. Slamti L. Lereclus D. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J. Bacteriol. 2005 187 3 1182 1187 10.1128/JB.187.3.1182‑1187.2005 15659693
    [Google Scholar]
  20. Dunny G.M. The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: Cell–cell signalling, gene transfer, complexity and evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007 362 1483 1185 1193 10.1098/rstb.2007.2043 17360276
    [Google Scholar]
  21. Gominet M. Slamti L. Gilois N. Rose M. Lereclus D. Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol. Microbiol. 2001 40 4 963 975 10.1046/j.1365‑2958.2001.02440.x 11401703
    [Google Scholar]
  22. Ma R. Qiu S. Jiang Q. Sun H. Xue T. Cai G. Sun B. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus. Int. J. Med. Microbiol. 2017 307 4-5 257 267 10.1016/j.ijmm.2017.03.003 28416278
    [Google Scholar]
  23. Ni N. Li M. Wang J. Wang B. Inhibitors and antagonists of bacterial quorum sensing. Med. Res. Rev. 2009 29 1 65 124 10.1002/med.20145 18956421
    [Google Scholar]
  24. Zhao X. Yu Z. Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 2020 8 3 425 10.3390/microorganisms8030425 32192182
    [Google Scholar]
  25. Vashistha A. Sharma N. Nanaji Y. Kumar D. Singh G. Barnwal R.P. Yadav A.K. Quorum sensing inhibitors as therapeutics: Bacterial biofilm inhibition. Bioorg. Chem. 2023 136 106551 10.1016/j.bioorg.2023.106551 37094480
    [Google Scholar]
  26. Zhou L. Zhang Y. Ge Y. Zhu X. Pan J. Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Front. Microbiol. 2020 11 589640 10.3389/fmicb.2020.589640 33178172
    [Google Scholar]
  27. Liu L. Zeng X. Zheng J. Zou Y. Qiu S. Dai Y. AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review. Microbiol. Res. 2022 262 127102 10.1016/j.micres.2022.127102 35792523
    [Google Scholar]
  28. Li J. Li J. Meng J. Sun K. Understanding of signaling molecule controlled anammox through regulating C/N ratio. Bioresour. Technol. 2020 315 123863 10.1016/j.biortech.2020.123863 32717518
    [Google Scholar]
  29. Fuqua C. Parsek M.R. Greenberg E.P. Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 2001 35 1 439 468 10.1146/annurev.genet.35.102401.090913 11700290
    [Google Scholar]
  30. Kim J. Park H.D. Chung S. Microfluidic approaches to bacterial biofilm formation. Molecules 2012 17 8 9818 9834 10.3390/molecules17089818 22895027
    [Google Scholar]
  31. Zhang X. Li Y. Yan H. Cai K. Li H. Wu Z. Wu J. Yang X. Jiang H. Wang Q. Qu G. Zhao X. Integrated metabolomic and transcriptomic analyses reveal different metabolite biosynthesis profiles of Juglans mandshurica in shade. Front. Plant Sci. 2022 13 991874 10.3389/fpls.2022.991874 36237500
    [Google Scholar]
  32. Vargas H.G. Hernández S.J. Hernandez S.S. Rodríguez V.A. Saldivar P.R. Iqbal H. Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors 2018 8 2 29 10.3390/bios8020029 29587374
    [Google Scholar]
  33. Li X. Zhang G. Zhu Y. Bi J. Hao H. Hou H. Effect of the luxI/R gene on AHL-signaling molecules and QS regulatory mechanism in Hafnia alvei H4. AMB Express 2019 9 1 197 10.1186/s13568‑019‑0917‑z 31807954
    [Google Scholar]
  34. Waters C.M. Bassler B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005 21 1 319 346 10.1146/annurev.cellbio.21.012704.131001 16212498
    [Google Scholar]
  35. Ghosh R Das A Mallik S Inhibition of quorum sensing in pseudomonas aeruginosa: A review. Ind. J. Pharm. Sci. 2019 81 5 797 806 10.36468/pharmaceutical‑sciences.573
    [Google Scholar]
  36. Thomason M.K. Voichek M. Dar D. Addis V. Fitzgerald D. Gottesman S. Sorek R. Greenberg E.P. A rhlI 5′ UTR-derived sRNA regulates RhlR-dependent quorum sensing in Pseudomonas aeruginosa. MBio 2019 10 5 e02253-19 10.1128/mBio.02253‑19 31594819
    [Google Scholar]
  37. Venturi V. Subramoni S. Daigle S.A. Ahmer B.M.M. Methods to study solo/orphan quorum-sensing receptors. Quorum Sensing. Springer New York, New York. Leoni L. Rampioni G. NY 2018 145 159 10.1007/978‑1‑4939‑7309‑5_12
    [Google Scholar]
  38. Patel H.K. Moreno S.Z.R. Degrassi G. Subramoni S. González J.F. Venturi V. Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. Front. Plant Sci. 2013 4 447 10.3389/fpls.2013.00447 24273546
    [Google Scholar]
  39. Daigle S.A. Dyszel J.L. Gonzalez J.F. Ali M.M. Ahmer B.M.M. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae. Front. Cell. Infect. Microbiol. 2015 5 47 10.3389/fcimb.2015.00047 26075189
    [Google Scholar]
  40. Costerton J.W. Stewart P.S. Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999 284 5418 1318 1322 10.1126/science.284.5418.1318 10334980
    [Google Scholar]
  41. Stoodley H.L. Costerton J.W. Stoodley P. Bacterial biofilms: From the Natural environment to infectious diseases. Nat. Rev. Microbiol. 2004 2 2 95 108 10.1038/nrmicro821 15040259
    [Google Scholar]
  42. Flemming H.C. Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010 8 9 623 633 10.1038/nrmicro2415 20676145
    [Google Scholar]
  43. Bazaka O. Bazaka K. Surface modification of biomaterials for biofilm control. Biomaterials and Medical Device - Associated Infections. Elsevier 2015 103 132 10.1533/9780857097224.2.103
    [Google Scholar]
  44. McCarty S. Woods E. Percival S.L. Biofilms. Biofilms in Infection Prevention and Control. Elsevier 2014 143 163 10.1016/B978‑0‑12‑397043‑5.00009‑8
    [Google Scholar]
  45. Oluwole O.M. Biofilm: Formation and natural products’ approach to control - A review. Afr. J. Infect. Dis. 2022 16 2 59 71 10.21010/Ajid.v16i2S.7 36124328
    [Google Scholar]
  46. Flemming H.C. Hullebusch v.E.D. Neu T.R. Nielsen P.H. Seviour T. Stoodley P. Wingender J. Wuertz S. The biofilm matrix: Multitasking in a shared space. Nat. Rev. Microbiol. 2023 21 2 70 86 10.1038/s41579‑022‑00791‑0 36127518
    [Google Scholar]
  47. Zhang W. Li C. Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications. Front. Microbiol. 2016 6 1535 10.3389/fmicb.2015.01535 26779175
    [Google Scholar]
  48. Stoodley P. Boyle J.D. DeBeer D. Scott L.H.M. Evolving perspectives of biofilm structure. Biofouling 1999 14 1 75 90 10.1080/08927019909378398
    [Google Scholar]
  49. Obando M.C. Serra D.O. Dissecting cell heterogeneities in bacterial biofilms and their implications for antibiotic tolerance. Curr. Opin. Microbiol. 2024 78 102450 10.1016/j.mib.2024.102450 38422558
    [Google Scholar]
  50. Alotaibi G.F. Factors influencing bacterial biofilm formation and development. American J. Biomed. Sci. Res. 2021 12 6 617 626 10.34297/AJBSR.2021.12.001820
    [Google Scholar]
  51. Yu S. Wei Q. Zhao T. Guo Y. Ma L.Z. A survival strategy for Pseudomonas aeruginosa that uses exopolysaccharides to sequester and store iron to stimulate Psl-dependent biofilm formation. Appl. Environ. Microbiol. 2016 82 21 6403 6413 10.1128/AEM.01307‑16 27565622
    [Google Scholar]
  52. Vetrivel A. Ramasamy M. Vetrivel P. Natchimuthu S. Arunachalam S. Kim G-S. Murugesan R. Pseudomonas aeruginosa biofilm formation and its control. Biologics 2021 1 3 312 336 10.3390/biologics1030019
    [Google Scholar]
  53. Hetta H.F. Ramadan Y.N. Rashed Z.I. Alharbi A.A. Alsharef S. Alkindy T.T. Alkhamali A. Albalawi A.S. Battah B. Donadu M.G. Quorum sensing inhibitors: An alternative strategy to win the battle against multidrug-resistant (MDR) bacteria. Molecules 2024 29 15 3466 10.3390/molecules29153466 39124871
    [Google Scholar]
  54. Dincer S. Uslu M.F. Delik A. Antibiotic resistance in biofilm. Bacterial Biofilms. Dincer S. Özdenefe S.M. Arkut A. IntechOpen 2020
    [Google Scholar]
  55. Ivanova K. Fernandes M.M. Francesko A. Mendoza E. Guezguez J. Burnet M. Tzanov T. Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters. ACS Appl. Mater. Interfaces 2015 7 49 27066 27077 10.1021/acsami.5b09489 26593217
    [Google Scholar]
  56. Southern K.W. Clancy J.P. Ranganathan S. Aerosolized agents for airway clearance in cystic fibrosis. Pediatr. Pulmonol. 2019 54 6 858 864 10.1002/ppul.24306 30884217
    [Google Scholar]
  57. Chen Z. Ji H. Liu C. Bing W. Wang Z. Qu X. A multinuclear metal complex based DNase‐mimetic artificial enzyme: Matrix cleavage for combating bacterial biofilms. Angew. Chem. Int. Ed. 2016 55 36 10732 10736 10.1002/anie.201605296 27484616
    [Google Scholar]
  58. Alhede M. Bjarnsholt T. Givskov M. Alhede M. Pseudomonas aeruginosa biofilms. Advances in Applied Microbiology. Elsevier 2014 1 40
    [Google Scholar]
  59. Simões M. Antimicrobial strategies effective against infectious bacterial biofilms. Curr. Med. Chem. 2011 18 14 2129 2145 10.2174/092986711795656216 21517762
    [Google Scholar]
  60. Uruén C. Escuin C.G. Tommassen J. Jaime M.R.C. Arenas J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 2020 10 1 3 10.3390/antibiotics10010003 33374551
    [Google Scholar]
  61. Banerjee T. Sarkar A. Ali S.Z. Bhowmik R. Karmakar S. Halder A.K. Ghosh N. Bioprotective role of phytocompounds against the pathogenesis of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis: Unravelling underlying molecular mechanisms. Planta Med. 2024 90 9 675 707 10.1055/a‑2277‑4805 38458248
    [Google Scholar]
  62. Souza d.E.L. Albuquerque d.T.M.R. Santos d.A.S. Massa N.M.L. de Brito Alves J.L. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities – A review. Crit. Rev. Food Sci. Nutr. 2019 59 10 1645 1659 10.1080/10408398.2018.1425285 29377718
    [Google Scholar]
  63. Rio D.D. Mateos R.A. Spencer J.P.E. Tognolini M. Borges G. Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013 18 14 1818 1892 10.1089/ars.2012.4581 22794138
    [Google Scholar]
  64. Zacchino S.A. Butassi E. Liberto M.D. Raimondi M. Postigo A. Sortino M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine 2017 37 27 48 10.1016/j.phymed.2017.10.018 29174958
    [Google Scholar]
  65. Lima M.C. de Sousa P.C. Prada F.C. Harel J. Dubreuil J.D. Souza d.E.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog. 2019 130 259 270 10.1016/j.micpath.2019.03.025 30917922
    [Google Scholar]
  66. Majdanik M.M. Kępa M. Wojtyczka R.D. Idzik D. Wąsik T.J. Phenolic compounds diminish antibiotic resistance of Staphylococcus Aureus clinical strains. Int. J. Environ. Res. Public Health 2018 15 10 2321 10.3390/ijerph15102321 30360435
    [Google Scholar]
  67. Makarewicz M. Drożdż I. Tarko T. Chodak D.A. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 2021 10 2 188 10.3390/antiox10020188 33525629
    [Google Scholar]
  68. Shahzad M. Millhouse E. Culshaw S. Edwards C.A. Ramage G. Combet E. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct. 2015 6 3 719 729 10.1039/C4FO01087F 25585200
    [Google Scholar]
  69. Liu B. Zhou C. Zhang Z. Roland J.D. Lee B.P. Antimicrobial property of halogenated catechols. Chem. Eng. J. 2021 403 126340 10.1016/j.cej.2020.126340 32848507
    [Google Scholar]
  70. Taguri T. Tanaka T. Kouno I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull. 2006 29 11 2226 2235 10.1248/bpb.29.2226 17077519
    [Google Scholar]
  71. Cueva C. Mingo S. González M.I. Bustos I. Requena T. Campo d.R. Álvarez M.P.J. Bartolomé B. Arribas M.M.V. Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Lett. Appl. Microbiol. 2012 54 6 557 563 10.1111/j.1472‑765X.2012.03248.x 22449241
    [Google Scholar]
  72. Aires A. Marques E. Carvalho R. Rosa E. Saavedra M. Evaluation of biological value and appraisal of polyphenols and glucosinolates from organic baby-leaf salads as antioxidants and antimicrobials against important human pathogenic bacteria. Molecules 2013 18 4 4651 4668 10.3390/molecules18044651 23603948
    [Google Scholar]
  73. Sarjit A. Wang Y. Dykes G.A. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions. Food Microbiol. 2015 46 227 233 10.1016/j.fm.2014.08.002 25475290
    [Google Scholar]
  74. Borges A. Ferreira C. Saavedra M.J. Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013 19 4 256 265 10.1089/mdr.2012.0244 23480526
    [Google Scholar]
  75. Sundaramoorthy N.S. Mitra K. Ganesh J.S. Makala H. Lotha R. Bhanuvalli S.R. Ulaganathan V. Tiru V. Sivasubramanian A. Nagarajan S. Ferulic acid derivative inhibits NorA efflux and in combination with ciprofloxacin curtails growth of MRSA in vitro and in vivo. Microb. Pathog. 2018 124 54 62 10.1016/j.micpath.2018.08.022 30118803
    [Google Scholar]
  76. Nowacka N. Nowak R. Drozd M. Olech M. Los R. Malm A. Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PLoS One 2015 10 10 e0140355 10.1371/journal.pone.0140355 26468946
    [Google Scholar]
  77. Choi J.G. Mun S.H. Chahar H.S. Bharaj P. Kang O.H. Kim S.G. Shin D.W. Kwon D.Y. Methyl gallate from Galla rhois successfully controls clinical isolates of Salmonella infection in both in vitro and in vivo systems. PLoS One 2014 9 7 e102697 10.1371/journal.pone.0102697 25048362
    [Google Scholar]
  78. Madikizela B. Aderogba M.A. Staden V.J. Isolation and characterization of antimicrobial constituents of Searsia chirindensis L. (Anacardiaceae) leaf extracts. J. Ethnopharmacol. 2013 150 2 609 613 10.1016/j.jep.2013.09.016 24060408
    [Google Scholar]
  79. Wang S.S. Wang D.M. Pu W.J. Li D.W. Phytochemical profiles, antioxidant and antimicrobial activities of three Potentilla species. BMC Complement. Altern. Med. 2013 13 1 321 10.1186/1472‑6882‑13‑321 24252124
    [Google Scholar]
  80. Hakim L.K. Yazdanian M. Alam M. Abbasi K. Tebyaniyan H. Tahmasebi E. Khayatan D. Seifalian A. Ranjbar R. Yazdanian A. Biocompatible and biomaterials application in drug delivery system in oral cavity. Evid. Based Complement. Alternat. Med. 2021 2021 1 12 10.1155/2021/9011226 34812267
    [Google Scholar]
  81. Cheng C.T. Castro G. Liu C.H. Lau P. Advanced nanotechnology: An arsenal to enhance immunotherapy in fighting cancer. Clin. Chim. Acta 2019 492 12 19 10.1016/j.cca.2019.01.027 30711524
    [Google Scholar]
  82. Yazdanian M. Rostamzadeh P. Rahbar M. Alam M. Abbasi K. Tahmasebi E. Tebyaniyan H. Ranjbar R. Seifalian A. Yazdanian A. The potential application of green‐synthesized metal nanoparticles in dentistry: A comprehensive review. Bioinorg. Chem. Appl. 2022 2022 1 2311910 10.1155/2022/2311910 35281331
    [Google Scholar]
  83. Yazdanian M. Rostamzadeh P. Alam M. Abbasi K. Tahmasebi E. Tebyaniyan H. Ranjbar R. Seifalian A. Moghaddam M.M. Kahnamoei M.B. Evaluation of antimicrobial and cytotoxic effects of Echinacea and Arctium extracts and Zataria essential oil. AMB Express 2022 12 1 75 10.1186/s13568‑022‑01417‑7 35705727
    [Google Scholar]
  84. Moradi S.Z. Momtaz S. Bayrami Z. Farzaei M.H. Abdollahi M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front. Bioeng. Biotechnol. 2020 8 238 10.3389/fbioe.2020.00238 32318551
    [Google Scholar]
  85. Banerjee T. Sar S. Saha S. Herbal medicines for the treatment of liver cirrhosis. Role of Herbal Medicines. Dhara A.K. Mandal S.C. Springer Nature Singapore, Singapore 2023 185 209 10.1007/978‑981‑99‑7703‑1_10
    [Google Scholar]
  86. Vikram A. Jayaprakasha G.K. Jesudhasan P.R. Pillai S.D. Patil B.S. Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J. Appl. Microbiol. 2010 109 2 515 527 10.1111/j.1365‑2672.2010.04677.x 20163489
    [Google Scholar]
  87. Lee J.H. Park J.H. Cho H.S. Joo S.W. Cho M.H. Lee J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 2013 29 5 491 499 10.1080/08927014.2013.788692 23668380
    [Google Scholar]
  88. Matsunaga T. Nakahara A. Minnatul K.M. Noiri Y. Ebisu S. Kato A. Azakami H. The inhibitory effects of catechins on biofilm formation by the periodontopathogenic bacterium, Eikenella corrodens. Biosci. Biotechnol. Biochem. 2010 74 12 2445 2450 10.1271/bbb.100499 21150103
    [Google Scholar]
  89. Vandeputte O.M. Kiendrebeogo M. Rajaonson S. Diallo B. Mol A. Jaziri E.M. Baucher M. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 2010 76 1 243 253 10.1128/AEM.01059‑09 19854927
    [Google Scholar]
  90. Plyuta V. Zaitseva J. Lobakova E. Zagoskina N. Kuznetsov A. Khmel I. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Acta Pathol. Microbiol. Scand. Suppl. 2013 121 11 1073 1081 10.1111/apm.12083 23594262
    [Google Scholar]
  91. Borges A. Serra S. Abreu C.A. Saavedra M.J. Salgado A. Simões M. Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity. Biofouling 2014 30 2 183 195 10.1080/08927014.2013.852542 24344870
    [Google Scholar]
  92. Huber B. Eberl L. Feucht W. Polster J. Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z. Naturforsch. C J. Biosci. 2003 58 11-12 879 884 10.1515/znc‑2003‑11‑1224 14713169
    [Google Scholar]
  93. Qiu J. Wang D. Xiang H. Feng H. Jiang Y. Xia L. Dong J. Lu J. Yu L. Deng X. Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates. PLoS One 2010 5 3 e9736 10.1371/journal.pone.0009736 20305813
    [Google Scholar]
  94. Upadhyay A. Upadhyaya I. Johny K.A. Venkitanarayanan K. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol. 2013 36 1 79 89 10.1016/j.fm.2013.04.010 23764223
    [Google Scholar]
  95. Kuźma Ł. Różalski M. Walencka E. Różalska B. Wysokińska H. Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 2007 14 1 31 35 10.1016/j.phymed.2005.10.008 17190643
    [Google Scholar]
  96. Walencka E. Rozalska S. Wysokinska H. Rozalski M. Kuzma L. Rozalska B. Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med. 2007 73 6 545 551 10.1055/s‑2007‑967179 17650545
    [Google Scholar]
  97. Cartagena E. Colom O.Á. Neske A. Valdez J.C. Bardón A. Effects of plant lactones on the production of biofilm of Pseudomonas aeruginosa. Chem. Pharm. Bull. 2007 55 1 22 25 10.1248/cpb.55.22 17202695
    [Google Scholar]
  98. Vikram A. Jesudhasan P.R. Jayaprakasha G.K. Pillai S.D. Patil B.S. Citrus limonoids interfere with Vibrio harveyi cell–cell signalling and biofilm formation by modulating the response regulator LuxO. Microbiology 2011 157 1 99 110 10.1099/mic.0.041228‑0 20864476
    [Google Scholar]
  99. Cho H.S. Lee J.H. Ryu S.Y. Joo S.W. Cho M.H. Lee J. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin. J. Agric. Food Chem. 2013 61 29 7120 7126 10.1021/jf4009313 23819562
    [Google Scholar]
  100. Ren D. Zuo R. Barrios G.A.F. Bedzyk L.A. Eldridge G.R. Pasmore M.E. Wood T.K. Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl. Environ. Microbiol. 2005 71 7 4022 4034 10.1128/AEM.71.7.4022‑4034.2005 16000817
    [Google Scholar]
  101. Hu J.F. Garo E. Goering M.G. Pasmore M. Yoo H.D. Esser T. Sestrich J. Cremin P.A. Hough G.W. Perrone P. Lee Y.S.L. Le N.T. Johnson O.M. Costerton J.W. Eldridge G.R. Bacterial biofilm inhibitors from Diospyros dendo. J. Nat. Prod. 2006 69 1 118 120 10.1021/np049600s 16441080
    [Google Scholar]
  102. Noghabi A.S. kargar G.P. Bagherzade G. Beyzaei H. Comparative study of antioxidant and antimicrobial activity of berberine-derived Schiff bases, nitro-berberine and amino-berberine. Heliyon 2023 9 12 e22783 10.1016/j.heliyon.2023.e22783 38058428
    [Google Scholar]
  103. Alharthi S. Popat A. Ziora Z.M. Moyle P.M. Sortase A inhibitor protein nanoparticle formulations demonstrate antibacterial synergy when combined with antimicrobial peptides. Molecules 2023 28 5 2114 10.3390/molecules28052114 36903360
    [Google Scholar]
  104. Xia S. Ma L. Wang G. Yang J. Zhang M. Wang X. Su J. Xie M. In vitro antimicrobial activity and the mechanism of berberine against methicillin-resistant Staphylococcus aureus isolated from bloodstream infection patients. Infect. Drug Resist. 2022 15 1933 1944 10.2147/IDR.S357077 35469308
    [Google Scholar]
  105. Barros C.H.N. Casey E. A review of nanomaterials and technologies for enhancing the antibiofilm activity of natural products and phytochemicals. ACS Appl. Nano Mater. 2020 3 9 8537 8556 10.1021/acsanm.0c01586
    [Google Scholar]
  106. Zhou H. Wang W. Cai L. Yang T. Potentiation and mechanism of berberine as an antibiotic adjuvant against multidrug-resistant bacteria. Infect. Drug Resist. 2023 16 7313 7326 10.2147/IDR.S431256 38023403
    [Google Scholar]
  107. Zhang C. Li Z. Pan Q. Fan L. Pan T. Zhu F. Pan Q. Shan L. Zhao L. Berberine at sub-inhibitory concentration inhibits biofilm dispersal in Staphylococcus aureus. Microbiology 2022 168 9 001243 10.1099/mic.0.001243 36178801
    [Google Scholar]
  108. Gao S. Zhang S. Zhang S. Enhanced in vitro antimicrobial activity of amphotericin B with berberine against dual‐species biofilms of Candida albicans and Staphylococcus aureus. J. Appl. Microbiol. 2021 130 4 1154 1172 10.1111/jam.14872 32996236
    [Google Scholar]
  109. Aksoy C.S. Avci F.G. Ugurel O.M. Atas B. Sayar N.A. Akbulut S.B. Potentiating the activity of berberine for Staphylococcus aureus in a combinatorial treatment with thymol. Microb. Pathog. 2020 149 104542 10.1016/j.micpath.2020.104542 33010366
    [Google Scholar]
  110. Zhou X.Y. Ye X.G. He L.T. Zhang S.R. Wang R.L. Zhou J. He Z.S. In vitro characterization and inhibition of the interaction between ciprofloxacin and berberine against multidrug-resistant Klebsiella pneumonia e. J. Antibiot. 2016 69 10 741 746 10.1038/ja.2016.15 26932407
    [Google Scholar]
  111. Li X. Song Y. Wang L. Kang G. Wang P. Yin H. Huang H. A potential combination therapy of berberine hydrochloride with antibiotics against multidrug-resistant Acinetobacter baumannii. Front. Cell. Infect. Microbiol. 2021 11 660431 10.3389/fcimb.2021.660431 33842399
    [Google Scholar]
  112. Gao W.W. Gopala L. Bheemanaboina R.R.Y. Zhang G.B. Li S. Zhou C.H. Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii. Eur. J. Med. Chem. 2018 146 15 37 10.1016/j.ejmech.2018.01.038 29396362
    [Google Scholar]
  113. Ahmadi F. Khalvati B. Eslami S. The inhibitory effect of thioridazine on adeb efflux pump gene expression in multidrug-resistant acinetobacter baumannii isolates using real time PCR. Avicenna J. Med. Biotechnol. 2022 14 2 132 10.18502/ajmb.v14i2.8884
    [Google Scholar]
  114. Herman A. Herman A.P. Herbal products and their active constituents used alone and in combination with antibiotics against multidrug-resistant bacteria. Planta Med. 2023 89 2 168 182 10.1055/a‑1890‑5559 35995069
    [Google Scholar]
  115. Bandyopadhyay S. Patra P.H. Mahanti A. Mondal D.K. Dandapat P. Bandyopadhyay S. Samanta I. Lodh C. Bera A.K. Bhattacharyya D. Sarkar M. Baruah K.K. Potential antibacterial activity of berberine against multi drug resistant enterovirulent Escherichia coli isolated from yaks (Poephagus grunniens) with haemorrhagic diarrhoea. Asian Pac. J. Trop. Med. 2013 6 4 315 319 10.1016/S1995‑7645(13)60063‑2 23608335
    [Google Scholar]
  116. Mitchell G. Lafrance M. Boulanger S. Séguin D.L. Guay I. Gattuso M. Marsault E. Bouarab K. Malouin F. Tomatidine acts in synergy with aminoglycoside antibiotics against multiresistant Staphylococcus aureus and prevents virulence gene expression. J. Antimicrob. Chemother. 2012 67 3 559 568 10.1093/jac/dkr510 22129590
    [Google Scholar]
  117. Soltani R. Fazeli H. Najafi B.R. Jelokhanian A. Evaluation of the synergistic effect of tomatidine with several antibiotics against standard and clinical isolates of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli. Iran. J. Pharm. Res. 2017 16 1 290 296 10.22037/ijpr.2017.2014 28496482
    [Google Scholar]
  118. Dwivedi G.R. Maurya A. Yadav D.K. Singh V. Khan F. Gupta M.K. Singh M. Darokar M.P. Srivastava S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn. 2019 37 5 1307 1325 10.1080/07391102.2018.1458654 29595093
    [Google Scholar]
  119. Hammer K.A. Carson C.F. Riley T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999 86 6 985 990 10.1046/j.1365‑2672.1999.00780.x 10438227
    [Google Scholar]
  120. Kerekes E.B. Vidács A. Takó M. Petkovits T. Vágvölgyi C. Horváth G. Balázs V.L. Krisch J. Anti-biofilm effect of selected essential oils and main components on mono- and polymicrobic bacterial cultures. Microorganisms 2019 7 9 345 10.3390/microorganisms7090345 31547282
    [Google Scholar]
  121. Sattari M. Bigdeli M. Derakhshan S. Effect of cumin ( Cuminum cyminum ) seed essential oil on biofilm formation and plasmid integrity of Klebsiella pneumoniae. Pharmacogn. Mag. 2010 6 21 57 61 10.4103/0973‑1296.59967 20548937
    [Google Scholar]
  122. Filoche S.K. Soma K. Sissons C.H. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol. 2005 20 4 221 225 10.1111/j.1399‑302X.2005.00216.x 15943766
    [Google Scholar]
  123. Cáceres M. Hidalgo W. Stashenko E. Torres R. Ortiz C. Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics 2020 9 4 147 10.3390/antibiotics9040147 32235590
    [Google Scholar]
  124. Nuryastuti T. van der Mei H.C. Busscher H.J. Iravati S. Aman A.T. Krom B.P. Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Appl. Environ. Microbiol. 2009 75 21 6850 6855 10.1128/AEM.00875‑09 19749058
    [Google Scholar]
  125. Oliveira d.M.M.M. Brugnera D.F. Nascimento d.J.A. Batista N.N. Piccoli R.H. Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces. Eur. Food Res. Technol. 2012 234 5 821 832 10.1007/s00217‑012‑1694‑y
    [Google Scholar]
  126. Filogônio C.F.B. Soares R.V. Horta M.C.R. Penido C.V.S.R. Cruz R.A. Effect of vegetable oil (Brazil nut oil) and mineral oil (liquid petrolatum) on dental biofilm control. Braz. Oral Res. 2011 25 6 556 561 10.1590/S1806‑83242011000600014 22147238
    [Google Scholar]
  127. Szczepanski S. Lipski A. Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Control 2014 36 1 224 229 10.1016/j.foodcont.2013.08.023
    [Google Scholar]
  128. Rosato A. Sblano S. Salvagno L. Carocci A. Clodoveo M.L. Corbo F. Fracchiolla G. Anti-biofilm inhibitory synergistic effects of combinations of essential oils and antibiotics. Antibiotics 2020 9 10 637 10.3390/antibiotics9100637 32987638
    [Google Scholar]
  129. Jakobsen T.H. Gennip v.M. Phipps R.K. Shanmugham M.S. Christensen L.D. Alhede M. Skindersoe M.E. Rasmussen T.B. Friedrich K. Uthe F. Jensen P.Ø. Moser C. Nielsen K.F. Eberl L. Larsen T.O. Tanner D. Høiby N. Bjarnsholt T. Givskov M. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob. Agents Chemother. 2012 56 5 2314 2325 10.1128/AAC.05919‑11 22314537
    [Google Scholar]
  130. Vijayakumar K. Ramanathan T. Musa acuminata and its bioactive metabolite 5-Hydroxymethylfurfural mitigates quorum sensing (las and rhl) mediated biofilm and virulence production of nosocomial pathogen Pseudomonas aeruginosa in vitro. J. Ethnopharmacol. 2020 246 112242 10.1016/j.jep.2019.112242 31533077
    [Google Scholar]
  131. Srinivasan R. Devi K.R. Kannappan A. Pandian S.K. Ravi A.V. Piper betle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro. J. Ethnopharmacol. 2016 193 592 603 10.1016/j.jep.2016.10.017 27721053
    [Google Scholar]
  132. Kumar L. Chhibber S. Kumar R. Kumar M. Harjai K. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia 2015 102 84 95 10.1016/j.fitote.2015.02.002 25704369
    [Google Scholar]
  133. Raorane C.J. Lee J.H. Kim Y.G. Rajasekharan S.K. Contreras G.R. Lee J. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol. 2019 10 990 10.3389/fmicb.2019.00990 31134028
    [Google Scholar]
  134. Rasamiravaka T. Jedrzejowski A. Kiendrebeogo M. Rajaonson S. Randriamampionona D. Rabemanantsoa C. Andriantsimahavandy A. Rasamindrakotroka A. Duez P. Jaziri E.M. Vandeputte O.M. Endemic malagasy dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. Microbiology 2013 159 Pt_5 924 938 10.1099/mic.0.064378‑0 23449917
    [Google Scholar]
  135. Bhargava N. Singh S.P. Sharma A. Sharma P. Capalash N. Attenuation of quorum sensing-mediated virulence of Acinetobacter baumannii by Glycyrrhiza glabra flavonoids. Future Microbiol. 2015 10 12 1953 1968 10.2217/fmb.15.107 26582430
    [Google Scholar]
  136. Zhou J.W. Luo H.Z. Jiang H. Jian T.K. Chen Z.Q. Jia A.Q. Hordenine: A novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa. J. Agric. Food Chem. 2018 66 7 1620 1628 10.1021/acs.jafc.7b05035 29353476
    [Google Scholar]
  137. Xiang H. Cao F. Ming D. Zheng Y. Dong X. Zhong X. Mu D. Li B. Zhong L. Cao J. Wang L. Ma H. Wang T. Wang D. Aloe-emodin inhibits Staphylococcus aureus biofilms and extracellular protein production at the initial adhesion stage of biofilm development. Appl. Microbiol. Biotechnol. 2017 101 17 6671 6681 10.1007/s00253‑017‑8403‑5 28710559
    [Google Scholar]
  138. Shehabeldine A.M. Ashour R.M. Okba M.M. Saber F.R. Callistemon citrinus bioactive metabolites as new inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation. J. Ethnopharmacol. 2020 254 112669 10.1016/j.jep.2020.112669 32087316
    [Google Scholar]
  139. Lu L. Hu W. Tian Z. Yuan D. Yi G. Zhou Y. Cheng Q. Zhu J. Li M. Developing natural products as potential anti-biofilm agents. Chin. Med. 2019 14 1 11 10.1186/s13020‑019‑0232‑2 30936939
    [Google Scholar]
  140. Shamim A. Ali A. Iqbal Z. Mirza M.A. Aqil M. Kawish S.M. Siddiqui A. Kumar V. Naseef P.P. Alshadidi A.A.F. Kuruniyan S.M. Natural medicine a promising candidate in combating microbial biofilm. Antibiotics 2023 12 2 299 10.3390/antibiotics12020299 36830210
    [Google Scholar]
  141. Mishra R. Panda A.K. Mandal D.S. Shakeel M. Bisht S.S. Khan J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front. Microbiol. 2020 11 566325 10.3389/fmicb.2020.566325 33193155
    [Google Scholar]
  142. Lin D.M. Koskella B. Lin H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 2017 8 3 162 173 10.4292/wjgpt.v8.i3.162 28828194
    [Google Scholar]
  143. Vázquez R. García P. Synergy between two chimeric lysins to kill Streptococcus pneumoniae. Front. Microbiol. 2019 10 1251 10.3389/fmicb.2019.01251 31231338
    [Google Scholar]
  144. Łubowska N. Piechowicz L. Staphylococcus aureus biofilm and the role of bacteriophages in its eradication. Postepy Hig. Med. Dosw. 2018 72 101 107 10.5604/01.3001.0011.5965
    [Google Scholar]
  145. Bielecka T.G. Dydecka A. Necel A. Bloch S. Faleńczyk N.B. Węgrzyn G. Węgrzyn A. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics 2021 10 2 175 10.3390/antibiotics10020175 33578658
    [Google Scholar]
  146. Polat E. Kang K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 2021 9 6 584 10.3390/biomedicines9060584 34063973
    [Google Scholar]
  147. Juárez C.I. Contreras G.R. Guadarrama V.N. Hernández S.M. Vázquez M.M. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa. Arch. Med. Res. 2013 44 7 488 494 10.1016/j.arcmed.2013.10.004 24126126
    [Google Scholar]
  148. Chong Y.M. Yin W.F. Ho C.Y. Mustafa M.R. Hadi A.H.A. Awang K. Narrima P. Koh C.L. Appleton D.R. Chan K.G. Malabaricone C from Myristica cinnamomea exhibits anti-quorum sensing activity. J. Nat. Prod. 2011 74 10 2261 2264 10.1021/np100872k 21910441
    [Google Scholar]
  149. Bjarnsholt T. Jensen P.Ø. Rasmussen T.B. Christophersen L. Calum H. Hentzer M. Hougen H.P. Rygaard J. Moser C. Eberl L. Høiby N. Givskov M. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 2005 151 12 3873 3880 10.1099/mic.0.27955‑0 16339933
    [Google Scholar]
  150. Harjai K. Kumar R. Singh S. Garlic blocks quorum sensing and attenuates the virulence of Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 2010 58 2 161 168 10.1111/j.1574‑695X.2009.00614.x 19878318
    [Google Scholar]
  151. Bodet C. Grenier D. Chandad F. Ofek I. Steinberg D. Weiss E.I. Potential oral health benefits of cranberry. Crit. Rev. Food Sci. Nutr. 2008 48 7 672 680 10.1080/10408390701636211 18663617
    [Google Scholar]
  152. Fu B. Wu Q. Dang M. Bai D. Guo Q. Shen L. Duan K. Inhibition of Pseudomonas aeruginosa biofilm formation by traditional chinese medicinal herb Herba patriniae. BioMed Res. Int. 2017 2017 1 10 10.1155/2017/9584703 28377931
    [Google Scholar]
  153. Lee J.H. Kim Y.G. Ryu S.Y. Cho M.H. Lee J. Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation. Int. J. Food Microbiol. 2014 174 47 55 10.1016/j.ijfoodmicro.2013.12.030 24457153
    [Google Scholar]
  154. Hwang I. Lee J. Jin H.G. Woo E.R. Lee D.G. Amentoflavone stimulates mitochondrial dysfunction and induces apoptotic cell death in Candida albicans. Mycopathologia 2012 173 4 207 218 10.1007/s11046‑011‑9503‑x 22210020
    [Google Scholar]
  155. Lee H.J. Lee D.G. Urgent need for novel antibiotics in Republic of Korea to combat multidrug-resistant bacteria. Korean J. Intern. Med. 2022 37 2 271 280 10.3904/kjim.2021.527 35272440
    [Google Scholar]
  156. Lahiri D. Dash S. Dutta R. Nag M. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J. Biosci. 2019 44 2 52 10.1007/s12038‑019‑9868‑4 31180065
    [Google Scholar]
  157. Salmi C. Loncle C. Vidal N. Letourneux Y. Fantini J. Maresca M. Taïeb N. Pagès J.M. Brunel J.M. Squalamine: An appropriate strategy against the emergence of multidrug resistant gram-negative bacteria? PLoS One 2008 3 7 e2765 10.1371/journal.pone.0002765 18648511
    [Google Scholar]
  158. Tominaga K. Higuchi K. Hamasaki N. Hamaguchi M. Takashima T. Tanigawa T. Watanabe T. Fujiwara Y. Tezuka Y. Nagaoka T. Kadota S. Ishii E. Kobayashi K. Arakawa T. In vivo action of novel alkyl methyl quinolone alkaloids against Helicobacter pylori. J. Antimicrob. Chemother. 2002 50 4 547 552 10.1093/jac/dkf159 12356800
    [Google Scholar]
  159. Boberek J.M. Stach J. Good L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One 2010 5 10 e13745 10.1371/journal.pone.0013745 21060782
    [Google Scholar]
  160. Zhang X. Guo F. Shao H. Zheng X. Clinical translation of polymyxin-based combination therapy: Facts, challenges and future opportunities. J. Infect. 2017 74 2 118 130 10.1016/j.jinf.2016.11.015 27998750
    [Google Scholar]
  161. Sharma M. Manoharlal R. Puri N. Prasad R. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci. Rep. 2010 30 6 391 404 10.1042/BSR20090151 20017731
    [Google Scholar]
  162. Majedy A.Y. Duhaidahawi A.D. Azawi A.K. Amiery A.A. Kadhum A. Mohamad A. Coumarins as potential antioxidant agents complemented with suggested mechanisms and approved by molecular modeling studies. Molecules 2016 21 2 135 10.3390/molecules21020135 26805811
    [Google Scholar]
  163. Monfalouti E.H. Kartah E.B. Enhancing polyphenol bioavailability through nanotechnology: Current trends and challenges. Exploring Natural Phenolic Compounds - Recent Progress and Practical Applications. Working Title IntechOpen 2024 10.5772/intechopen.1005764
    [Google Scholar]
  164. rahmani E.S. Errabiti B. Matencio A. Trotta F. Latrache H. Koraichi S.I. Elabed S. Plant-derived bioactive compounds for the inhibition of biofilm formation: A comprehensive review. Environ. Sci. Pollut. Res. Int. 2024 31 24 34859 34880 10.1007/s11356‑024‑33532‑2 38744766
    [Google Scholar]
  165. Brackman G. Defoirdt T. Miyamoto C. Bossier P. Calenbergh V.S. Nelis H. Coenye T. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol. 2008 8 1 149 10.1186/1471‑2180‑8‑149 18793453
    [Google Scholar]
  166. Truchado P. Bastida G.J.A. Larrosa M. Ibáñez C.I. Espín J.C. Barberán T.F.A. Conesa G.M.T. Allende A. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J. Agric. Food Chem. 2012 60 36 8885 8894 10.1021/jf301365a 22533445
    [Google Scholar]
  167. Manefield M. Rasmussen T.B. Henzter M. Andersen J.B. Steinberg P. Kjelleberg S. Givskov M. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 2002 148 4 1119 1127 10.1099/00221287‑148‑4‑1119 11932456
    [Google Scholar]
  168. Zhang L. Liang E. Cheng Y. Mahmood T. Ge F. Zhou K. Bao M. Lv L. Li L. Yi J. Lu C. Tan Y. Is combined medication with natural medicine a promising therapy for bacterial biofilm infection? Biomed. Pharmacother. 2020 128 110184 10.1016/j.biopha.2020.110184 32450528
    [Google Scholar]
  169. Kumar L. Bisen M. Harjai K. Chhibber S. Azizov S. Lalhlenmawia H. Kumar D. Advances in nanotechnology for biofilm inhibition. ACS Omega 2023 8 24 21391 21409 10.1021/acsomega.3c02239 37360468
    [Google Scholar]
  170. Odom T.W. Nano Letters 2020. Nano Lett. 2020 20 1 1 10.1021/acs.nanolett.9b05084 31849227
    [Google Scholar]
/content/journals/cis/10.2174/012210299X355078241230061234
Loading
/content/journals/cis/10.2174/012210299X355078241230061234
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test