Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

In recent years, there has been increasing global concern about the rising prevalence and rapid progression of psychosomatic disorders (PD). This surge can be attributed to irregular biological conditions and the increasingly stressful lifestyles that individuals lead, ultimately resulting in functional impairments of vital organs. PD arises from intricate interactions involving the central nervous, endocrine, and immune systems. Notably, the hypothalamic-pituitary-adrenal (HPA) axis plays an essential role, as its dysregulation is influenced by prolonged stress and psychological distress. Consequently, stress hormones, including cortisol, exert detrimental effects on immunological function, inflammation, and homeostatic equilibrium. It emerges as physical symptoms influenced by psychological factors, such as persistent pain, gastrointestinal disturbances, or respiratory complications, and is pertinent to highlight that excessive and chronic stress, anxiety, or emotional distress may engender the onset or exacerbation of cardiovascular disorders, namely hypertension and heart disease. Although several therapeutic strategies have been proposed so far, the precise etiology of PD remains elusive due to the intricate nature of disease progression and the underlying modalities of action. This comprehensive review seeks to elucidate the diverse classifications of psychosomatic disorders, explicate their intricate mechanisms, and shed light on their impact on the human body, which may act as catalysts for the development of various other diseases. Additionally, it explores the inherent medico-clinical challenges posed by PD and also explores the cutting-edge technologies, tools, and data analytics pipelines that are being applied in the contemporary era to effectively analyze psychosomatic data.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257265832231009072953
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. World Health Organization.World Health Organization2022
    [Google Scholar]
  2. Stress and illness – psychology. Available from: https://opentext.wsu.edu/psych105nusbaum/chapter/stress-and-illness/ (accessed on: 2023-07-17).
  3. NisarH. SrivastavaR. Fundamental concept of psychosomatic disorders: A review.Int. J. Contemp. Med. Res.2018311218
    [Google Scholar]
  4. BunevicieneI. BuneviciusR. BagdonasS. BuneviciusA. The impact of pre-existing conditions and perceived health status on mental health during the COVID-19 pandemic.J. Public Health (Oxf.)2022441e88e9510.1093/pubmed/fdab248 34179996
    [Google Scholar]
  5. ParkJ.H. MoonJ.H. KimH.J. KongM.H. OhY.H. Sedentary lifestyle: overview of updated evidence of potential health risks.Korean J. Fam. Med.202041636537310.4082/kjfm.20.0165 33242381
    [Google Scholar]
  6. MartinsM.J. PalmeiraL. XavierA. CastilhoP. MacedoA. PereiraA.T. PintoA.M. CarreirasD. Barreto-CarvalhoC. The Clinical Interview for Psychotic Disorders (CIPD): Preliminary results on interrater agreement, reliability and qualitative feedback.Psychiatry Res.201927272372910.1016/j.psychres.2018.12.176 30832192
    [Google Scholar]
  7. BarskyA.J. Assessing the new DSM-5 diagnosis of somatic symptom disorder.Psychosom. Med.20167812410.1097/PSY.0000000000000287 26599912
    [Google Scholar]
  8. CuevasA.G. WilliamsD.R. AlbertM.A. Psychosocial factors and hypertension.Cardiol. Clin.201735222323010.1016/j.ccl.2016.12.004 28411896
    [Google Scholar]
  9. MahmoudN. AbuziedA. The prevalence of psychosomatic disorders among adolescent school girls in khartoum state –Sudan. Int. J. Res.-.GRANTHAALAYAH201979718110.29121/granthaalayah.v7.i9.2019.561
    [Google Scholar]
  10. ChinawaJ.M. NwokochaA.R.C. ManyikeP.C. ChinawaA.T. AniwadaE.C. NdukubaA.C. Psychosomatic problems among medical students: a myth or reality?Int. J. Ment. Health Syst.20161017210.1186/s13033‑016‑0105‑3 27933098
    [Google Scholar]
  11. AdsheadG. SarkarJ. The nature of personality disorder.Adv. Psychiatr. Treat.201218316217210.1192/apt.bp.109.006981
    [Google Scholar]
  12. TyrerP. Personality disorder.Br. J. Psychiatry20011791818410.1192/bjp.179.1.81 11435286
    [Google Scholar]
  13. RinaldiS. FontaniV. AravagliL. MannuP. CastagnaA. MargottiM. RosettaniB. Stress-related psycho-physiological disorders: randomized single blind placebo controlled naturalistic study of psychometric evaluation using a radio electric asymmetric treatment.Health Qual. Life Outcomes2011915410.1186/1477‑7525‑9‑54 21771304
    [Google Scholar]
  14. CrispA.H. RalphP.C. McGuinnessB. HarrisG. Psychoneurotic profiles in the adult population.Br. J. Med. Psychol.197851329330110.1111/j.2044‑8341.1978.tb02474.x 687532
    [Google Scholar]
  15. ChengP.W.C. ChangW.C. LoG.G. ChanK.W.S. LeeH.M.E. HuiL.M.C. SuenY.N. LeungY.L.E. Au YeungK.M.P. ChenS. MakK.F.H. ShamP.C. SantangeloB. VeroneseM. HoC.L. ChenY.H.E. HowesO.D. The role of dopamine dysregulation and evidence for the transdiagnostic nature of elevated dopamine synthesis in psychosis: a positron emission tomography (PET) study comparing schizophrenia, delusional disorder, and other psychotic disorders.Neuropsychopharmacology202045111870187610.1038/s41386‑020‑0740‑x 32612207
    [Google Scholar]
  16. González-RodríguezA. SeemanM.V. Differences between delusional disorder and schizophrenia: A mini narrative review.World J. Psychiatry202212568369210.5498/wjp.v12.i5.683 35663297
    [Google Scholar]
  17. Wolman, B.B., Ed.;Psychosomatic Disorders.Boston, MASpringer US198810.1007/978‑1‑4684‑5520‑5
    [Google Scholar]
  18. CowenP.J. Neuroendocrine and Neurochemical Processes in Depression.The Oxford Handbook of Mood Disorders201519020010.1093/oxfordhb/9780199973965.013.17
    [Google Scholar]
  19. ShengJ.A. BalesN.J. MyersS.A. BautistaA.I. RoueinfarM. HaleT.M. HandaR.J. The hypothalamic-pituitary-adrenal axis: development, programming actions of hormones, and maternal-fetal interactions.Front. Behav. Neurosci.20211460193910.3389/fnbeh.2020.601939 33519393
    [Google Scholar]
  20. Mental disorders. Available from: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on: 2023-07-18).
  21. OtteC. GoldS.M. PenninxB.W. ParianteC.M. EtkinA. FavaM. MohrD.C. SchatzbergA.F. Major depressive disorder.Nat. Rev. Dis. Primers20162112010.1038/nrdp.2016.65
    [Google Scholar]
  22. KupferD.J. FrankE. PhillipsM.L. Major depressive disorder: new clinical, neurobiological, and treatment perspectives.Lancet201237998201045105510.1016/S0140‑6736(11)60602‑8 22189047
    [Google Scholar]
  23. FlintJ. KendlerK.S. The genetics of major depression.Neuron201481348450310.1016/j.neuron.2014.01.027 24507187
    [Google Scholar]
  24. HouwingD.J. BuwaldaB. van der ZeeE.A. de BoerS.F. OlivierJ.D.A. The serotonin transporter and early life stress: Translational perspectives.Front. Cell. Neurosci.20171111710.3389/fncel.2017.00117 28491024
    [Google Scholar]
  25. LiZ. RuanM. ChenJ. FangY. Major depressive disorder: advances in neuroscience research and translational applications.Neurosci. Bull.202186388010.1007/s12264‑021‑00638‑3
    [Google Scholar]
  26. MiozzoR. EatonW.W. Joseph BienvenuO.III SamuelsJ. NestadtG. The serotonin transporter gene polymorphism (SLC6A4) and risk for psychiatric morbidity and comorbidity in the Baltimore ECA follow-up study.Compr. Psychiatry202010215219910.1016/j.comppsych.2020.152199 32911381
    [Google Scholar]
  27. McIntyreR.S. BerkM. BrietzkeE. GoldsteinB.I. López-JaramilloC. KessingL.V. MalhiG.S. NierenbergA.A. RosenblatJ.D. MajeedA. VietaE. VinbergM. YoungA.H. MansurR.B. Bipolar disorders.Lancet2020396102651841185610.1016/S0140‑6736(20)31544‑0 33278937
    [Google Scholar]
  28. GrandeI. BerkM. BirmaherB. VietaE. Bipolar disorder.Lancet2016387100271561157210.1016/S0140‑6736(15)00241‑X 26388529
    [Google Scholar]
  29. WeinerM. WarrenL. FiedorowiczJ.G. Cardiovascular morbidity and mortality in bipolar disorder.Ann. Clin. Psychiatry20112314047 21318195
    [Google Scholar]
  30. SchultzS.H. NorthS.W. ShieldsC.G. Schizophrenia: a review.Am. Fam. Physician2007751218211829 17619525
    [Google Scholar]
  31. ComerA.L. CarrierM. TremblayM.È. Cruz-MartínA. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation.Front. Cell. Neurosci.20201427410.3389/fncel.2020.00274 33061891
    [Google Scholar]
  32. RobinsonN. BergenS.E. Environmental risk factors for schizophrenia and bipolar disorder and their relationship to genetic risk: Current knowledge and future directions.Front. Genet.20211268666610.3389/fgene.2021.686666 34262598
    [Google Scholar]
  33. PrinceM. AlbaneseE. PenderR. FerriC. MazzottiD. R. PiovezanR. D. PadillaI. LuchsingerJ. A. World alzheimer report 2014 dementia and risk reduction an analysis of protective and modifiable factors supported by Dr Maëlenn Guerchet Dr Matthew Prina2014
    [Google Scholar]
  34. LaunerL.J. AndersenK. DeweyM.E. LetenneurL. OttA. AmaducciL.A. BrayneC. CopelandJ.R.M. DartiguesJ.F. Kragh-SorensenP. LoboA. Martinez-LageJ.M. StijnenT. HofmanA. Rates and risk factors for dementia and Alzheimer’s disease: Results from EURODEM pooled analyses.Neurology1999521788410.1212/WNL.52.1.78 9921852
    [Google Scholar]
  35. Dementia UK report | Alzheimer’s Society. Available from: https://www.alzheimers.org.uk/about-us/policy-and-influencing/dementia-uk-report (accessed on: 2023-07-20).
  36. Types of dementia | Alzheimer’s Society. Available from: https://www.alzheimers.org.uk/about-dementia/types-dementia (accessed on: 2023-07-18).
  37. What is Autism Spectrum Disorder? | CDC. Available from: https://www.cdc.gov/ncbddd/autism/facts.html (accessed on: 2023-07-18).
  38. HodgesH. FealkoC. SoaresN. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation.Transl. Pediatr.20209S1Suppl. 1S55S6510.21037/tp.2019.09.09 32206584
    [Google Scholar]
  39. ParkH.R. LeeJ.M. MoonH.E. LeeD.S. KimB.N. KimJ. KimD.G. PaekS.H. A short review on the current understanding of autism spectrum disorders.Exp. Neurobiol.201625111310.5607/en.2016.25.1.1 26924928
    [Google Scholar]
  40. SharmaS.R. GondaX. TaraziF.I. Autism spectrum disorder: Classification, diagnosis and therapy.Pharmacol. Ther.20181909110410.1016/j.pharmthera.2018.05.007 29763648
    [Google Scholar]
  41. NorkevicieneA. GocentieneR. SestokaiteA. SabaliauskaiteR. DabkevicieneD. JarmalaiteS. BulotieneG. A systematic review of candidate genes for major depression.Medicina (Kaunas)202258228510.3390/medicina58020285 35208605
    [Google Scholar]
  42. KEGG PATHWAY Database. Available from: https://www.genome.jp/kegg/pathway.html (accessed on: 2023-07-18).
  43. Depression Medicines | FDA. Available from: https://www.fda.gov/consumers/free-publications-women/depression-medicines (accessed 2023-07-18).
  44. BarnettJ.H. SmollerJ.W. The genetics of bipolar disorder.Neuroscience2009164133134310.1016/j.neuroscience.2009.03.080 19358880
    [Google Scholar]
  45. MuneerA. Wnt and GSK3 signaling pathways in bipolar disorder: clinical and therapeutic implications.Clin. Psychopharmacol. Neurosci.201715210011410.9758/cpn.2017.15.2.100 28449557
    [Google Scholar]
  46. DeningT. SandilyanM.B. Dementia: definitions and types.Nurs. Stand.20152937374210.7748/ns.29.37.37.e9405 25967445
    [Google Scholar]
  47. KahnR.S. SommerI.E. MurrayR.M. Meyer-LindenbergA. WeinbergerD.R. CannonT.D. O’DonovanM. CorrellC.U. KaneJ.M. Van OsJ. InselT.R. Schizophrenia.Nat. Rev. Dis. Primers20151112310.1038/nrdp.2015.67
    [Google Scholar]
  48. FarrellM.S. WergeT. SklarP. OwenM.J. OphoffR.A. O’donovanM.C. CorvinA. CichonS. SullivanP.F. Evaluating historical candidate genes for schizophrenia.Mol. Psychiatry201520555556210.1038/mp.2015.16
    [Google Scholar]
  49. da Silva MontenegroE.M. CostaC.S. CamposG. ScliarM. AlmeidaT.F. ZachiE.C. SilvaI.M.W. ChanA.J.S. ZarreiM. LourençoN.C.V. YamamotoG.L. SchererS. Passos-BuenoM.R. Meta‐analyses support previous and novel autism candidate genes: outcomes of an unexplored Brazilian cohort.Autism Res.202013219920610.1002/aur.2238 31696658
    [Google Scholar]
  50. List of 12 autism medications compared - drugs.com. Available from: https://www.drugs.com/condition/autism.html (accessed on:2023-07-18).
  51. HsuehY.P. LinY.C. Editorial: Autism signaling pathways.Front. Cell. Neurosci.20211576099410.3389/fncel.2021.760994 34650407
    [Google Scholar]
  52. KukurbaK. R. MontgomeryS. B. RNA sequencing and analysis.Cold Spring Harb Protoc2015201511pdb.top08497010.1101/pdb.top084970
    [Google Scholar]
  53. CloughE. BarrettT. The gene expression omnibus database.Methods Mol. Biol.201614189311010.1007/978‑1‑4939‑3578‑9_5 27008011
    [Google Scholar]
  54. Mental health prediction using machine learning: Taxonomy, applications, and challenges. Available from: https://www.hindawi.com/journals/acisc/2022/9970363/ (accessed on: 2023-07-18).
  55. SuC. XuZ. PathakJ. WangF. Deep learning in mental health outcome research: a scoping review.Transl. Psychiatry202010111610.1038/s41398‑020‑0780‑3 32532967
    [Google Scholar]
  56. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  57. bioDBnet - biological database network. Available from: https://biodbnet-abcc.ncifcrf.gov/ (accessed on: 2023-07-18).
  58. Home - UCI machine learning repository. Available from: https://archive.ics.uci.edu/ (accessed on: 2023-07-18).
  59. Kaggle: Your machine learning and data science community. Available from: https://www.kaggle.com/ (accessed on: 2023-07-18).
  60. Commonmind consortium knowledge portal - syn2759792 - Wiki. Available from: https://www.synapse.org//#!Synapse:syn2759792/wiki/69613 (accessed on: 2023-07-18).
  61. Home - GEO - NCBI. Available from: https://www.ncbi.nlm.nih.gov/geo/ (accessed on: 2023-07-18).
  62. ZhaoZ. LiY. ChenH. LuJ. ThompsonP.M. ChenJ. WangZ. XuJ. XuC. LiX.P.D. _NGSAtlas: a reference database combining next-generation sequencing epigenomic and transcriptomic data for psychiatric disorders.BMC Med. Genomics2014717110.1186/s12920‑014‑0071‑z 25551368
    [Google Scholar]
  63. YuJ.S. XueA.Y. RedeiE.E. BagheriN. A support vector machine model provides an accurate transcript-level-based diagnostic for major depressive disorder.Transl. Psychiatry2016610e93110.1038/tp.2016.198 27779627
    [Google Scholar]
  64. AlbagmiF.M. AlansariA. Al ShawanD.S. AlNujaidiH.Y. OlatunjiS.O. Prediction of generalized anxiety levels during the Covid-19 pandemic: A machine learning-based modeling approach.Informatics in Medicine Unlocked20222810085410.1016/j.imu.2022.100854 35071730
    [Google Scholar]
  65. BoedekerP. KearnsN.T. Linear discriminant analysis for prediction of group membership: a user-friendly primer.Adv. Methods Pract. Psychol. Sci.20192325026310.1177/2515245919849378
    [Google Scholar]
  66. ZhangC. ChenX. WangS. HuJ. WangC. LiuX. Using CatBoost algorithm to identify middle-aged and elderly depression, national health and nutrition examination survey 2011–2018.Psychiatry Res.202130611426110.1016/j.psychres.2021.114261 34781111
    [Google Scholar]
  67. DurstewitzD. KoppeG. Meyer-LindenbergA. Deep neural networks in psychiatry.Mol. Psychiatry201924111583159810.1038/s41380‑019‑0365‑9 30770893
    [Google Scholar]
  68. ŠimundićA-M. Measures of diagnostic accuracy: basic definitions.EJIFCC2009194203211 27683318
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257265832231009072953
Loading
/content/journals/chamc/10.2174/0118715257265832231009072953
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test