Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Background

Type 2 diabetes has become a concern issue that affects the quality of life and can increase the risk of cardiac insufficiency elevating the threat to the life safety of patients. A recognized cause of cardiac insufficiency is diabetic cardiomyopathy, chronic hyperglycemia, and myocardial lipotoxicity which can reduce the myocardial contractile performance, and enhance the cardiomyocyte hypertrophy and interstitial fibrosis. The cause of diabetic cardiomyopathy is multi-factorial which includes oxidative stress, insulin resistance, inflammation, apoptosis, and autophagy. Recent clinical studies have suggested the dysbiosis of gut microbiota, secretion of metabolites, and their diffusion in to the host as to have direct detrimental effects on the cardiac contractility.

Materials and Methods

In the present paper, we have done studies including molecular interaction of phytoconstituents of against reactive oxygen species producing proteins. Whereas, studies were conducted on H9C2 cardiac cells including cell morphological examination, level of reactive oxygen species, cell count-viability, apoptotic status, in the presence of high glucose, trimethylamine-n-oxide, and plant extracts which were determined through cell analyzer and microscopic assays.

Results

The treatment of high glucose and trimethylamine-n-oxide was found to be increase the cardiac stress approximately two fold by attenuating hypertrophic conditions, oxidative stress, and apoptosis in rat cardiomyocytes, and was found to be a cardioprotective agent.

Conclusion

Conclusively, our study has reported that the Indian medicinal plant has the ability to treat diabetic cardiomyopathy. Our study can open up a new herbal therapeutic strategy against diabetic cardiomyopathy.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257270512231013064533
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. De RosaS. ArcidiaconoB. ChiefariE. BrunettiA. IndolfiC. FotiD.P. Type 2 diabetes mellitus and cardiovascular disease: Genetic and epigenetic links.Front. Endocrinol.20189210.3389/fendo.2018.00002 29387042
    [Google Scholar]
  2. ThomasD.D. CorkeyB.E. IstfanN.W. ApovianC.M. Hyperinsulinemia: An early indicator of metabolic dysfunction.J. Endocr. Soc.2019391727174710.1210/js.2019‑00065 31528832
    [Google Scholar]
  3. MorisD. SpartalisM. SpartalisE. KarachaliouG.S. KaraolanisG.I. TsourouflisG. TsilimigrasD.I. TzatzakiE. TheocharisS. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox.Ann. Transl. Med.201751632610.21037/atm.2017.06.27 28861423
    [Google Scholar]
  4. JiaG. HillM.A. SowersJ.R. Diabetic cardiomyopathy.Circ. Res.2018122462463810.1161/CIRCRESAHA.117.311586 29449364
    [Google Scholar]
  5. ZorovD.B. JuhaszovaM. SollottS.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.Physiol. Rev.201494390995010.1152/physrev.00026.2013 24987008
    [Google Scholar]
  6. PizzinatN. CopinN. VindisC. PariniA. CambonC. Reactive oxygen species production by monoamine oxidases in intact cells.Naunyn Schmiedebergs Arch. Pharmacol.1999359542843110.1007/PL00005371 10498294
    [Google Scholar]
  7. KaludercicN. CarpiA. MenabòR. Di LisaF. PaolocciN. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury.Biochim. Biophys. Acta Mol. Cell Res.2011181371323133210.1016/j.bbamcr.2010.09.010 20869994
    [Google Scholar]
  8. KaludercicN. Di LisaF. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy.Front. Cardiovasc. Med.202071210.3389/fcvm.2020.00012 32133373
    [Google Scholar]
  9. CadeW.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting.Phys. Ther.200888111322133510.2522/ptj.20080008 18801863
    [Google Scholar]
  10. PrandiF.R. EvangelistaI. SergiD. PalazzuoliA. RomeoF. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: Molecular abnormalities and phenotypical variants.Heart Fail. Rev.202228359760610.1007/s10741‑021‑10200‑y 35001338
    [Google Scholar]
  11. AgarwalA. JadhavP. DeshmukhY. Prescribing pattern and efficacy of anti-diabetic drugs in maintaining optimal glycemic levels in diabetic patients.J. Basic Clin. Pharm.201453798310.4103/0976‑0105.139731 25278671
    [Google Scholar]
  12. PogátsaG. What kind of cardiovascular alterations could be influenced positively by oral antidiabetic agents?Diabetes Res. Clin. Pract.199631Suppl.S27S3110.1016/0168‑8227(96)01227‑2 8864638
    [Google Scholar]
  13. BorghettiG. von LewinskiD. EatonD.M. SourijH. HouserS.R. WallnerM. Diabetic cardiomyopathy: Current and future therapies. Beyond glycemic control.Front. Physiol.20189151410.3389/fphys.2018.01514 30425649
    [Google Scholar]
  14. AnandS.S. HawkesC. de SouzaR.J. MenteA. DehghanM. NugentR. ZulyniakM.A. WeisT. BernsteinA.M. KraussR.M. KromhoutD. JenkinsD.J.A. MalikV. Martinez-GonzalezM.A. MozaffarianD. YusufS. WillettW.C. PopkinB.M. Food consumption and its impact on cardiovascular disease: Importance of solutions focused on the globalized food system.J. Am. Coll. Cardiol.201566141590161410.1016/j.jacc.2015.07.050 26429085
    [Google Scholar]
  15. LimD.W. WangJ.H. Gut Microbiome: The interplay of an “Invisible Organ” with herbal medicine and its derived compounds in chronic metabolic disorders.Int. J. Environ. Res. Public Health202219201307610.3390/ijerph192013076 36293657
    [Google Scholar]
  16. FanY. PedersenO. Gut microbiota in human metabolic health and disease.Nat. Rev. Microbiol.2021191557110.1038/s41579‑020‑0433‑9 32887946
    [Google Scholar]
  17. LeemingE.R. JohnsonA.J. SpectorT.D. Le RoyC.I. Effect of diet on the gut microbiota: Rethinking intervention duration.Nutrients20191112286210.3390/nu11122862 31766592
    [Google Scholar]
  18. LiX. GengJ. ZhaoJ. NiQ. ZhaoC. ZhengY. ChenX. WangL. Trimethylamine N-Oxide exacerbates cardiac fibrosis via activating the NLRP3 inflammasome.Front. Physiol.20191086610.3389/fphys.2019.00866 31354519
    [Google Scholar]
  19. SkyeS.M. ZhuW. RomanoK.A. GuoC.J. WangZ. JiaX. KirsopJ. HaagB. LangJ.M. DiDonatoJ.A. TangW.H.W. LusisA.J. ReyF.E. FischbachM.A. HazenS.L. Microbial transplantation with human gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential.Circ. Res.2018123101164117610.1161/CIRCRESAHA.118.313142 30359185
    [Google Scholar]
  20. BeanL.D. WingJ.J. HarrisR.E. SmartS.M. RamanS.V. MilksM.W. Transferrin predicts trimethylamine-N-oxide levels and is a potential biomarker of cardiovascular disease.BMC Cardiovasc. Disord.202222120910.1186/s12872‑022‑02644‑3 35538408
    [Google Scholar]
  21. ZhengY. HeJ.Q. Pathogenic mechanisms of trimethylamine N-oxide-induced atherosclerosis and cardiomyopathy.Curr. Vasc. Pharmacol.2022201293610.2174/1570161119666210812152802 34387163
    [Google Scholar]
  22. JaneiroM. RamírezM. MilagroF. MartínezJ. SolasM. Implication of Trimethylamine N-Oxide (TMAO) in disease: Potential biomarker or new therapeutic target.Nutrients20181010139810.3390/nu10101398 30275434
    [Google Scholar]
  23. Constantino-JonapaL.A. Espinoza-PalaciosY. Escalona-MontañoA.R. Hernández-RuizP. Amezcua-GuerraL.M. AmedeiA. Aguirre-GarcíaM.M. Contribution of Trimethylamine N-Oxide (TMAO) to chronic inflammatory and degenerative diseases.Biomedicines202311243110.3390/biomedicines11020431 36830968
    [Google Scholar]
  24. RizviM.K. RabailR. MunirS. Inam-Ur-RaheemM. QayyumM.M.N. KieliszekM. HassounA. AadilR.M. Astounding health benefits of Jamun (Syzygium cumini) toward metabolic syndrome.Molecules20222721718410.3390/molecules27217184 36364010
    [Google Scholar]
  25. El-Saber BatihaG. AlkazmiL.M. WasefL.G. BeshbishyA.M. NadwaE.H. RashwanE.K. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities.Biomolecules202010220210.3390/biom10020202 32019140
    [Google Scholar]
  26. KumarS. SinghN. SinghA. SinghN. SinhaR. Use of Curcuma longa L. extract to stain various tissue samples for histological studies.Ayu201435444745110.4103/0974‑8520.159027 26195911
    [Google Scholar]
  27. TesfayeA. Revealing the therapeutic uses of garlic (Allium sativum) and its potential for drug discovery.ScientificWorldJournal202120211710.1155/2021/8817288 35002548
    [Google Scholar]
  28. DwivediS. ChopraD. Revisiting Terminalia arjuna-an ancient cardiovascular drug.J. Tradit. Complement. Med.20144422423110.4103/2225‑4110.139103 25379463
    [Google Scholar]
  29. CohenM. Tulsi-Ocimum sanctum: A herb for all reasons.J. Ayurveda Integr. Med.20145425125910.4103/0975‑9476.146554 25624701
    [Google Scholar]
  30. GhoshS. SahaS. Tinospora cordifolia: One plant, many roles.Anc. Sci. Life201231415115910.4103/0257‑7941.107344 23661861
    [Google Scholar]
  31. SinghalS. RaniV. Study to explore plant-derived trimethylamine lyase enzyme inhibitors to address gut dysbiosis.Appl. Biochem. Biotechnol.202219419912310.1007/s12010‑021‑03747‑x 34822060
    [Google Scholar]
  32. AliH. DixitS. Extraction optimization of Tinospora cordifolia and assessment of the anticancer activity of its alkaloid palmatine.ScientificWorldJournal2013201311010.1155/2013/376216 24379740
    [Google Scholar]
  33. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  34. RedfernJ. KinninmonthM. BurdassD. VerranJ. Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties.J. Microbiol. Biol. Educ.2014151454610.1128/jmbe.v15i1.656 24839520
    [Google Scholar]
  35. GargP. GargR. Qualitative and quantitative analysis of leaves and stem of Tinospora cordifolia in different solvent extract.J. Drug Deliv. Ther.201885-s25926410.22270/jddt.v8i5‑s.1967
    [Google Scholar]
  36. MadhuM. SailajaV. SatyadevT.N.V.S.S. SatyanarayanaM.V. Quantitative phytochemical analysis of selected medicinal plant species by using various organic solvents.J. Pharmacogn. Phytochem.2016522529
    [Google Scholar]
  37. FardiyahQ. Suprapto; Kurniawan, F.; Ersam, T.; Slamet, A.; Suyanta, Preliminary phytochemical screening and fluorescence characterization of several medicinal plants extract from east java Indonesia.IOP Conf. Series Mater. Sci. Eng.2020833101200810.1088/1757‑899X/833/1/012008
    [Google Scholar]
  38. AinsworthE.A. GillespieK.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent.Nat. Protoc.20072487587710.1038/nprot.2007.102 17446889
    [Google Scholar]
  39. MieanK.H. MohamedS. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants.J. Agric. Food Chem.20014963106311210.1021/jf000892m 11410016
    [Google Scholar]
  40. GhateN. ChaudhuriD. MandalN. In vitro assessment of Tinospora cordifolia stem for its antioxidant, free radical scavenging and DNA protective potentials.Int. J. Pharm. Biol. Sci.20134373388
    [Google Scholar]
  41. MurphyD.L. KaroumF. PickarD. CohenR.M. LipperS. MellowA.M. TariotP.N. SunderlandT. Differential trace amine alterations in individuals receiving acetylenic inhibitors of MAO-A (clorgyline) or MAO-B (selegiline and pargyline).J. Neural Transm. Suppl.199852394810.1007/978‑3‑7091‑6499‑0_5 9564606
    [Google Scholar]
  42. GehaR.M. ChenK. WoutersJ. OomsF. ShihJ.C. Analysis of conserved active site residues in monoamine oxidase A and B and their three-dimensional molecular modeling.J. Biol. Chem.200227719172091721610.1074/jbc.M110920200 11861643
    [Google Scholar]
  43. ShwethaJ.S. Tahareen; Dsouza, M. Antioxidant and anti-inflammatory activity of Tinospora cordifolia using in vitro models.J. Chem. Biol. Phys. Sci.20166497512
    [Google Scholar]
  44. PoluP.R. NayanbhiramaU. KhanS. MaheswariR. Assessment of free radical scavenging and anti-proliferative activities of Tinospora cordifolia Miers (Willd).BMC Complement. Altern. Med.201717145710.1186/s12906‑017‑1953‑3 28893230
    [Google Scholar]
  45. AtaleN. SaxenaS. NirmalaJ.G. NarendhirakannanR.T. MohantyS. RaniV. Synthesis and characterization of Sygyzium cumini nanoparticles for its protective potential in high glucose-induced cardiac stress: A green approach.Appl. Biochem. Biotechnol.201718131140115410.1007/s12010‑016‑2274‑6 27734287
    [Google Scholar]
  46. Imtiyaj KhanM. Sri HarshaP.S.C. GiridharP. RavishankarG.A. Pigment identification, antioxidant activity, and nutrient composition of Tinospora cordifolia (willd.) Miers ex Hook. f & Thoms fruit.Int. J. Food Sci. Nutr.201162323924910.3109/09637486.2010.529069 21155657
    [Google Scholar]
  47. Al-AmieryA.A. Al-MajedyY.K. KadhumA.A.H. MohamadA.B. Hydrogen peroxide scavenging activity of novel coumarins synthesized using different approaches.PLoS One2015107e013217510.1371/journal.pone.0132175 26147722
    [Google Scholar]
  48. JainA. RaniV. Mode of treatment governs curcumin response on doxorubicin-induced toxicity in cardiomyoblasts.Mol. Cell. Biochem.20184421-2819610.1007/s11010‑017‑3195‑6 28929270
    [Google Scholar]
  49. WatkinsS.J. BorthwickG.M. ArthurH. M. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro.In Vitro Cell. Dev. Biol. Anim.201147212513110.1007/s11626‑010‑9368‑1 21082279
    [Google Scholar]
  50. BerridgeM.V. HerstP.M. TanA.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction.Biotechnol. Annu. Rev.20051112715210.1016/S1387‑2656(05)11004‑7 16216776
    [Google Scholar]
  51. AtaleN. MishraC.B. KohliS. MongreR.K. PrakashA. KumariS. YadavU.C.S. JeonR. RaniV. Anti-inflammatory effects of S. cumini seed extract on gelatinase-B (MMP-9) regulation against hyperglycemic cardiomyocyte stress.Oxid. Med. Cell. Longev.2021202111410.1155/2021/8839479 33747350
    [Google Scholar]
  52. AtaleN. GuptaS. YadavU.C.S. RaniV. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques.J. Microsc.2014255171910.1111/jmi.12133 24831993
    [Google Scholar]
  53. BaskićD. PopovićS. RistićP. ArsenijevićN. Analysis of cycloheximide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide.Cell Biol. Int.2006301192493210.1016/j.cellbi.2006.06.016 16895761
    [Google Scholar]
  54. JainA. RaniV. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity.Life Sci.20182059710610.1016/j.lfs.2018.05.021 29752960
    [Google Scholar]
  55. AtaleN. ChakrabortyM. MohantyS. BhattacharyaS. NigamD. SharmaM. RaniV. Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes.Cardiovasc. Toxicol.201313327828910.1007/s12012‑013‑9207‑1 23512199
    [Google Scholar]
  56. LeeS.O. JooS.H. KwakA.W. LeeM.H. SeoJ.H. ChoS.S. YoonG. ChaeJ.I. ShimJ.H. Podophyllotoxin induces ROS-mediated apoptosis and cell cycle arrest in human colorectal cancer cells via p38 MAPK signaling.Biomol. Ther.202129665866610.4062/biomolther.2021.143 34642263
    [Google Scholar]
  57. ZhangL. LiuY. LiJ.Y. LiL.Z. ZhangY.L. GongH.Y. CuiY. Protective effect of rosamultin against H 2 O 2-induced oxidative stress and apoptosis in H9c2 cardiomyocytes.Oxid. Med. Cell. Longev.2018201811310.1155/2018/8415610 30116494
    [Google Scholar]
  58. DziedzicA. KubinaR. Kabała-DzikA. TanasiewiczM. Induction of cell cycle arrest and apoptotic response of head and neck squamous carcinoma cells (Detroit 562) by caffeic acid and caffeic acid phenethyl ester derivative.Evid. Based Complement. Alternat. Med.2017201711010.1155/2017/6793456 28167973
    [Google Scholar]
  59. KhanA. GillisK. ClorJ. TyagarajanK. Simplified evaluation of apoptosis using the Muse cell analyzer.Postepy Biochem.2012584492496 23662443
    [Google Scholar]
  60. SrivastavaV. WaniM.Y. Al-BogamiA.S. AhmadA. Piperidine based 1,2,3-triazolylacetamide derivatives induce cell cycle arrest and apoptotic cell death in Candida auris.J. Adv. Res.20212912113510.1016/j.jare.2020.11.002 33842010
    [Google Scholar]
  61. GatarekP. Kaluzna-CzaplinskaJ. Trimethylamine N-oxide (TMAO) in human health.EXCLI J.20212030131910.17179/excli2020‑3239 33746664
    [Google Scholar]
  62. DandamudiS. SlusserJ. MahoneyD.W. RedfieldM.M. RodehefferR.J. ChenH.H. The prevalence of diabetic cardiomyopathy: A population-based study in Olmsted County, Minnesota.J. Card. Fail.201420530430910.1016/j.cardfail.2014.02.007 24576788
    [Google Scholar]
  63. AnnunziataG. MaistoM. SchisanoC. CiampagliaR. NarcisoV. TenoreG. NovellinoE. Effects of grape pomace polyphenolic extract (Taurisolo®) in reducing TMAO serum levels in humans: Preliminary results from a randomized, placebo-controlled, cross-over study.Nutrients201911113910.3390/nu11010139 30634687
    [Google Scholar]
  64. YanS.F. RamasamyR. SchmidtA.M. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease.Expert Rev. Mol. Med.200911e910.1017/S146239940900101X 19278572
    [Google Scholar]
  65. YounusH. AnwarS. Prevention of non-enzymatic glycosylation (glycation): Implication in the treatment of diabetic complication.Int. J. Health Sci.201610224726310.12816/0048818 27103908
    [Google Scholar]
  66. FishmanS.L. SonmezH. BasmanC. SinghV. PoretskyL. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review.Mol. Med.20182415910.1186/s10020‑018‑0060‑3
    [Google Scholar]
  67. HiraiT. FujiyoshiK. YamadaS. MatsumotoT. KikuchiJ. IshidaK. IshidaM. Yamaoka-TojoM. InomataT. ShigetaK. TojoT. Advanced glycation end products are associated with diabetes status and physical functions in patients with cardiovascular disease.Nutrients20221415303210.3390/nu14153032 35893886
    [Google Scholar]
  68. SenonerT. DichtlW. Oxidative stress in cardiovascular diseases: Still a therapeutic target?Nutrients2019119209010.3390/nu11092090 31487802
    [Google Scholar]
  69. KulbackaJ. SaczkoJ. ChwiłkowskaA. Oxidative stress in cells damage processes.Pol. Merkuriusz Lek.2009271574447 19650429
    [Google Scholar]
  70. ValaeiK. TaherkhaniS. AraziH. SuzukiK. Cardiac oxidative stress and the therapeutic approaches to the intake of antioxidant supplements and physical activity.Nutrients20211310348310.3390/nu13103483 34684484
    [Google Scholar]
  71. HamedifardZ. FarrokhianA. ReinerŽ. BahmaniF. AsemiZ. GhotbiM. TaghizadehM. The effects of combined magnesium and zinc supplementation on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease.Lipids Health Dis.202019111210.1186/s12944‑020‑01298‑4 32466773
    [Google Scholar]
  72. GengX. DingY. ShenJ. RastogiR. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke.Neural Regen. Res.201914694895310.4103/1673‑5374.250568 30761998
    [Google Scholar]
  73. SignorelliS.S. AnzaldiM. LibraM. NavolanicP.M. MalaponteG. ManganoK. QuattrocchiC. Di MarcoR. FioreV. NeriS. Plasma levels of inflammatory biomarkers in peripheral arterial disease.Angiology201667987087410.1177/0003319716633339 26888895
    [Google Scholar]
  74. KaludercicN. Mialet-PerezJ. PaolocciN. PariniA. Di LisaF. Monoamine oxidases as sources of oxidants in the heart.J. Mol. Cell. Cardiol.201473344210.1016/j.yjmcc.2013.12.032 24412580
    [Google Scholar]
  75. XuD.P. LiY. MengX. ZhouT. ZhouY. ZhengJ. ZhangJ.J. LiH.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources.Int. J. Mol. Sci.20171819610.3390/ijms18010096 28067795
    [Google Scholar]
  76. YuM. GouvinhasI. RochaJ. BarrosA.I.R.N.A. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources.Sci. Rep.20211111004110.1038/s41598‑021‑89437‑4 33976317
    [Google Scholar]
  77. NijveldtR.J. van NoodE. van HoornD.E.C. BoelensP.G. van NorrenK. van LeeuwenP.A.M. Flavonoids: A review of probable mechanisms of action and potential applications.Am. J. Clin. Nutr.200174441842510.1093/ajcn/74.4.418 11566638
    [Google Scholar]
  78. ChowdhuryP. In silico investigation of phytoconstituents from Indian medicinal herb ‘ Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach.J. Biomol. Struct. Dyn.202139176792680910.1080/07391102.2020.1803968 32762511
    [Google Scholar]
  79. UpadhyayA. KumarK. KumarA. MishraH. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies.Int. J. Ayurveda Res.20101211212110.4103/0974‑7788.64405 20814526
    [Google Scholar]
  80. SharmaP. DwivedeeB.P. BishtD. DashA.K. KumarD. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia.Heliyon201959e0243710.1016/j.heliyon.2019.e02437 31701036
    [Google Scholar]
  81. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: a powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  82. ZordokyB.N.M. El-KadiA.O.S. H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart.J. Pharmacol. Toxicol. Methods200756331732210.1016/j.vascn.2007.06.001 17662623
    [Google Scholar]
  83. LamaS. MondaV. RizzoM.R. DacremaM. MaistoM. AnnunziataG. TenoreG.C. NovellinoE. StiusoP. Cardioprotective effects of taurisolo® in cardiomyoblast H9c2 cells under high-glucose and trimethylamine n-oxide treatment via de novo sphingolipid synthesis.Oxid. Med. Cell. Longev.2020202011110.1155/2020/2961406 33273998
    [Google Scholar]
  84. KayamaY. RaazU. JaggerA. AdamM. SchellingerI. SakamotoM. SuzukiH. ToyamaK. SpinJ. TsaoP. Diabetic cardiovascular disease induced by oxidative stress.Int. J. Mol. Sci.20151610252342526310.3390/ijms161025234 26512646
    [Google Scholar]
  85. RyterS.W. KimH.P. HoetzelA. ParkJ.W. NakahiraK. WangX. ChoiA.M.K. Mechanisms of cell death in oxidative stress.Antioxid. Redox Signal.200791498910.1089/ars.2007.9.49 17115887
    [Google Scholar]
  86. BoccellinoM. GalassoG. AmbrosioP. StiusoP. LamaS. Di ZazzoE. SchiavonS. VecchioD. D’ambrosioL. QuagliuoloL. FeolaA. FratiG. Di DomenicoM. H9c2 Cardiomyocytes under hypoxic stress: biological effects mediated by sentinel downstream targets.Oxid. Med. Cell. Longev.2021202111010.1155/2021/6874146 34630851
    [Google Scholar]
  87. WitekP. KorgaA. BurdanF. OstrowskaM. NosowskaB. IwanM. DudkaJ. The effect of a number of H9C2 rat cardiomyocytes passage on repeatability of cytotoxicity study results.Cytotechnology20166862407241510.1007/s10616‑016‑9957‑2 26946144
    [Google Scholar]
  88. ZembruskiN.C.L. StacheV. HaefeliW.E. WeissJ. 7-Aminoactinomycin D for apoptosis staining in flow cytometry.Anal. Biochem.20124291798110.1016/j.ab.2012.07.005 22796502
    [Google Scholar]
  89. LertworasirikulT. BunyaratvejA. A rapid measurement of apoptosis-associated light scatter changes using a hematology analyzer.Cytometry200042321521710.1002/1097‑0320(20000615)42:3<215::AID‑CYTO8>3.0.CO;2‑3 10861695
    [Google Scholar]
  90. ShanmughamM. BellangerS. LeoC.H. Gut-derived metabolite, Trimethylamine-N-oxide (TMAO) in cardio-metabolic diseases: detection, mechanism, and potential therapeutics.Pharmaceuticals (Basel)202316450410.3390/ph16040504 37111261
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257270512231013064533
Loading
/content/journals/chamc/10.2174/0118715257270512231013064533
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test