Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Naringin is a naturally obtained chemical from plants that is formed as a secondary metabolite in them. It possesses significant properties that are useful to humans. The primary sources of naringin extract include fruits of the citrus family which are and . It belongs to a class of alcohols primarily consisting of a fused ring system which is responsible for its different medicinal properties, as a consequence, it is widely used in the nutraceutical market nowadays. Nutraceuticals are a part of food that provides health benefits by giving supplements to the body; their final extract form is white in color having crystalline properties with a melting point of 83°C and solubility of 1 mg/ml at 40°C. The absorption of nutraceuticals occurs inside the stomach as it requires a specific pH range between 3.5-4.2. After absorption, it gets converted into naringenin in the liver a cascade of reactions like dehydrogenation, acetylation, and hydrolysis. Several enzymes are responsible for its conversion into an active form which includes cytochrome P-450, and chalcone isomerase. Its bioavailability depends on a variety of factors including disease condition, gastric moiety, pH of absorption site, the presence of other drugs, and many more. It gets metabolized in the liver itself and finally excreted in the urine. It can be tolerated by the body at high doses, but other conditions can cause its toxicity inside the human body. Its primary properties include anti-inflammatory actions, anti-aging properties, antibacterial properties, anti-cancer properties, and obesity issues.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X244607231030095326
2023-01-01
2025-01-27
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E2210299X244607.html?itemId=/content/journals/cis/10.2174/012210299X244607231030095326&mimeType=html&fmt=ahah

References

  1. ZhangF.Y. DuG.J. ZhangL. ZhangC.L. LuW.L. LiangW. Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein.Pharm. Res.200926491492510.1007/s11095‑008‑9793‑y19067124
    [Google Scholar]
  2. FouadA.A. AlbualiW.H. JresatI. Protective effect of naringenin against lipopolysaccharide-induced acute lung injury in rats.Pharmacology2016975-622423210.1159/00044426226872264
    [Google Scholar]
  3. YadavA.V. PrakashanN. Routes of administration of drugs, Pharmacology and Toxicology.19th ed2008412
    [Google Scholar]
  4. KumarS PandeyAK Chemistry and biological activities of flavonoids: An overview.Sci. World J.2013201316275010.1155/2013/162750
    [Google Scholar]
  5. Available from: https://www.phytojournal.com/archives/2017/vol6issue5/PartAN/6-5-440-454
  6. DemiralayE.Ç. KoçD. DaldalY.D. ÇakırC. Determination of chromatographic and spectrophotometric dissociation constants of some beta lactam antibiotics.J. Pharm. Biomed. Anal.20127113914310.1016/j.jpba.2012.06.02322901760
    [Google Scholar]
  7. HsiuS.L. HuangT.Y. HouY.C. ChinD.H. ChaoP.D.L. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits.Life Sci.200270131481148910.1016/S0024‑3205(01)01491‑611895099
    [Google Scholar]
  8. MiddletonE.Jr Effect of plant flavonoids on immune and inflammatory cell function.Adv. Exp. Med. Biol.199843917518210.1007/978‑1‑4615‑5335‑9_139781303
    [Google Scholar]
  9. GuoL.Q. FukudaK. OhtaT. YamazoeY. Role of furanocoumarin derivatives on grapefruit juice-mediated inhibition of human CYP3A activity.Drug Metab. Dispos.200028776677110859150
    [Google Scholar]
  10. KimballD.A. Analyses of other citrus juice characteristics.Citrus Processing.Boston, MASpringer199910.1007/978‑1‑4615‑4973‑4_7
    [Google Scholar]
  11. BaileyD.G. ArnoldJ.M.O. StrongH.A. MunozC. SpenceJ.D. Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics.Clin. Pharmacol. Ther.199354658959410.1038/clpt.1993.1958275614
    [Google Scholar]
  12. CuiJ. JuhaszB. TosakiA. MaulikN. DasD.K. Cardioprotection with grapes.J. Cardiovasc. Pharmacol.200240576276910.1097/00005344‑200211000‑0001412409985
    [Google Scholar]
  13. KutsunaS. HoriH. SonodaT. IwakamiT, Wakisaka A. preferential solvation ofperfluorooctanoic acid (PFOA) by methanol in methanol-water mixtures.Atmos. Environ.20124941141410.1016/j.atmosenv.2011.12.009
    [Google Scholar]
  14. AlamP. ParvezM.K. ArbabA.H. Al-DosariM.S. Quantitative analysis of rutin, quercetin, naringenin, and gallic acid by validated RP- and NP-HPTLC methods for quality control of anti-HBV active extract of Guiera senegalensis.Pharm. Biol.20175511317132310.1080/13880209.2017.130017528283004
    [Google Scholar]
  15. MurrayM. Mechanisms and significance of inhibitory drug interactions involving cytochrome P450 enzymes.Int J Mol Med.199933227238
    [Google Scholar]
  16. Kesse-GuyotE. FezeuL. GalanP. HercbergS. CzernichowS. CastetbonK. Adherence to French nutritional guidelines is associated with lower risk of metabolic syndrome.J. Nutr.201114161134113910.3945/jn.110.13631721490288
    [Google Scholar]
  17. SowersJ.R. EpsteinM. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy. An update.Hypertension199526686987910.1161/01.HYP.26.6.8697490142
    [Google Scholar]
  18. PanulaP. ChazotP.L. CowartM. GutzmerR. LeursR. LiuW.L.S. StarkH. ThurmondR.L. HaasH.L. International union of basic and clinical pharmacology. XCVIII. Histamine receptors.Pharmacol. Rev.201567360165510.1124/pr.114.01024926084539
    [Google Scholar]
  19. JardimACG ShimizuJF RahalP HarrisM Plant-derived antivirals against hepatitis c virus infection.Virol J.20181513410.1186/s12985‑018‑0945‑3
    [Google Scholar]
  20. AldrichC. BertozziC. GeorgG.I. KiesslingL. LindsleyC. LiottaD. MerzK.M.Jr SchepartzA. WangS. The ecstasy and agony of assay interference compounds.J. Med. Chem.20176062165216810.1021/acs.jmedchem.7b0022928244745
    [Google Scholar]
  21. AttiaS.M. Abatement by naringin of lomefloxacin-induced genomic instability in mice.Mutagenesis200823651552110.1093/mutage/gen04518755759
    [Google Scholar]
  22. WangK. ChenZ. HuangJ. HuangL. LuoN. LiangX. LiangM. XieW. Naringenin prevents ischaemic stroke damage via anti-apoptotic and anti-oxidant effects.Clin. Exp. Pharmacol. Physiol.201744886287110.1111/1440‑1681.1277528453191
    [Google Scholar]
  23. KanazeF.I. TermentziA. GabrieliC. NiopasI. GeorgarakisM. KokkalouE. The phytochemical analysis and antioxidant activity assessment of orange peel ( Citrus sinensis ) cultivated in Greece-Crete indicates a new commercial source of hesperidin.Biomed. Chromatogr.200923323924910.1002/bmc.109018823075
    [Google Scholar]
  24. BhartiS. RaniN. KrishnamurthyB. AryaD. Preclinical evidence for the pharmacological actions of naringin: A review.Planta Med.201480643745110.1055/s‑0034‑136835124710903
    [Google Scholar]
  25. Da PozzoE GiacomelliC CostaB TSPO PIGA ligands promote neurosteroidogenesis and human astrocyte well-being. Int J Mol Sci.2016177102810.3390/ijms17071028
    [Google Scholar]
  26. de JesusB.B. BlascoM.A. Assessing cell and organ senescence biomarkers.Circ. Res.201211119710910.1161/CIRCRESAHA.111.24786622723221
    [Google Scholar]
  27. FedenkoVS LandiM ShemetSA Metallophenolomics: A novel integrated approach to study complexation of plant phenolics with metal/metalloid ions.Int J Mol Sci.202223191137010.3390/ijms231911370
    [Google Scholar]
  28. CroceN PitaroM GalloV AntoniniG. Toxicity of usnic acid: A narrative review.J Toxicol.2022824434010.1155/2022/8244340
    [Google Scholar]
  29. AyobZ. Mohd BohariS.P. Abd SamadA. JamilS. Cytotoxic activities against breast cancer cells of local justicia gendarussa crude extracts.Evid. Based Complement. Alternat. Med.2014201411210.1155/2014/73298025574182
    [Google Scholar]
  30. ZeeshanHM LeeGH KimHR ChaeHJ Endoplasmic reticulum stress and associated ROS.Int J Mol Sci.201617332710.3390/ijms17030327
    [Google Scholar]
  31. FangT. WangY. MaY. SuW. BaiY. ZhaoP. A rapid LC/MS/MS quantitation assay for naringin and its two metabolites in rats plasma.J. Pharm. Biomed. Anal.200640245445910.1016/j.jpba.2005.07.03116406442
    [Google Scholar]
  32. GuyB. BriandO. LangJ. SavilleM. JacksonN. Development of the sanofi pasteur tetravalent dengue vaccine: One more step forward.Vaccine201533507100711110.1016/j.vaccine.2015.09.10826475445
    [Google Scholar]
  33. AhmadiA. HassandarvishP. LaniR. YadollahiP. JokarA. BakarS.A. ZandiK. Inhibition of chikungunya virus replication by hesperetin and naringenin.RSC Advances2016673694216943010.1039/C6RA16640G
    [Google Scholar]
  34. JohnsonM.K. LooG. Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA.Mutat. Res. DNA Repair2000459321121810.1016/S0921‑8777(99)00074‑910812333
    [Google Scholar]
  35. NagappanA. LeeH.J. SaralammaV.V.G. ParkH.S. HongG.E. YumnamS. RahaS. CharlesS.N. ShinS.C. KimE.H. LeeW.S. KimG.S. Flavonoids isolated from Citrus platymamma induced G2/M cell cycle arrest and apoptosis in A549 human lung cancer cells.Oncol. Lett.20161221394140210.3892/ol.2016.479327446443
    [Google Scholar]
  36. KannoS. TomizawaA. HiuraT. OsanaiY. ShoujiA. UjibeM. OhtakeT. KimuraK. IshikawaM. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice.Biol. Pharm. Bull.200528352753010.1248/bpb.28.52715744083
    [Google Scholar]
  37. SirovinaD. OršolićN. GregorovićG. KončićM.Z. Naringenin ameliorates pathological changes in liver and kidney of diabetic mice: A preliminary study / Naringenin reducira histopatološke promjene u jetri i bubregu miševa s dijabetesom.Arh. Hig. Rada Toksikol.2016671192410.1515/aiht‑2016‑67‑270827092635
    [Google Scholar]
  38. MahmoudA.M. AshourM.B. Abdel-MoneimA. AhmedO.M. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats.J. Diabetes Complications201226648349010.1016/j.jdiacomp.2012.06.00122809898
    [Google Scholar]
  39. SachdevaA.K. KuhadA. ChopraK. Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction.Pharmacol. Biochem. Behav.201412710111010.1016/j.pbb.2014.11.00225449356
    [Google Scholar]
  40. StohsSJ PreussHG KeithSC KeithPL MillerH KaatsGR Effects of p-synephrine alone and in combination with selected bioflavonoids on resting metabolism, blood pressure, heart rate and self-reported mood changes.Int J Med Sci.20118429530110.7150/ijms.8.295
    [Google Scholar]
  41. JägerAK SaabyL Flavonoids and the CNS.Molecules20111611471148510.3390/molecules16021471
    [Google Scholar]
  42. MollaceV. SaccoI. JandaE. MalaraC. VentriceD. ColicaC. VisalliV. MuscoliS. RagusaS. MuscoliC. RotirotiD. RomeoF. Hypolipemic and hypoglycaemic activity of bergamot polyphenols: From animal models to human studies.Fitoterapia201182330931610.1016/j.fitote.2010.10.01421056640
    [Google Scholar]
  43. ChoiYJ LeeDH KimHS KimYK An exploratory study on the effect of daily fruits and vegetable juice on human gut microbiota.Food Sci Biotechnol20182751377138610.1007/s10068‑018‑0372‑7
    [Google Scholar]
  44. Pereira-CaroG. PolyviouT. LudwigI.A. NastaseA.M. Moreno-RojasJ.M. GarciaA.L. MalkovaD. CrozierA. Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes.Am. J. Clin. Nutr.2017106379180010.3945/ajcn.116.14989828747329
    [Google Scholar]
  45. KoopmanF. BeekwilderJ. CrimiB. van HouwelingenA. HallR.D. BoschD. van MarisA.J.A. PronkJ.T. DaranJ.M. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.Microb. Cell Fact.201211115510.1186/1475‑2859‑11‑15523216753
    [Google Scholar]
  46. JeandetP. Sobarzo-SánchezE. ClémentC. NabaviS.F. HabtemariamS. NabaviS.M. CordelierS. Engineering stilbene metabolic pathways in microbial cells.Biotechnol. Adv.20183682264228310.1016/j.biotechadv.2018.11.00230414914
    [Google Scholar]
  47. Álvarez-ÁlvarezR BotasA AlbillosSM RumberoA MartínJF LirasP Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus.Microb Cell Fact.20151417810.1186/s12934‑015‑0373‑7
    [Google Scholar]
  48. EichenbergerM. LehkaB.J. FollyC. FischerD. MartensS. SimónE. NaesbyM. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties.Metab. Eng.201739808910.1016/j.ymben.2016.10.01927810393
    [Google Scholar]
  49. WuJ ZhouT DuG ZhouJ ChenJ Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in escherichia coli.PLoS One201497e10149210.1371/journal.pone.0101492
    [Google Scholar]
  50. PandeyR.P. ParajuliP. KoffasM.A.G. SohngJ.K. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.Biotechnol. Adv.201634563466210.1016/j.biotechadv.2016.02.01226946281
    [Google Scholar]
  51. TrantasEA KoffasMA XuP VerveridisF When plants produce not enough or at all: Metabolic engineering of flavonoids in microbial hosts.Front Plant Sci.20156710.3389/fpls.2015.00007
    [Google Scholar]
  52. NabaviS.M. ŠamecD. TomczykM. MilellaL. RussoD. HabtemariamS. SuntarI. RastrelliL. DagliaM. XiaoJ. GiampieriF. BattinoM. Sobarzo-SanchezE. NabaviS.F. YousefiB. JeandetP. XuS. ShirooieS. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering.Biotechnol. Adv.20203810731610.1016/j.biotechadv.2018.11.00530458225
    [Google Scholar]
  53. YinJ. LiangY. WangD. YanZ. YinH. WuD. SuQ. Naringenin induces laxative effects by upregulating the expression levels of c-Kit and SCF, as well as those of aquaporin 3 in mice with loperamide-induced constipation.Int. J. Mol. Med.201741264965810.3892/ijmm.2017.330129207043
    [Google Scholar]
  54. SalehiB FokouPVT Sharifi-RadM The therapeutic potential of naringenin: A review of clinical trials.Pharmaceuticals20191211110.3390/ph12010011
    [Google Scholar]
  55. KeJY BanhT HsiaoYH Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice.Mol Nutr Food Res.2017619.10.1002/mnfr.201600934
    [Google Scholar]
  56. Pinho-RibeiroF.A. ZarpelonA.C. FattoriV. ManchopeM.F. MizokamiS.S. CasagrandeR. VerriW.A.Jr Naringenin reduces inflammatory pain in mice.Neuropharmacology201610550851910.1016/j.neuropharm.2016.02.01926907804
    [Google Scholar]
  57. WangQ. YangJ. ZhangX. ZhouL. LiaoX. YangB. Practical synthesis of naringenin.J. Chem. Res.201539845545710.3184/174751915X14379994045537
    [Google Scholar]
  58. National center for biotechnology information, pubchem compound database.Available from: https://pubchem.ncbi.nlm.nih.gov/ (Accessed on 16 November 2018).
  59. JayachitraJ. NaliniN. Effect of naringenin (citrus flavanone) on lipid profile in ethanol-induced toxicity in rats.J. Food Biochem.201236450251110.1111/j.1745‑4514.2011.00561.x
    [Google Scholar]
  60. ErlundI. MeririnneE. AlfthanG. AroA. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice.J. Nutr.2001131223524110.1093/jn/131.2.23511160539
    [Google Scholar]
  61. FrabasileS KoishiAC KuczeraD The citrus flavanone naringenin impairs dengue virus replication in human cells.Sci Rep.201774186410.1038/srep41864
    [Google Scholar]
  62. OoA HassandarvishP ChinSP LeeVS Abu BakarS ZandiK In silico study on anti-Chikungunya virus activity of hesperetin.PeerJ.20164260210.7717/peerj.2602
    [Google Scholar]
  63. GonçalvesD LimaC FerreiraP Orange juice as dietary source of antioxidants for patients with hepatitis C under antiviral therapy.Food Nutr Res.2017611129667510.1080/16546628.2017.1296675
    [Google Scholar]
  64. Pereira-CaroG. BorgesG. van der HooftJ. CliffordM.N. Del RioD. LeanM.E.J. RobertsS.A. KellerhalsM.B. CrozierA. Orange juice (poly)phenols are highly bioavailable in humans.Am. J. Clin. Nutr.201410051378138410.3945/ajcn.114.09028225332336
    [Google Scholar]
  65. KanazeF.I. BounartziM.I. GeorgarakisM. NiopasI. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects.Eur. J. Clin. Nutr.200761447247710.1038/sj.ejcn.160254317047689
    [Google Scholar]
  66. ZengX. SuW. BaiY. ChenT. YanZ. WangJ. SuM. ZhengY. PengW. YaoH. Urinary metabolite profiling of flavonoids in Chinese volunteers after consumption of orange juice by UFLC-Q-TOF-MS/MS.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171061-1062798810.1016/j.jchromb.2017.07.01528711784
    [Google Scholar]
  67. AschoffJ.K. RiedlK.M. CooperstoneJ.L. HögelJ. Bosy-WestphalA. SchwartzS.J. CarleR. SchweiggertR.M. Urinary excretion of Citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross-over study.Mol. Nutr. Food Res.201660122602261010.1002/mnfr.20160031527488098
    [Google Scholar]
  68. DuqueA.L.R.F. MonteiroM. AdornoM.A.T. SakamotoI.K. SivieriK. An exploratory study on the influence of orange juice on gut microbiota using a dynamic colonic model.Food Res. Int.20168416016910.1016/j.foodres.2016.03.028
    [Google Scholar]
  69. ZaidunN.H. ThentZ.C. LatiffA.A. Combating oxidative stress disorders with citrus flavonoid: Naringenin.Life Sci.201820811112210.1016/j.lfs.2018.07.01730021118
    [Google Scholar]
  70. AmawiH AshbyCRJr TiwariAK Cancer chemoprevention through dietary flavonoids: What's limiting.Chin J Cancer.20173615010.1186/s40880‑017‑0217‑4
    [Google Scholar]
  71. TestaiL CalderoneV. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease.Nutrients20179550210.3390/nu9050502
    [Google Scholar]
  72. YamadaT. HayasakaS. ShibataY. OjimaT. SaegusaT. GotohT. IshikawaS. NakamuraY. KayabaK. Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi Medical School cohort study.J. Epidemiol.201121316917510.2188/jea.JE2010008421389640
    [Google Scholar]
  73. KnektP. KumpulainenJ. JärvinenR. RissanenH. HeliövaaraM. ReunanenA. HakulinenT. AromaaA. Flavonoid intake and risk of chronic diseases.Am. J. Clin. Nutr.200276356056810.1093/ajcn/76.3.56012198000
    [Google Scholar]
  74. CassidyA. RimmE.B. O’ReillyÉ.J. LogroscinoG. KayC. ChiuveS.E. RexrodeK.M. Dietary flavonoids and risk of stroke in women.Stroke201243494695110.1161/STROKEAHA.111.63783522363060
    [Google Scholar]
  75. OnakpoyaI. O’SullivanJ. HeneghanC. ThompsonM. The effect of grapefruits ( Citrus paradisi ) on body weight and cardiovascular risk factors: A systematic review and meta-analysis of randomized clinical trials.Crit. Rev. Food Sci. Nutr.201757360261210.1080/10408398.2014.90129225880021
    [Google Scholar]
  76. ReshefN. HayariY. GorenC. BoazM. MadarZ. KnoblerH. Antihypertensive effect of sweetie fruit in patients with stage I hypertension.Am. J. Hypertens.200518101360136310.1016/j.amjhyper.2005.05.02116202862
    [Google Scholar]
  77. TothPP PattiAM NikolicD Bergamot reduces plasma lipids, atherogenic small dense ldl, and subclinical atherosclerosis in subjects with moderate Hypercholesterolemia: A 6 months prospective study.Front Pharmacol.2016629910.3389/fphar.2015.00299
    [Google Scholar]
  78. ZhuZ XieW LiY ZhuZ ZhangW. Effect of naringin treatment on postmenopausal osteoporosis in ovariectomized rats: A meta-analysis and systematic review.Evid Based Complement Alternat Med.20212021601687410.1155/2021/6016874
    [Google Scholar]
  79. RebelloC.J. BeylR.A. LertoraJ.J.L. GreenwayF.L. RavussinE. RibnickyD.M. PoulevA. KennedyB.J. CastroH.F. CampagnaS.R. CoulterA.A. RedmanL.M. Safety and pharmacokinetics of naringenin: A randomized, controlled, single-ascending-dose clinical trial.Diabetes Obes. Metab.2020221919810.1111/dom.1386831468636
    [Google Scholar]
/content/journals/cis/10.2174/012210299X244607231030095326
Loading
/content/journals/cis/10.2174/012210299X244607231030095326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test