Skip to content
2000
Volume 11, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Green synthesized metal nanoparticles offer a broad spectrum of applications. They also offer unmatched significance because they are eco-friendly, cost-effective, and less toxic to human beings. Copper nanoparticles, when synthesized using green protocols, exhibit enriched properties and are substantially used in the preparation of nanofluids, medicine, conductive agents, . In this review, we have highlighted how the side effects of synthetic compounds have paved the way to look for greener alternatives in the field of nanomedicine. Green fabrication, characterization, and activities of copper nanoparticles using different biological sources have been extensively studied and reported. The biological sources have been broadly classified into two categories, plant-based and microbial-based. Natural resources are a reservoir of flavonoids, polyphenols, saponins, . They act as reducing and stabilizing agents for nanoparticles. Bio-synthesized metal nanoparticles have presented themselves as anti-microbial agents, bioreductors, cytotoxic agents, bioremediators, . This review has described the effective utilization of natural resources for synthesizing copper nanoparticles. It also emphasizes the recent developments in this field covering the diverse applications of the same.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461279579231103055412
2023-11-10
2025-01-19
Loading full text...

Full text loading...

References

  1. AazadfarP. SolatiE. DorranianD. Properties of Au/Copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions.Opt. Mater.20187838839510.1016/j.optmat.2018.02.050
    [Google Scholar]
  2. ZhangQ. L. YangZ. M. DingB. J. LanX. Z. GuoY. J. Preparation of copper nanoparticles by chemical reduction method using potassium borohydride.Trans. Nonferrous Met. Soc. China.201020Supplement 1s240s24410.1016/S1003‑6326(10)60047‑7
    [Google Scholar]
  3. YallappaS. ManjannaJ. SindheM.A. SatyanarayanN.D. PramodS.N. NagarajaK. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract.Spectrochim. Acta A Mol. Biomol. Spectrosc.201311010811510.1016/j.saa.2013.03.00523562740
    [Google Scholar]
  4. KanhedP. BirlaS. GaikwadS. GadeA. SeabraA.B. RubilarO. DuranN. RaiM. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi.Mater. Lett.2014115131710.1016/j.matlet.2013.10.011
    [Google Scholar]
  5. GiannousiK. AvramidisI. Dendrinou-SamaraC. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans.RSC Adv.20133442174310.1039/c3ra42118j
    [Google Scholar]
  6. CuenyaB.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects.Thin Solid Films2010518123127315010.1016/j.tsf.2010.01.018
    [Google Scholar]
  7. MengY. HuangJ. LiJ. JianY. YangS. LiH. Enzyme-mimicking single atoms enable selectivity control in visible-light-driven oxidation/ammoxidation to afford bio-based nitriles.Green Chem.202325114453446210.1039/D3GC00968H
    [Google Scholar]
  8. NasrollahzadehM. Mahmoudi-Gom YekS. MotahharifarN. Ghafori GM. Recent developments in the plant-mediated green synthesis of Ag-based nanoparticles for environmental and catalytic applications.Chem. Rec.201919122436247910.1002/tcr.20180020231021524
    [Google Scholar]
  9. AnK. SomorjaiG.A. NanocatalysisI. Nanocatalysis I: Synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies.Catal. Lett.2015145123324810.1007/s10562‑014‑1399‑x
    [Google Scholar]
  10. XuF. LiZ. ZhangL.L. LiuS. LiH. LiaoY. YangS. Synthesis of renewable isoindolines from bio-based furfurals.Green Chem.20232583297330510.1039/D2GC04786A
    [Google Scholar]
  11. SamuelM.S. RavikumarM. John JA. SelvarajanE. PatelH. ChanderP.S. SoundaryaJ. VuppalaS. BalajiR. ChandrasekarN. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications.Catalysts202212545910.3390/catal12050459
    [Google Scholar]
  12. ChanG.H. ZhaoJ. HicksE.M. SchatzG.C. Van DuyneR.P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography.Nano Lett.2007771947195210.1021/nl070648a
    [Google Scholar]
  13. HajipourM.J. FrommK.M. Akbar AshkarranA. Jimenez de AberasturiD. LarramendiI.R. RojoT. SerpooshanV. ParakW.J. MahmoudiM. Antibacterial properties of nanoparticles.Trends Biotechnol.2012301049951110.1016/j.tibtech.2012.06.00422884769
    [Google Scholar]
  14. HassanienR. HuseinD.Z. Al-HakkaniM.F. Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities.Heliyon2018412e0107710.1016/j.heliyon.2018.e0107730603710
    [Google Scholar]
  15. LiP. LiangJ. SuD. HuangY. PanJ. PengM. LiG. ShanY. Green and efficient biosynthesis of pectin-based copper nanoparticles and their antimicrobial activities.Bioprocess Biosyst. Eng.202043112017202610.1007/s00449‑020‑02390‑w32572568
    [Google Scholar]
  16. KasanaR.C. PanwarN.R. KaulR.K. KumarP. Biosynthesis and effects of copper nanoparticles on plants.Environ. Chem. Lett.201715223324010.1007/s10311‑017‑0615‑5
    [Google Scholar]
  17. BuvaneswariK. RevathyR. Biosynthesis of copper oxide nanoparticles and its antimicrobial activities.J. Nanosci. Technol.20184445045110.30799/jnst.141.18040413
    [Google Scholar]
  18. AkhterG. KhanA. AliS.G. KhanT.A. SiddiqiK.S. KhanH.M. Antibacterial and nematicidal properties of biosynthesized Cu nanoparticles using extract of holoparasitic plant.SN Applied Sciences202027126810.1007/s42452‑020‑3068‑6
    [Google Scholar]
  19. LvQ. ZhangB. XingX. ZhaoY. CaiR. WangW. GuQ. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation.J. Hazard. Mater.201834714114910.1016/j.jhazmat.2017.12.07029304452
    [Google Scholar]
  20. TahvilianR. ZangenehM.M. FalahiH. SadrjavadiK. JalalvandA.R. ZangenehA. Green synthesis and chemical characterization of copper nanoparticles using Allium saralicum leaves and assessment of their cytotoxicity, antioxidant, antimicrobial, and cutaneous wound healing properties.Appl. Organomet. Chem.20193312e523410.1002/aoc.5234
    [Google Scholar]
  21. ChandrakerS.K. LalM. GhoshM.K. TiwariV. GhoraiT.K. ShuklaR. Green synthesis of copper nanoparticles using leaf extract of Ageratum houstonianum Mill. and study of their photocatalytic and antibacterial activities.Nano Express20201101003310.1088/2632‑959X/ab8e99
    [Google Scholar]
  22. IssaabadiZ. NasrollahzadehM. SajadiS.M. Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity.J. Clean. Prod.20171423584359110.1016/j.jclepro.2016.10.109
    [Google Scholar]
  23. ChompunutL. WanapornT. AnupongW. NarayananM. AlshiekheidM. SabourA. KaruppusamyI. Lan ChiN.T. ShanmuganathanR. Synthesis of copper nanoparticles from the aqueous extract of Cynodon dactylon and evaluation of its antimicrobial and photocatalytic properties.Food Chem. Toxicol.202216611324510.1016/j.fct.2022.11324535728723
    [Google Scholar]
  24. NasrollahzadehM. GhorbannezhadF. IssaabadiZ. SajadiS.M. Recent developments in the biosynthesis of cu-based recyclable nanocatalysts using plant extracts and their application in the chemical reactions.Chem. Rec.2019192-360164310.1002/tcr.20180006930230690
    [Google Scholar]
  25. AkinteluS.A. FolorunsoA.S. FolorunsoF.A. OyebamijiA.K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation.Heliyon202067e0450810.1016/j.heliyon.2020.e0450832715145
    [Google Scholar]
  26. MartinsT.A.G. FalconiI.B.A. PavoskiG. de MoraesV.T. GalluzziB M.P. EspinosaD.C.R. Green synthesis, characterization, and application of copper nanoparticles obtained from printed circuit boards to degrade mining surfactant by Fenton process.J. Environ. Chem. Eng.20219610657610.1016/j.jece.2021.106576
    [Google Scholar]
  27. BondarenkoO. IvaskA. KäkinenA. KahruA. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action.Environ. Pollut.2012169818910.1016/j.envpol.2012.05.00922694973
    [Google Scholar]
  28. Abu-OqailA. WagihA. FathyA. ElkadyO. KabeelA.M. Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites.Ceram. Int.20194555866587510.1016/j.ceramint.2018.12.053
    [Google Scholar]
  29. HanT. LiJ. ZhaoN. HeC. Microstructure and properties of copper coated graphene nanoplates reinforced Al matrix composites developed by low temperature ball milling.Carbon202015931132310.1016/j.carbon.2019.12.029
    [Google Scholar]
  30. Fernández-AriasM. BoutinguizaM. Del ValJ. CovarrubiasC. BastiasF. GómezL. MaureiraM. Arias-GonzálezF. RiveiroA. PouJ. Copper nanoparticles obtained by laser ablation in liquids as bactericidal agent for dental applications.Appl. Surf. Sci.202050714503210.1016/j.apsusc.2019.145032
    [Google Scholar]
  31. SugashimaK. SuzukiK. SuzukiT. NakayamaT. SuematsuH. NiiharaK. Synthesis of zirconium carbide nanosized powders by pursed wire discharge in oleic acid.J. Korean Phys. Soc.201668234535010.3938/jkps.68.345
    [Google Scholar]
  32. SabbahI.A. ZakyM.F. HendawyM.E. NegmN.A. Synthesis, characterization and antimicrobial activity of colloidal copper nanoparticles stabilized by cationic thiol polyurethane surfactants.J. Polym. Res.2018251225210.1007/s10965‑018‑1649‑5
    [Google Scholar]
  33. VietP.V. NguyenH.T. CaoT.M. HieuL.V. Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method.J. Nanomater.201620161710.1155/2016/1957612
    [Google Scholar]
  34. DighoreN. JadhavS. GaikwadS. RajbhojA. Copper oxide nanoparticles synthesis by electrochemical method.Medziagotyra201622217017310.5755/j01.ms.22.2.7501
    [Google Scholar]
  35. DasS. SrivastavaV.C. Synthesis and characterization of ZnO/CuO nanocomposite by electrochemical method.Mater. Sci. Semicond. Process.20175717317710.1016/j.mssp.2016.10.031
    [Google Scholar]
  36. MercyR A. SelvaR G. CarolingG. Biosynthesis, characterization, antimicrobial activity of copper nanoparticles using fresh aqueous Ananas comosus L. (Pineapple) extract.Int. J. Pharm. Tech. Res.201584750769
    [Google Scholar]
  37. TiwariM. NarayananK. ThakarM.B. JaganiH.V. Venkata RaoJ. Biosynthesis and wound healing activity of copper nanoparticles.IET Nanobiotechnol.20148423023710.1049/iet‑nbt.2013.005225429502
    [Google Scholar]
  38. KolahalamL.A. PrasadK.R.S. KrishnaP.M. SuprajaN. ShanmuganS. The exploration of bio-inspired copper oxide nanoparticles: Synthesis, characterization and in-vitro biological investigations.Heliyon202286e0972610.1016/j.heliyon.2022.e0972635770152
    [Google Scholar]
  39. Paiva-SantosA.C. HerdadeA.M. GuerraC. PeixotoD. Pereira-SilvaM. ZeinaliM. Mascarenhas-MeloF. ParanhosA. VeigaF. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications.Int. J. Pharm.202159712031110.1016/j.ijpharm.2021.12031133539998
    [Google Scholar]
  40. GrigoreM. BiscuE. HolbanA. GestalM. GrumezescuA. Methods of synthesis, properties and biomedical applications of CuO nanoparticles.Pharmaceuticals2016947510.3390/ph904007527916867
    [Google Scholar]
  41. HarishchandraB.D. PappuswamyM. PuA. ShamaG. AP. ArumugamV.A. PeriyaswamyT. SundaramR. Copper nanoparticles: A review on synthesis, characterization and applications.Asian Pacific J. Cancer Biol.20205420121010.31557/apjcb.2020.5.4.201‑210
    [Google Scholar]
  42. ChaerunS.K. PrabowoB.A. WinarkoR. Bionanotechnology: The formation of copper nanoparticles assisted by biological agents and their applications as antimicrobial and antiviral agents.Environ. Nanotechnol. Monit. Manag.20221810070310.1016/j.enmm.2022.100703
    [Google Scholar]
  43. UmerA. NaveedS. RamzanN. RafiqueM.S. Selection of a suitable method for the synthesis of copper nanoparticles.Nano201275123000510.1142/S1793292012300058
    [Google Scholar]
  44. KhanA. RashidA. YounasR. ChongR. A chemical reduction approach to the synthesis of copper nanoparticles.Int. Nano Lett.201661212610.1007/s40089‑015‑0163‑6
    [Google Scholar]
  45. SastryA.B.S. KarthikA R.B. Sree RamaL C. MurtyB.S. Large-scale green synthesis of Cu nanoparticles.Environ. Chem. Lett.201311218318710.1007/s10311‑012‑0395‑x
    [Google Scholar]
  46. ShananZ.J. HadiS.M. ShanshoolS.K. Structural analysis of chemical and green synthesis of CuO nanoparticles and their effect on biofilm formation.Baghdad Sci. J.2018152021110.21123/bsj.2018.15.2.0211
    [Google Scholar]
  47. Al-JumailiB.E.B. TalibZ.A. ZakariaA. RamizyA. AhmedN.M. PaimanS.B. YingJ.L. MuhdI.B. BaqiahH. Impact of ablation time on Cu oxide nanoparticle green synthesis via pulsed laser ablation in liquid media.Appl. Phys., A Mater. Sci. Process.2018124957710.1007/s00339‑018‑1995‑5
    [Google Scholar]
  48. Abd-ElkareemJ. I. BassuonyH. M. MohammedS. M. FahmyH. M. Abd-ElkaderN. R. Eco-friendly methods of copper nanoparticles synthesis.J. Bionanosci.2016101153710.1166/jbns.2016.1350
    [Google Scholar]
  49. VarkeyJ.T. AjilP.A. AntonyA. Green chemical synthesis of copper nanoparticles-a comparative study with chemical reduction and electrolytic methods.Asian J. Chem.20172971591159410.14233/ajchem.2017.20602
    [Google Scholar]
  50. IligerK.S. SofiT.A. BhatN.A. AhangerF.A. SekharJ.C. ElhendiA.Z. Al-HuqailA.A. KhanF. Copper nanoparticles: Green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici.Saudi J. Biol. Sci.20212821477148610.1016/j.sjbs.2020.12.00333613075
    [Google Scholar]
  51. ZhangD. MaX. GuY. HuangH. ZhangG. Green synthesis of metallic nanoparticles and their potential applications to treat cancer.Front Chem.2020879910.3389/fchem.2020.0079933195027
    [Google Scholar]
  52. KrishnasamyR. ObbineniJ.M. Methods for green synthesis of metallic nanoparticles using plant extracts and their biological applications-a review.J. Biomimetics, Biomaterials and Biomed. Eng.2022567515110.4028/p‑8bf786
    [Google Scholar]
  53. YadiM. MostafaviE. SalehB. DavaranS. AliyevaI. KhalilovR. NikzamirM. NikzamirN. AkbarzadehA. PanahiY. MilaniM. Current developments in green synthesis of metallic nanoparticles using plant extracts: A review.Artif. Cells Nanomed. Biotechnol.201846sup333634310.1080/21691401.2018.149293130043657
    [Google Scholar]
  54. PalzaH. Antimicrobial polymers with metal nanoparticles.Int. J. Mol. Sci.20151612099211610.3390/ijms1601209925607734
    [Google Scholar]
  55. TantubayS. MukhopadhyayS.K. KalitaH. KonarS. DeyS. PathakA. PramanikP. Carboxymethylated chitosan-stabilized copper nanoparticles: A promise to contribute a potent antifungal and antibacterial agent.J. Nanopart. Res.201517624310.1007/s11051‑015‑3047‑9
    [Google Scholar]
  56. JayarambabuN. AkshaykranthA. Venkatappa RaoT. VenkateswaraRK. RakeshK R. Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity.Mater. Lett.202025912681310.1016/j.matlet.2019.126813
    [Google Scholar]
  57. SahayarajK. RajeshS. Bionanoparticles: Synthesis and antimicrobial applications.Science against microbial pathogens: communicating current research and technological advances201123228244
    [Google Scholar]
  58. ČerníkM. Thekkae PV.V. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application.Int. J. Nanomed.2013888989810.2147/IJN.S4059923467397
    [Google Scholar]
  59. Pérez-BeltránC.H. García-GuzmánJ.J. FerreiraB. Estévez-HernándezO. López-IglesiasD. Cubillana-AguileraL. LinkW. StănicăN. Rosa da CostaA.M. Palacios-SantanderJ.M. One-minute and green synthesis of magnetic iron oxide nanoparticles assisted by design of experiments and high energy ultrasound: Application to biosensing and immunoprecipitation.Mater. Sci. Eng. C202112311202310.1016/j.msec.2021.11202333812640
    [Google Scholar]
  60. JainA.S. PawarP.S. SarkarA. JunnuthulaV. DyawanapellyS. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications.Int. J. Mol. Sci.202122211199310.3390/ijms22211199334769419
    [Google Scholar]
  61. AhmedR.H. MustafaD.E. Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan.Int. Nano Lett.202010111410.1007/s40089‑019‑00291‑9
    [Google Scholar]
  62. HafeezM. ShaheenR. AkramB. Zain-ul-Abdin HaqS. MahsudS. AliS. KhanR.T. Green synthesis of cobalt oxide nanoparticles for potential biological applications.Mater. Res. Express20207202501910.1088/2053‑1591/ab70dd
    [Google Scholar]
  63. RaoM.D. PennathurG. Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts.Mater. Res. Bull.201785647310.1016/j.materresbull.2016.08.049
    [Google Scholar]
  64. AhmadS. MunirS. ZebN. UllahA. KhanB. AliJ. BilalM. OmerM. AlamzebM. SalmanS.M. AliS. Green nanotechnology: A review on green synthesis of silver nanoparticles-an ecofriendly approach.Int. J. Nanomed.2019145087510710.2147/IJN.S20025431371949
    [Google Scholar]
  65. KowshikM. DeshmukhN. VogelW. UrbanJ. KulkarniS.K. PaknikarK.M. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode.Biotechnol. Bioeng.200278558358810.1002/bit.1023312115128
    [Google Scholar]
  66. GerickeM. PinchesA. Biological synthesis of metal nanoparticles.Hydrometallurgy2006831-413214010.1016/j.hydromet.2006.03.019
    [Google Scholar]
  67. JhaA.K. PrasadK. PrasadK. A green low-cost biosynthesis of Sb2O3 nanoparticles.Biochem. Eng. J.200943330330610.1016/j.bej.2008.10.01619844916
    [Google Scholar]
  68. RajeshkumarS. MenonS. VenkatK S. TambuwalaM.M. BakshiH.A. MehtaM. SatijaS. GuptaG. ChellappanD.K. ThangaveluL. DuaK. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract.J. Photochem. Photobiol. B201919711153110.1016/j.jphotobiol.2019.11153131212244
    [Google Scholar]
  69. SelviP. MurugeshS. YuvarajanR.Y. RajasekarA.R. Screening the therapeutic potential of methanolic stem extract of Cissus arnottiana.Biomed. Pharmacol. J.20211431405141310.13005/bpj/2243
    [Google Scholar]
  70. KulkarniV. SuryawanshiS. KulkarniP. Biosynthesis of copper nanoparticles using aqueous extract of Eucalyptus Sp. Plant leaves.Curr. Sci.20151092255257
    [Google Scholar]
  71. AjiloreB.S. OluwadairoT.O. OlorunnisolaO.S. FadahunsiO.S. AdegbolaP.I. GC–MS analysis, toxicological and oral glucose tolerance assessments of methanolic leaf extract of Eucalyptus globulus.Future J. Pharm. Sci.20217116210.1186/s43094‑021‑00312‑5
    [Google Scholar]
  72. SebeiK. SakouhiF. HerchiW. KhoujaM. BoukhchinaS. Chemical composition and antibacterial activities of Seven eucalyptus species essential oils leaves.Biol. Res.2015481710.1186/0717‑6287‑48‑725654423
    [Google Scholar]
  73. MittalJ. SharmaM. M. Enhanced production of berberine in in vitro regenerated cell of Tinospora cordifolia and its analysis through LCMS QToF.3 Biotech2017712510.1007/s13205‑016‑0592‑6
    [Google Scholar]
  74. SharmaP. PantS. DaveV. TakK. SadhuV. ReddyK.R. Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation.J. Microbiol. Methods201916010711610.1016/j.mimet.2019.03.00730871999
    [Google Scholar]
  75. NagarN. DevraV. Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves.Mater. Chem. Phys.2018213445110.1016/j.matchemphys.2018.04.007
    [Google Scholar]
  76. VergalloC. PanzariniE. DiniL. High performance liquid chromatographic profiling of antioxidant and antidiabetic flavonoids purified from Azadirachta indica (neem) leaf ethanolic extract.Pure Appl. Chem.201991101631164010.1515/pac‑2018‑1221
    [Google Scholar]
  77. HasheminyaS. M. DehghannyaJ. Green synthesis and characterization of copper nanoparticles using Eryngium caucasicum trautv aqueous extracts and its antioxidant and antimicrobial properties.An Int. J.20193881019102610.1080/02726351.2019.1658664
    [Google Scholar]
  78. NasrollahzadehM. MomeniS.S. SajadiS.M. Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6.J. Colloid Interface Sci.201750647147710.1016/j.jcis.2017.07.07228755642
    [Google Scholar]
  79. MukhopadhyayR. KaziJ. DebnathM.C. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: Evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells.Biomed. Pharmacother.2018971373138510.1016/j.biopha.2017.10.16729156527
    [Google Scholar]
  80. AgarwalA. PrajapatiR. RazaS.K. ThakurL.K. GC-MS analysis and antibacterial activity of aerial parts of Quisqualis indica plant extracts.Indian J. Pharm. Edu. Res.201751232933610.5530/ijper.51.2.39
    [Google Scholar]
  81. MaliS.C. DhakaA. GithalaC.K. TrivediR. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties.Biotechnol. Rep.202027e0051810.1016/j.btre.2020.e0051832923378
    [Google Scholar]
  82. HumphreysS Z. MartínezÁ A.F. HernándezO M.M. ElizaldeP E.A. PalmaT L. BaldenegroP L.A. PadillaV F. Luna-BárcenasG. España SánchezB.L. Green synthesis of copper nanoparticles and their formulation into face masks: An antibacterial study.Polym. Compos.202344290791610.1002/pc.27142
    [Google Scholar]
  83. DasP.E. Abu-YousefI.A. MajdalawiehA.F. NarasimhanS. PoltronieriP. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities.Molecules202025355510.3390/molecules2503055532012912
    [Google Scholar]
  84. AmaliyahS. PangestiD.P. MasruriM. SabarudinA. SumitroS.B. Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent.Heliyon202068e0463610.1016/j.heliyon.2020.e0463632793839
    [Google Scholar]
  85. KhaniR. RoostaeiB. BagherzadeG. MoudiM. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay.J. Mol. Liq.201825554154910.1016/j.molliq.2018.02.010
    [Google Scholar]
  86. JahanI. ErciF. IsildakI. Facile microwave-mediated green synthesis of non-toxic copper nanoparticles using Citrus sinensis aqueous fruit extract and their antibacterial potentials.J. Drug Deliv. Sci. Technol.20216110217210.1016/j.jddst.2020.102172
    [Google Scholar]
  87. ShubhashreeK.R. ReddyR. GangulaA.K. NaganandaG.S. BadiyaP.K. RamamurthyS.S. AramwitP. ReddyN. Green synthesis of copper nanoparticles using aqueous extracts from Hyptis suaveolens (L.).Mater. Chem. Phys.202228012579510.1016/j.matchemphys.2022.125795
    [Google Scholar]
  88. WangG. ZhaoK. GaoC. WangJ. MeiY. ZhengX. ZhuP. Green synthesis of copper nanoparticles using green coffee bean and their applications for efficient reduction of organic dyes.J. Environ. Chem. Eng.20219410533110.1016/j.jece.2021.105331
    [Google Scholar]
  89. KhatamiM. EbrahimiK. GalehdarN. MoradiM.N. MoayyedkazemiA. Green synthesis and characterization of copper nanoparticles and their effects on liver function and hematological parameters in mice.Turkish J. Pharm. Sci.202017441241610.4274/tjps.galenos.2019.2800032939137
    [Google Scholar]
  90. ChungI.M. Abdul RahumanA. MarimuthuS. VishnuK A. AnbarasanK. PadminiP. RajakumarG. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities.Exp. Ther. Med.2017141182410.3892/etm.2017.446628672888
    [Google Scholar]
  91. DługoszO. ChwastowskiJ. BanachM. Hawthorn berries extract for the green synthesis of copper and silver nanoparticles.Chem. Pap.202074123925210.1007/s11696‑019‑00873‑z
    [Google Scholar]
  92. DavarnejadR. AziziA. AsadiS. MohammadiM. Green synthesis of copper nanoparticles using Centaurea cyanus plant extract: A cationic dye adsorption application.Iran. J. Chem. Chem. Eng.20224111410.30492/ijcce.2020.120707.3944
    [Google Scholar]
  93. RajeshK.M. AjithaB. ReddyY.A.K. SuneethaY. ReddyP.S. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties.Optik201815459360010.1016/j.ijleo.2017.10.074
    [Google Scholar]
  94. MandavaK. KadimcharlaK. KeesaraN.R. FatimaS.N. BommenaP. BatchuU. R. Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics.Indian J. Pharm. Sci.201779569570010.4172/pharmaceutical‑sciences.1000281
    [Google Scholar]
  95. NoorS. ShahZ. JavedA. AliA. HussainS.B. ZafarS. AliH. MuhammadS.A. A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities.J. Microbiol. Methods202017410596610.1016/j.mimet.2020.10596632474053
    [Google Scholar]
  96. TiwariM. JainP. ChandrashekharHR. NarayananK. BhatK.U. UdupaN. RaoJ.V. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate.Process Biochem.201651101348135610.1016/j.procbio.2016.08.008
    [Google Scholar]
  97. AbboudY. SaffajT. ChagraouiA. El BouariA. BrouziK. TananeO. IhssaneB. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata).Appl. Nanosci.20144557157610.1007/s13204‑013‑0233‑x
    [Google Scholar]
  98. SayaraT. SánchezA. Bioremediation of PAH-Contaminated Soils: Process enhancement through composting/compost.SwitzerlandApplied Sciences202010.3390/app10113684
    [Google Scholar]
  99. VarshneyR. BhadauriaS. GaurM.S. PasrichaR. Copper nanoparticles synthesis from electroplating industry effluent.Nano Biomed. Eng.20113211511910.5101/nbe.v3i2.p115‑119
    [Google Scholar]
  100. SaitawadekarA. KakdeU.B. Green synthesis of copper nanoparticles using Aspergillus flavus.J. Crit. Rev.20207161083109010.31838/jcr.07.16.138
    [Google Scholar]
  101. AboeitaN.M. FahmyS.A. El-SayedM.M.H. AzzazyH.M.E.S. ShoeibT. Enhanced anticancer activity of nedaplatin loaded onto copper nanoparticles synthesized using red algae.Pharmaceutics202214241810.3390/pharmaceutics1402041835214150
    [Google Scholar]
  102. SalvadoriM.R. AndoR.A. Oller Do NascimentoC.A. CorrêaB. Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.201449111286129510.1080/10934529.2014.91006724967562
    [Google Scholar]
  103. SalvadoriM.R. AndoR.A. Oller do NascimentoC.A. CorrêaB. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia.PLoS One201491e8796810.1371/journal.pone.008796824489975
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461279579231103055412
Loading
/content/journals/cgc/10.2174/0122133461279579231103055412
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test