Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

The study aims to discuss innovative extraction approaches as compared to available traditional methods to optimize the yield and quality of pectin by eco-friendly techniques and emphasizes purification and analytical techniques for quality toward sustainable development of pectin-based products. Pectin is a complex polysaccharide present in plants, forming a protective barrier and providing mechanical strength to the plant cell. Therefore pectin, a by-product of the food industry, can be an efficient waste valorization product for utilization in the food and pharmaceutical industry as a thickener, stabilizer, and gelling agent. Pectin complex chemistry provides a wide scope for modification of monomers that can alter the properties of pectin and thereby add to the varied applications of pectin enlisted in the review. The review synthesizes findings from meticulously conducted research investigations and authorized scholarly articles. Information retrieval used reputable academic search engines, including PubMed, Elsevier, and Bentham publications with keywords such as “pectin” “chemical modification of pectin”, “drug delivery”, “green methods” and “agro-industrial residues” for a comprehensive exploration. The comprehensive review delves into pectin chemistry and extraction methods, modification, and characterization techniques are discussed along with versatile applications in the food, pharmaceutical, and other industries. Pectin abundantly present in the outer coat or peels of fruits and vegetables has been the best example of a circular economy and has led to zero waste in agricultural industries. The review has elaborated modifications in pectin for its use as an excipient in the pharmaceutical industry, therapeutic use, targeted drug delivery, and food industries.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461332276240903075341
2024-09-18
2025-06-15
Loading full text...

Full text loading...

References

  1. BraunG. GhoshK. Transforming food and agriculture to achieve the Sustainable Development Goals (SDGs) - Good practices from FAO/GEF projects around the world.RomeFAO202010.4060/ca8768en
    [Google Scholar]
  2. SarangiP.K. MishraS. MohantyP. SinghP.K. SrivastavaR.K. PattnaikR. AdhyaT.K. DasT. LenkaB. GuptaV.K. SharmaM. SahooU.K. Food and fruit waste valorisation for pectin recovery: Recent process technologies and future prospects.Int. J. Biol. Macromol.202323512392910.1016/j.ijbiomac.2023.123929 36882142
    [Google Scholar]
  3. Roman-BennA. ContadorC.A. LiM.W. LamH.M. Ah-HenK. UlloaP.E. RavanalM.C. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues.Food Chem. Adv.2023210019210.1016/j.focha.2023.100192
    [Google Scholar]
  4. MohnenD. Pectin structure and biosynthesis.Curr. Opin. Plant Biol.200811326627710.1016/j.pbi.2008.03.006
    [Google Scholar]
  5. FreitasC.M.P. SousaR.C.S. DiasM.M.S. CoimbraJ.S.R. Extraction of pectin from passion fruit peel.Food Eng. Rev.202012446047210.1007/s12393‑020‑09254‑9
    [Google Scholar]
  6. SriamornsakP. Chemistry of pectin and its pharmaceutical use: A review.Silpakorn Univ. Int. J.200331-2206228
    [Google Scholar]
  7. ButlerI.P. BantaR.A. TyuftinA.A. HolmesJ. PathaniaS. KerryJ. Pectin as a biopolymer source for packaging films using a circular economy approach: Origins, extraction, structure and films properties.Food Packag. Shelf Life20234010122410.1016/j.fpsl.2023.101224
    [Google Scholar]
  8. JohnstonR.B. The 2030 Agenda for Sustainable Development.Proceedings of the Sixth International Congress on Arsenic in the Environment (As2016)19-23 June 2016 Stockholm, Sweden 2016
    [Google Scholar]
  9. CamposD.A. Gómez-GarcíaR. Vilas-BoasA.A. MadureiraA.R. PintadoM.M. Management of fruit industrial by-products—a case study on circular economy approach.Molecules202025232010.3390/molecules25020320 31941124
    [Google Scholar]
  10. ChandelV. BiswasD. RoyS. VaidyaD. VermaA. GuptaA. Current advancements in pectin: Extraction, properties and multifunctional applications.Foods20221117268310.3390/foods11172683 36076865
    [Google Scholar]
  11. VoragenA.G.J. CoenenG.J. VerhoefR.P. ScholsH.A. Pectin, a versatile polysaccharide present in plant cell walls.Struct. Chem.200920226327510.1007/s11224‑009‑9442‑z
    [Google Scholar]
  12. BroxtermanS.E. ScholsH.A. Interactions between pectin and cellulose in primary plant cell walls.Carbohydr. Polym.201819226327210.1016/j.carbpol.2018.03.070 29691020
    [Google Scholar]
  13. Sista KameshwarA.K. QinW. Structural and functional properties of pectin and lignin-carbohydrate complexes de-esterases: A review.Bioresour. Bioprocess.2018514310.1186/s40643‑018‑0230‑8
    [Google Scholar]
  14. WangD. YeatsT.H. UluisikS. RoseJ.K.C. SeymourG.B. Fruit softening: Revisiting the role of pectin.Trends Plant Sci.201823430231010.1016/j.tplants.2018.01.006 29429585
    [Google Scholar]
  15. CaffallK.H. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides.Carbohydr. Res.20093441418791900
    [Google Scholar]
  16. JoslynM.A. The chemistry of protopectin: A critical review of historical data and recent developments.Adv. Food Res.196311110710.1016/S0065‑2628(08)60064‑6
    [Google Scholar]
  17. ChristiaensS. UwibambeD. UyttebroekM. Van DroogenbroeckB. Van LoeyA.M. HendrickxM.E. Pectin characterization in vegetable waste streams: A starting point for waste valorization in the food industry. LWT-.J. Food Technol.2015612275282
    [Google Scholar]
  18. BarrettA.J. NorthcoteD.H. Apple fruit pectic substances.Biochem. J.196594361762710.1042/bj0940617 14340052
    [Google Scholar]
  19. Novosel’skayaI.L. VoropaevaN.L. SemenovaL.N. RashidovaS.S. Trends in the science and applications of pectins.Chem. Nat. Compd.200036111010.1007/BF02234898
    [Google Scholar]
  20. WillatsW.G.T. KnoxJ.P. MikkelsenJ.D. Pectin: New insights into an old polymer are starting to gel.Trends Food Sci. Technol.20061739710410.1016/j.tifs.2005.10.008
    [Google Scholar]
  21. ScholsH.A. VierhuisE. BakxE.J. VoragenA.G.J. Different populations of pectic hairy regions occur in apple cell walls.Carbohydr. Res.1995275234336010.1016/0008‑6215(95)00155‑M 8529228
    [Google Scholar]
  22. KaczmarskaA. PieczywekP.M. CybulskaJ. ZdunekA. Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review.Carbohydr. Polym.202227811890910.1016/j.carbpol.2021.118909 34973730
    [Google Scholar]
  23. FunakawaH. MiwaK. Synthesis of borate cross-linked rhamnogalacturonan II.Front. Plant Sci.2015622310.3389/fpls.2015.00223 25954281
    [Google Scholar]
  24. ScholsH.A. BakxE.J. SchipperD. VoragenA.G.J. A xylogalacturonan subunit present in the modified hairy regions of apple pectin.Carbohydr. Res.199527926527910.1016/0008‑6215(95)00287‑1
    [Google Scholar]
  25. MayC.D. Industrial pectins: Sources, production and applications.Carbohydr. Polym.1990121799910.1016/0144‑8617(90)90105‑2
    [Google Scholar]
  26. AxelosM.A. ThibaultJ.F. The chemistry of low-methoxyl pectin gelation.AmsterdamElsevier199110.1016/B978‑0‑08‑092644‑5.50011‑X
    [Google Scholar]
  27. CiriminnaR. Chavarría-HernándezN. Inés Rodríguez HernándezA. PagliaroM. Pectin: A new perspective from the biorefinery standpoint.Biofuels Bioprod. Biorefin.20159436837710.1002/bbb.1551
    [Google Scholar]
  28. LootensD. CapelF. DurandD. NicolaiT. BoulenguerP. LangendorffV. Influence of pH, Ca concentration, temperature and amidation on the gelation of low methoxyl pectin.Food Hydrocoll.200317323724410.1016/S0268‑005X(02)00056‑5
    [Google Scholar]
  29. OakenfullD.G. The chemistry of high-methoxylpectins.The chemistry of low-methoxyl pectin gelation.AmsterdamElsevier1991
    [Google Scholar]
  30. Kalla-BertholdtA.M. BaierA.K. RauhC. Potential of modification of techno-functional properties and structural characteristics of citrus, apple, oat, and pea dietary fiber by high-intensity ultrasound.Foods20231219366310.3390/foods12193663 37835316
    [Google Scholar]
  31. GrantG.T. MorrisE.R. ReesD.A. SmithP.J.C. ThomD. Biological interactions between polysaccharides and divalent cations: The egg‐box model.FEBS Lett.197332119519810.1016/0014‑5793(73)80770‑7
    [Google Scholar]
  32. MorrisE.R. PowellD.A. GidleyM.J. ReesD.A. Conformations and interactions of pectins.J. Mol. Biol.1982155450751610.1016/0022‑2836(82)90484‑3 7086901
    [Google Scholar]
  33. FreitasC.M.P. CoimbraJ.S.R. SouzaV.G.L. SousaR.C.S. Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review.Coatings202111892210.3390/coatings11080922
    [Google Scholar]
  34. YangJ.S. MuT.H. MaM.M. Extraction, structure, and emulsifying properties of pectin from potato pulp.Food Chem.201824419720510.1016/j.foodchem.2017.10.059 29120771
    [Google Scholar]
  35. MéndezD.A. FabraM.J. Gómez-MascaraqueL. López-RubioA. Martinez-AbadA. Modelling the extraction of pectin towards the valorisation of watermelon rind waste.Foods202110473810.3390/foods10040738 33807203
    [Google Scholar]
  36. Luisa FranchiM. MarzialettiM.B. PoseG.N. CavalittoS.F. Evaluation of enzymatic Pectin extraction by a recombinant Polygalacturonase (pgi) from apples and pears pomace of Argentinean production and characterization of the extracted pectin.J. Food Process. Technol.2014581410.4172/2157‑7110.1000352
    [Google Scholar]
  37. CuiS.W. ChangY.H. Emulsifying and structural properties of pectin enzymatically extracted from pumpkin.Lebensm. Wiss. Technol.201458239640310.1016/j.lwt.2014.04.012
    [Google Scholar]
  38. Muñoz-AlmagroN. ProdanovM. WildeP.J. VillamielM. MontillaA. Obtainment and characterisation of pectin from sunflower heads purified by membrane separation techniques.Food Chem.202031812647610.1016/j.foodchem.2020.126476 32143132
    [Google Scholar]
  39. MolleaC. ChiampoF. ContiR. Extraction and characterization of pectins from cocoa husks: A preliminary study.Food Chem.2008107313531356
    [Google Scholar]
  40. ChanS.Y. ChooW.S. Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks.Food Chem.201314143752375810.1016/j.foodchem.2013.06.097 23993545
    [Google Scholar]
  41. YangL. ZhangH. ZhaoY. HuangJ. ZhuD. WangS. ZhuL. ChenL. XuX. LiuH. Chemical structure, chain conformation and rheological properties of pectic polysaccharides from soy hulls.Int. J. Biol. Macromol.2020148414810.1016/j.ijbiomac.2020.01.047 31917981
    [Google Scholar]
  42. ReddyJ.P. RhimJ.W. Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic.J. Nat. Fibers201815446547310.1080/15440478.2014.945227
    [Google Scholar]
  43. FergusonK. da CruzM.A. FerrareziR. DoradoC. BaiJ. CameronR.G. Impact of huanglongbing (HLB) on grapefruit pectin yield and quality during grapefruit maturation.Food Hydrocoll.202111310655310.1016/j.foodhyd.2020.106553
    [Google Scholar]
  44. PutraN.R. AzizA.H.A. FaizalA.N.M. Che YunusM.A. Methods and potential in valorization of banana peels waste by various extraction processes: In review.Sustainability (Basel)202214171057110.3390/su141710571
    [Google Scholar]
  45. ZhangS. HuH. WangL. LiuF. PanS. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin.Food Chem.201824423223710.1016/j.foodchem.2017.10.071 29120775
    [Google Scholar]
  46. WilliamsP.A. SayersC. ViebkeC. SenanC. MazoyerJ. BoulenguerP. Elucidation of the emulsification properties of sugar beet pectin.J. Agric. Food Chem.20055393592359710.1021/jf0404142 15853406
    [Google Scholar]
  47. LerouxJ. LangendorffV. SchickG. VaishnavV. MazoyerJ. Emulsion stabilizing properties of pectin.Food Hydrocoll.200317445546210.1016/S0268‑005X(03)00027‑4
    [Google Scholar]
  48. MaoG. WuD. WeiC. TaoW. YeX. LinhardtR.J. OrfilaC. ChenS. Reconsidering conventional and innovative methods for pectin extraction from fruit and vegetable waste: Targeting rhamnogalacturonan I.Trends Food Sci. Technol.201994657810.1016/j.tifs.2019.11.001
    [Google Scholar]
  49. HosseiniS.S. KhodaiyanF. YarmandM.S. Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties.Int. J. Biol. Macromol.20168292092610.1016/j.ijbiomac.2015.11.007 26549440
    [Google Scholar]
  50. ColodelC. VriesmannL.C. TeófiloR.F. de Oliveira PetkowiczC.L. Extraction of pectin from ponkan (Citrus reticulata Blanco cv. Ponkan) peel: Optimization and structural characterization.Int. J. Biol. Macromol.201811738539110.1016/j.ijbiomac.2018.05.048 29753767
    [Google Scholar]
  51. Polanco-LugoE. Martínez-CastilloJ.I. Cuevas-BernardinoJ.C. González-FloresT. Valdez-OjedaR. PachecoN. Ayora-TalaveraT. Citrus pectin obtained by ultrasound-assisted extraction: Physicochemical, structural, rheological and functional properties.CYTA J. Food201917146347110.1080/19476337.2019.1600036
    [Google Scholar]
  52. ZhangH. ChenJ. LiJ. YanL. LiS. YeX. LiuD. DingT. LinhardtR.J. OrfilaC. ChenS. Extraction and characterization of RG-I enriched pectic polysaccharides from mandarin citrus peel.Food Hydrocoll.20187957958610.1016/j.foodhyd.2017.12.002
    [Google Scholar]
  53. PatienceN.A. SchieppatiD. BoffitoD.C. Continuous and pulsed ultrasound pectin extraction from navel orange peels.Ultrason. Sonochem.20217310548010.1016/j.ultsonch.2021.105480 33601279
    [Google Scholar]
  54. SayahM.Y. ChabirR. BenyahiaH. Rodi KandriY. Ouazzani ChahdiF. TouzaniH. ErrachidiF. Yield, esterification degree and molecular weight evaluation of pectins isolated from orange and grapefruit peels under different conditions.PLoS One2016119e016175110.1371/journal.pone.0161751 27644093
    [Google Scholar]
  55. KayaM. SousaA.G. CrépeauM.J. SørensenS.O. RaletM.C. Characterization of citrus pectin samples extracted under different conditions: Influence of acid type and pH of extraction.Ann. Bot.201411461319132610.1093/aob/mcu150
    [Google Scholar]
  56. YapoB.M. LerougeP. ThibaultJ.F. RaletM.C. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II.Carbohydr. Polym.200769342643510.1016/j.carbpol.2006.12.024
    [Google Scholar]
  57. WangX. ChenQ. LüX. Pectin extracted from apple pomace and citrus peel by subcritical water.Food Hydrocoll.20143812913710.1016/j.foodhyd.2013.12.003
    [Google Scholar]
  58. MeneguzzoF. BrunettiC. FidalgoA. CiriminnaR. DelisiR. AlbaneseL. ZabiniF. GoriA. dos Santos NascimentoL. De CarloA. FerriniF. IlharcoL. PagliaroM. Real-scale integral valorization of waste orange peel via hydrodynamic cavitation.Processes (Basel)20197958110.3390/pr7090581
    [Google Scholar]
  59. ChoE.H. JungH.T. LeeB.H. KimH.S. RheeJ.K. YooS.H. Green process development for apple-peel pectin production by organic acid extraction.Carbohydr. Polym.20192049710310.1016/j.carbpol.2018.09.086 30366548
    [Google Scholar]
  60. ShaliniR. GuptaD.K. Utilization of pomace from apple processing industries: A review.J. Food Sci. Technol.201047436537110.1007/s13197‑010‑0061‑x 23572655
    [Google Scholar]
  61. SharmaP.C. GuptaA. KaushalP. Optimization of a method for extraction of pectin from apple pomace.IJNPR201552184189
    [Google Scholar]
  62. MahmoudM.H. Abu-SalemF.M. AzabD.E.S.H. A comparative study of pectin green extraction methods from apple waste: Characterization and functional properties.Int. J. Food Sci.202220221910.1155/2022/2865921 36578434
    [Google Scholar]
  63. ZhengJ. LiH. WangD. LiR. WangS. LingB. Radio frequency assisted extraction of pectin from apple pomace: Process optimization and comparison with microwave and conventional methods.Food Hydrocoll.202112110703110.1016/j.foodhyd.2021.107031
    [Google Scholar]
  64. ZhangF. ZhangL. ChenJ. DuX. LuZ. WangX. YiY. ShanY. LiuB. ZhouY. WangX. LüX. Systematic evaluation of a series of pectic polysaccharides extracted from apple pomace by regulation of subcritical water conditions.Food Chem.20223682213083310.1016/j.foodchem.2021.130833 34425342
    [Google Scholar]
  65. BasakS. AnnapureU.S. The potential of subcritical water as a “green” method for the extraction and modification of pectin: A critical review.Food Res. Int.202216111184910.1016/j.foodres.2022.111849 36192977
    [Google Scholar]
  66. PerusselloC.A. ZhangZ. MarzocchellaA. TiwariB.K. Valorization of apple pomace by extraction of valuable compounds.Compr. Rev. Food Sci. Food Saf.201716577679610.1111/1541‑4337.12290 33371603
    [Google Scholar]
  67. WangS. ChenF. WuJ. WangZ. LiaoX. HuX. Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology.J. Food Eng.200778269370010.1016/j.jfoodeng.2005.11.008
    [Google Scholar]
  68. PtakM. SkowrońskaA. PińkowskaH. KrzywonosM. Sugar beet pulp in the context of developing the concept of circular bioeconomy.Energies202115117510.3390/en15010175
    [Google Scholar]
  69. Hamley-BennettC. LyeG.J. LeakD.J. Selective fractionation of Sugar Beet Pulp for release of fermentation and chemical feedstocks; optimisation of thermo-chemical pre-treatment.Bioresour. Technol.201620925926410.1016/j.biortech.2016.02.131 26978325
    [Google Scholar]
  70. AlexandriM. SchneiderR. PapapostolouH. LadakisD. KoutinasA. VenusJ. Restructuring the conventional sugar beet industry into a novel biorefinery: Fractionation and bioconversion of sugar beet pulp into succinic acid and value-added coproducts.ACS Sustain. Chem. Eng.2019776569657910.1021/acssuschemeng.8b04874
    [Google Scholar]
  71. Rubio-SenentF. Rodríguez-GutiérrezG. Lama-MuñozA. GarcíaA. Fernández-BolañosJ. Novel pectin present in new olive mill wastewater with similar emulsifying and better biological properties than citrus pectin.Food Hydrocoll.20155023724610.1016/j.foodhyd.2015.03.030
    [Google Scholar]
  72. CardosoS.M. SilvaA.M.S. CoimbraM.A. Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains.Carbohydr. Res.20023371091792410.1016/S0008‑6215(02)00082‑4 12007474
    [Google Scholar]
  73. CoimbraM.A. CardosoS.M. Lopes-da-SilvaJ.A. Olive pomace, a source for valuable arabinan-rich pectic polysaccharides.Top. Curr. Chem.201029412914110.1007/128_2010_60 21626751
    [Google Scholar]
  74. IglesiasM.T. LozanoJ.E. Extraction and characterization of sunflower pectin.J. Food Eng.200462321522310.1016/S0260‑8774(03)00234‑6
    [Google Scholar]
  75. TanJ. HuaX. LiuJ. WangM. LiuY. YangR. CaoY. Extraction of sunflower head pectin with superfine grinding pretreatment.Food Chem.202032012663110.1016/j.foodchem.2020.126631 32222660
    [Google Scholar]
  76. JafariF. KhodaiyanF. KianiH. HosseiniS.S. Pectin from carrot pomace: Optimization of extraction and physicochemical properties.Carbohydr. Polym.20171571315132210.1016/j.carbpol.2016.11.013 27987838
    [Google Scholar]
  77. Idrovo EncaladaA.M. PérezC.D. GerschensonL.N. RojasA.M. FissoreE.N. Gelling pectins from carrot leftovers extracted by industrial-enzymes with ultrasound pretreatment.Lebensm. Wiss. Technol.201911164064610.1016/j.lwt.2019.05.085
    [Google Scholar]
  78. PetkowiczC.L.O. VriesmannL.C. WilliamsP.A. Pectins from food waste: Extraction, characterization and properties of watermelon rind pectin.Food Hydrocoll.201765576710.1016/j.foodhyd.2016.10.040
    [Google Scholar]
  79. PérezJ. GómezK. VegaL. Optimization and preliminary physicochemical characterization of pectin extraction from watermelon rind (Citrullus lanatus) with citric acid.Int. J. Food Sci.2022202211010.1155/2022/3068829 35036425
    [Google Scholar]
  80. GuillonF. MoïseA. QuemenerB. BouchetB. DevauxM.F. AlvaradoC. LahayeM. Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth.Plant Sci.2017257486210.1016/j.plantsci.2017.01.008 28224918
    [Google Scholar]
  81. GrassinoA.N. HalambekJ. DjakovićS. Rimac BrnčićS. DentM. GrabarićZ. Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor.Food Hydrocoll.20165226527410.1016/j.foodhyd.2015.06.020
    [Google Scholar]
  82. WathoniN. YuanS.C. Yi ShanW. RostinawatiT. IndradiR.B. PratiwiR. MuchtaridiM. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind.Heliyon201958e0229910.1016/j.heliyon.2019.e02299 31453406
    [Google Scholar]
  83. KazemiM. KhodaiyanF. LabbafiM. HosseiniS.S. Ultrasonic and heating extraction of pistachio by-product pectin: Physicochemical, structural characterization and functional measurement.J. Food Meas. Charact.202014267969310.1007/s11694‑019‑00315‑0
    [Google Scholar]
  84. PachecoM.T. VillamielM. MorenoR. MorenoF.J. Structural and rheological properties of pectins extracted from industrial sugar beet by-products.Molecules201924339210.3390/molecules24030392 30678271
    [Google Scholar]
  85. YapoB. KoffiK. Extraction and characterization of highly gelling low methoxy pectin from cashew apple pomace.Foods20133111210.3390/foods3010001 28234301
    [Google Scholar]
  86. YangX. NisarT. HouY. GouX. SunL. GuoY. Pomegranate peel pectin can be used as an effective emulsifier.Food Hydrocoll.201885303810.1016/j.foodhyd.2018.06.042
    [Google Scholar]
  87. KhamsucharitP. LaohaphatanalertK. GavinlertvatanaP. SrirothK. SangseethongK. Characterization of pectin extracted from banana peels of different varieties.Food Sci. Biotechnol.201827362362910.1007/s10068‑017‑0302‑0 30263788
    [Google Scholar]
  88. SylvieA. LouiseW. Quality assessment of Borassus aethiopum Mart fruit pulp pectin precipitated with various solvents.Afr. J. Food Sci.202014822223210.5897/AJFS2020.1926
    [Google Scholar]
  89. WongkaewM. SommanoS.R. TangpaoT. RachtanapunP. JantanasakulwongK. Mango peel pectin by microwave-assisted extraction and its use as fat replacement in dried Chinese sausage.Foods20209445010.3390/foods9040450 32272742
    [Google Scholar]
  90. ŞenE. GöktürkE. UğuzdoğanE. Pectin extraction from garlic waste under dual acid condition.J. Food Process. Preserv.202246121910.1111/jfpp.17150
    [Google Scholar]
  91. GnanasambandamR. ProctorA. Preparation of soy hull pectin.Food Chem.199965446146710.1016/S0308‑8146(98)00197‑6
    [Google Scholar]
  92. ZouambiaY. YoucefE.K. KreaM. Moulai-MostefaN. A new approach for pectin extraction: Electromagnetic induction heating.Arab. J. Chem.201710448048710.1016/j.arabjc.2014.11.011
    [Google Scholar]
  93. XuY. ZhangL. BailinaY. GeZ. DingT. YeX. LiuD. Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel.J. Food Eng.2014126728110.1016/j.jfoodeng.2013.11.004
    [Google Scholar]
  94. MaranJ.P. PriyaB. Multivariate statistical analysis and optimization of ultrasound-assisted extraction of natural pigments from waste red beet stalks.J. Food Sci. Technol.201653179279910.1007/s13197‑015‑1988‑8 26788000
    [Google Scholar]
  95. AndersenN.M. CognetT. SantacolomaP.A. LarsenJ. ArmaganI. LarsenF.H. GernaeyK.V. AbildskovJ. HuusomJ.K. Dynamic modelling of pectin extraction describing yield and functional characteristics.J. Food Eng.2017192617110.1016/j.jfoodeng.2016.08.006
    [Google Scholar]
  96. OliveiraT.Í.S. RosaM.F. CavalcanteF.L. PereiraP.H.F. MoatesG.K. WellnerN. MazzettoS.E. WaldronK.W. AzeredoH.M.C. Optimization of pectin extraction from banana peels with citric acid by using response surface methodology.Food Chem.201619811311810.1016/j.foodchem.2015.08.080 26769512
    [Google Scholar]
  97. WangM. HuangB. FanC. ZhaoK. HuH. XuX. PanS. LiuF. Characterization and functional properties of mango peel pectin extracted by ultrasound assisted citric acid.Int. J. Biol. Macromol.20169179480310.1016/j.ijbiomac.2016.06.011 27283236
    [Google Scholar]
  98. WangW. MaX. JiangP. HuL. ZhiZ. ChenJ. DingT. YeX. LiuD. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions.Food Hydrocoll.20166173073910.1016/j.foodhyd.2016.06.019
    [Google Scholar]
  99. PeighambardoustS.H. Jafarzadeh-MoghaddamM. PateiroM. LorenzoJ.M. DomínguezR. Physicochemical, thermal and rheological properties of pectin extracted from sugar beet pulp using subcritical water extraction process.Molecules2021265141310.3390/molecules26051413 33807800
    [Google Scholar]
  100. LiW.J. FanZ.G. WuY.Y. JiangZ.G. ShiR.C. Eco‐friendly extraction and physicochemical properties of pectin from jackfruit peel waste with subcritical water.J. Sci. Food Agric.201999125283529210.1002/jsfa.9729 30953352
    [Google Scholar]
  101. MaX. JingJ. WangJ. XuJ. HuZ. Extraction of low methoxyl pectin from fresh sunflower heads by subcritical water extraction.ACS Omega2020525150951510410.1021/acsomega.0c00928 32637782
    [Google Scholar]
  102. Muñoz-AlmagroN. Valadez-CarmonaL. MendiolaJ.A. IbáñezE. VillamielM. Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction.Carbohydr. Polym.2019217697810.1016/j.carbpol.2019.04.040 31079687
    [Google Scholar]
  103. LiewS.Q. TeohW.H. TanC.K. YusoffR. NgohG.C. Subcritical water extraction of low methoxyl pectin from pomelo (Citrus grandis (L.) Osbeck) peels.Int. J. Biol. Macromol.201811612813510.1016/j.ijbiomac.2018.05.013 29738869
    [Google Scholar]
  104. MaranJ.P. PrakashK.A. Process variables influence on microwave assisted extraction of pectin from waste Carcia papaya L. peel.Int. J. Biol. Macromol.20157320220610.1016/j.ijbiomac.2014.11.008 25445679
    [Google Scholar]
  105. KoubalaB.B. KansciG. MbomeL.I. CrépeauM.J. ThibaultJ.F. RaletM.C. Effect of extraction conditions on some physicochemical characteristics of pectins from “Améliorée” and “Mango” mango peels.Food Hydrocoll.20082271345135110.1016/j.foodhyd.2007.07.005
    [Google Scholar]
  106. LefsihK. GiacomazzaD. DahmouneF. MangioneM.R. BuloneD. San BiagioP.L. PassantinoR. CostaM.A. GuarrasiV. MadaniK. Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization.Food Chem.2017221919910.1016/j.foodchem.2016.10.073 27979293
    [Google Scholar]
  107. AdetunjiL.R. AdekunleA. OrsatV. RaghavanV. Advances in the pectin production process using novel extraction techniques: A review.Food Hydrocoll.20176223925010.1016/j.foodhyd.2016.08.015
    [Google Scholar]
  108. SharmaN. Conventional and emerging novel techniques for the extraction of pectin and applications of pectin. Austin J.Biotechnol. Bioeng.2022911115
    [Google Scholar]
  109. JoyeD.D. LuzioG.A. Process for selective extraction of pectins from plant material by differential pH.Carbohydr. Polym.200043433734210.1016/S0144‑8617(00)00191‑0
    [Google Scholar]
  110. JongS.H. AbdullahN. MuhammadN. Optimization of low-methoxyl pectin extraction from durian rinds and its physicochemical characterization.Carbohydr. Polym. Technol. Appl.2023510026310.1016/j.carpta.2022.100263
    [Google Scholar]
  111. Picot-AllainM.C.N. RamasawmyB. EmmambuxM.N. Extraction, characterisation, and application of pectin from tropical and sub-tropical fruits: A review.Food Rev. Int.202238328231210.1080/87559129.2020.1733008
    [Google Scholar]
  112. CalceE. PetricciE. SavianoM. De LucaS. Green microwave-assisted procedure to generate bio-based pectin materials.Sustain. Chem. Pharm.2017512713010.1016/j.scp.2016.09.002
    [Google Scholar]
  113. LuoJ. XuY. FanY. Upgrading pectin production from apple pomace by acetic acid extraction.Appl. Biochem. Biotechnol.201918741300131110.1007/s12010‑018‑2893‑1 30218302
    [Google Scholar]
  114. MarconM.V. VriesmannL.C. WosiackiG. Beleski-CarneiroE. PetkowiczC.L.O. Pectins from apple pomace.Polímeros200515212712910.1590/S0104‑14282005000200012
    [Google Scholar]
  115. CinkmanisI. Muizniece-BrasavaS. VilumaI. VucaneS. AboltinsA. KekeA. Extraction of pectin from apple pomace.Eng. Rural Dev.20201919341939
    [Google Scholar]
  116. ChematF. RombautN. SicaireA.G. MeullemiestreA. Fabiano-TixierA.S. Abert-VianM. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review.Ultrason. Sonochem.20173454056010.1016/j.ultsonch.2016.06.035 27773280
    [Google Scholar]
  117. BayarN. BouallegueT. AchourM. KriaaM. BougatefA. KammounR. Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties.Food Chem.201723527528210.1016/j.foodchem.2017.05.029 28554636
    [Google Scholar]
  118. WangW. FengY. ChenW. AdieK. LiuD. YinY. Citrus pectin modified by microfluidization and ultrasonication: Improved emulsifying and encapsulation properties.Ultrason. Sonochem.20217010532210.1016/j.ultsonch.2020.105322 32906066
    [Google Scholar]
  119. OgutuF.O. MuT.H. Ultrasonic degradation of sweet potato pectin and its antioxidant activity.Ultrason. Sonochem.20173872673410.1016/j.ultsonch.2016.08.014 27617769
    [Google Scholar]
  120. AslA.H. KhajenooriM Subcritical water extraction. Mass Transfer - Advances in Sustainable Energy and Environment Oriented Numerical ModelinInTechOpenLondon201329
    [Google Scholar]
  121. UenoH. TanakaM. HosinoM. SasakiM. GotoM. Extraction of valuable compounds from the flavedo of Citrus junos using subcritical water.Separ. Purif. Tech.200862351351610.1016/j.seppur.2008.03.004
    [Google Scholar]
  122. ZakariaS.M. KamalS.M.M. Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients.Food Eng. Rev.201681233410.1007/s12393‑015‑9119‑x
    [Google Scholar]
  123. MandalV. MohanY. HemalathaS.J. Microwave-assisted extraction—an innovative and promising extraction tool for medicinal plant research.Phcog Rev.200711718
    [Google Scholar]
  124. Prakash MaranJ. SivakumarV. ThirugnanasambandhamK. SridharR. Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds.Carbohydr. Polym.201410178679110.1016/j.carbpol.2013.09.062 24299839
    [Google Scholar]
  125. MaoY. RobinsonJ.P. BinnerE.R. Current status of microwave-assisted extraction of pectin.Chem. Eng. J.202347314526110.1016/j.cej.2023.145261
    [Google Scholar]
  126. PoojaryM.M. OrlienV. PassamontiP. OlsenK. Enzyme-assisted extraction enhancing the umami taste amino acids recovery from several cultivated mushrooms.Food Chem.201723423624410.1016/j.foodchem.2017.04.157 28551231
    [Google Scholar]
  127. NadarS.S. PawarR.G. RathodV.K. Recent advances in enzyme extraction strategies: A comprehensive review.Int. J. Biol. Macromol.201710193195710.1016/j.ijbiomac.2017.03.055 28302467
    [Google Scholar]
  128. MacedoG.A. SantanaÁ.L. CrawfordL.M. WangS.C. DiasF.F.G. de Moura BellJ.M.L.N. Integrated microwave- and enzyme-assisted extraction of phenolic compounds from olive pomace.Lebensm. Wiss. Technol.202113811062110.1016/j.lwt.2020.110621
    [Google Scholar]
  129. Vilas-FranquesaA. FryganasC. CasertanoM. MontemurroM. FoglianoV. Upcycling mango peels into a functional ingredient by combining fermentation and enzymatic-assisted extraction.Food Chem.202443413751510.1016/j.foodchem.2023.137515 37741240
    [Google Scholar]
  130. MehtaD. PurohitA. BajarhP. YadavK. ShivhareU.S. YadavS.K. Cold plasma processing improved the extraction of xylooligosaccharides from dietary fibers of rice and corn bran with enhanced in-vitro digestibility and anti-inflammatory responses.Innov. Food Sci. Emerg. Technol.20227810302710.1016/j.ifset.2022.103027
    [Google Scholar]
  131. BasakS. AnnapureU.S. Rheological performance of film-forming solutions and barrier properties of films fabricated from cold plasma-treated high methoxyl apple pectin and crosslinked by Ca2+: Impact of plasma treatment voltage.Int. J. Biol. Macromol.202322793895110.1016/j.ijbiomac.2022.12.161 36563809
    [Google Scholar]
  132. ZhengJ. ZengR. KanJ. ZhangF. Effects of ultrasonic treatment on gel rheological properties and gel formation of high-methoxyl pectin.J. Food Eng.2018231839010.1016/j.jfoodeng.2018.03.009
    [Google Scholar]
  133. ForouharA HamdamiN DjelvehG LecerfD RihoueyC GardarinC PierreG UrsuAV MichaudP Effects of high voltage dielectric barrier discharge on the extraction and properties of pectins from watermelon rinds IF.Food Hydrocolloids2024147Part A109350
    [Google Scholar]
  134. GavahianM. ChuY.H. FarahnakyA. Effects of ohmic and microwave cooking on textural softening and physical properties of rice.J. Food Eng.201924311412410.1016/j.jfoodeng.2018.09.010
    [Google Scholar]
  135. SharifiA. Hamidi-EsfahaniZ. Ahmadi GavlighiH. SaberianH. Assisted ohmic heating extraction of pectin from pomegranate peel.Chem. Eng. Process.202217210876010.1016/j.cep.2021.108760
    [Google Scholar]
  136. SaberianH. Hamidi-EsfahaniZ. Ahmadi GavlighiH. BanakarA. BarzegarM. The potential of ohmic heating for pectin extraction from orange waste.J. Food Process. Preserv.2018422e1345810.1111/jfpp.13458
    [Google Scholar]
  137. GoksuA. DuranG. ÇilingirS. ÇevikM. SabanciS. Performance evaluation of pectin extraction from grapefruit peel powder by ohmic heating.J. Food Process. Preserv.20224610e1681310.1111/jfpp.16813
    [Google Scholar]
  138. ShpigelmanA. KyomugashoC. ChristiaensS. Van LoeyA.M. HendrickxM.E. The effect of high pressure homogenization on pectin: Importance of pectin source and pH.Food Hydrocoll.20154318919810.1016/j.foodhyd.2014.05.019
    [Google Scholar]
  139. ZhaoW. XuY. DoradoC. ChauH.K. HotchkissA.T. CameronR.G. Modification of pectin with high-pressure processing treatment of fresh orange peel before pectin extraction: Part I. The effects on pectin extraction and structural properties.Food Hydrocoll.202414910951610.1016/j.foodhyd.2023.109516
    [Google Scholar]
  140. XieF. ZhangW. LanX. GongS. WuJ. WangZ. Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin.Carbohydr. Polym.201819647448210.1016/j.carbpol.2018.05.061 29891321
    [Google Scholar]
  141. NaghshinehM. OlsenK. GeorgiouC.A. Sustainable production of pectin from lime peel by high hydrostatic pressure treatment.Food Chem.2013136247247810.1016/j.foodchem.2012.08.036 23122086
    [Google Scholar]
  142. LampittL.H. MoneyR.W. JudgeB.E. UrieA. Pectin studies. Part I. Method of purification.J. Soc. Chem. Ind.194766412112410.1002/jctb.5000660404
    [Google Scholar]
  143. GuoX. MengH. ZhuS. TangQ. PanR. YuS. Stepwise ethanolic precipitation of sugar beet pectins from the acidic extract.Carbohydr. Polym.201613631632110.1016/j.carbpol.2015.09.003 26572361
    [Google Scholar]
  144. KalapathyU. ProctorA. Effect of acid extraction and alcohol precipitation conditions on the yield and purity of soy hull pectin.Food Chem.200173439339610.1016/S0308‑8146(00)00307‑1
    [Google Scholar]
  145. KangJ. HuaX. YangR. ChenY. YangH. Characterization of natural low-methoxyl pectin from sunflower head extracted by sodium citrate and purified by ultrafiltration.Food Chem.20151809810510.1016/j.foodchem.2015.02.037 25766806
    [Google Scholar]
  146. YapoB.M. WatheletB. PaquotM. Comparison of alcohol precipitation and membrane filtration effects on sugar beet pulp pectin chemical features and surface properties.Food Hydrocoll.200721224525510.1016/j.foodhyd.2006.03.016
    [Google Scholar]
  147. HwangJ. RoshdyT.H. KontominasM. KokiniJ.L. Comparison of dialysis and metal precipitation effects on apple pectins.J. Food Sci.19925751180118410.1111/j.1365‑2621.1992.tb11293.x
    [Google Scholar]
  148. SeggianiM. PucciniM. PieriniM. GiovandoS. FornerisC. Effect of different extraction and precipitation methods on yield and quality of pectin.Int. J. Food Sci. Technol.200944357458010.1111/j.1365‑2621.2008.01849.x
    [Google Scholar]
  149. WürfelH. GeitelK. QiH. HeinzeT. Chemical modification of pectin and polygalacturonic acid: A critical review.BioResources20211648457848810.15376/biores.16.4.8457‑8488
    [Google Scholar]
  150. ChenJ. LiuW. LiuC.M. LiT. LiangR.H. LuoS.J. Pectin modifications: A review.Crit. Rev. Food Sci. Nutr.201555121684169810.1080/10408398.2012.718722 24798790
    [Google Scholar]
  151. RenardC.M.G.C. JarvisM.C. Acetylation and methylation of homogalacturonans 1: Optimisation of the reaction and characterisation of the products.Carbohydr. Polym.199939320120710.1016/S0144‑8617(99)00006‑5
    [Google Scholar]
  152. KarakiN. AljawishA. MunigliaL. Bouguet-BonnetS. LeclercS. ParisC. JasniewskiJ. Humeau-VirotC. Functionalization of pectin with laccase-mediated oxidation products of ferulic acid.Enzyme Microb. Technol.20171041810.1016/j.enzmictec.2017.05.001 28648174
    [Google Scholar]
  153. KimY. YooY.H. KimK.O. ParkJ.B. YooS.H. Textural properties of gelling system of low-methoxy pectins produced by demethoxylating reaction of pectin methyl esterase.J. Food Sci.2008735C367C37210.1111/j.1750‑3841.2008.00771.x 18576981
    [Google Scholar]
  154. HuaX. YangH. DinP. ChiK. YangR. Rheological properties of deesterified pectin with different methoxylation degree.Food Biosci.201823919910.1016/j.fbio.2018.03.011
    [Google Scholar]
  155. BushM.S. McCannM.C. Pectic epitopes are differentially distributed in the cell walls of potato (Solanum tuberosum) tubers.Physiol. Plant.1999107220121310.1034/j.1399‑3054.1999.100208.x
    [Google Scholar]
  156. DeaI.C.M. MaddenJ.K. Acetylated pectic polysaccharides of sugar beet.Food Hydrocoll.198611718810.1016/S0268‑005X(86)80009‑1
    [Google Scholar]
  157. BhatiaM.S. ChoudhariP. BhatiaN.M. DeshmukhR. Chemical modification of pectins, characterization and evaluation for drug delivery.Sci. Pharm.200876477578410.3797/scipharm.0805‑23
    [Google Scholar]
  158. MishraR.K. DattM. PalK. BanthiaA.K. Preparation and characterization of amidated pectin based hydrogels for drug delivery system.J. Mater. Sci. Mater. Med.20081962275228010.1007/s10856‑007‑3310‑4 18058200
    [Google Scholar]
  159. VithanageC.R. GrimsonM.J. WillsP.R. HarrisonP. SmithB.G. Rheological and structural properties of high‐methoxyl esterified, low‐methoxyl esterified and low‐methoxyl amidated pectin gels.J. Texture Stud.201041689992710.1111/j.1745‑4603.2010.00261.x
    [Google Scholar]
  160. FanL. CaoM. GaoS. WangW. PengK. TanC. WenF. TaoS. XieW. Preparation and characterization of a quaternary ammonium derivative of pectin.Carbohydr. Polym.201288270771210.1016/j.carbpol.2012.01.021
    [Google Scholar]
  161. QinC. YangG. WuS. ZhangH. ZhuC. Synthesis, physicochemical characterization, antibacterial activity, and biocompatibility of quaternized hawthorn pectin.Int. J. Biol. Macromol.20222131047105610.1016/j.ijbiomac.2022.06.028 35691431
    [Google Scholar]
  162. SharmaR. AhujaM. Thiolated pectin: Synthesis, characterization and evaluation as a mucoadhesive polymer.Carbohydr. Polym.201185365866310.1016/j.carbpol.2011.03.034
    [Google Scholar]
  163. HuY. YeX. YinX. ChenS. Sulfation of citrus pectin by pyridine-sulfurtrioxide complex and its anticoagulant activity.Lebensm. Wiss. Technol.20156021162116710.1016/j.lwt.2014.09.018
    [Google Scholar]
  164. RománY. de Oliveira BarddalH.P. IacominiM. SassakiG.L. CiprianiT.R. Anticoagulant and antithrombotic effects of chemically sulfated fucogalactan and citrus pectin.Carbohydr. Polym.201717473173910.1016/j.carbpol.2017.06.110 28821126
    [Google Scholar]
  165. JiaoX. LiF. ZhaoJ. WeiY. ZhangL. YuW. LiQ. The preparation and potential bioactivities of modified pectins: A review.Foods2023125101610.3390/foods12051016 36900531
    [Google Scholar]
  166. ThibaultJ.F. Some physicochemical properties of sugar-beet pectins modified by oxidative cross-linking.Carbohydr. Res.198615518319210.1016/S0008‑6215(00)90144‑7
    [Google Scholar]
  167. SemdéR. MoësA. DevleeschouwerM.J. AmighiK. Synthesis and enzymatic degradation of epichlorohydrin cross-linked pectins.Drug Dev. Ind. Pharm.200329220321310.1081/DDC‑120016728 12648017
    [Google Scholar]
  168. YoshimuraT. SengokuK. FujiokaR. Pectin-based surperabsorbent hydrogels crosslinked by some chemicals: Synthesis and characterization.Polym. Bull.2005551-212312910.1007/s00289‑005‑0422‑1
    [Google Scholar]
  169. LiF.T. YangH. ZhaoY. XuR. Novel modified pectin for heavy metal adsorption.Chin. Chem. Lett.200718332532810.1016/j.cclet.2007.01.034
    [Google Scholar]
  170. TakeiT. SatoM. IjimaH. KawakamiK. In situ gellable oxidized citrus pectin for localized delivery of anticancer drugs and prevention of homotypic cancer cell aggregation.Biomacromolecules201011123525353010.1021/bm1010068 21028797
    [Google Scholar]
  171. FaresM.M. AssafS.M. Abul-HaijaY.M. Pectin grafted poly(N ‐vinylpyrrolidone): Optimization and in vitro controllable theophylline drug release.J. Appl. Polym. Sci.201011741945195410.1002/app.32172
    [Google Scholar]
  172. ChauhanG.S. KumariA. SharmaR. Pectin and acrylamide based hydrogels for environment management technologies: Synthesis, characterization, and metal ions sorption.J. Appl. Polym. Sci.200710642158216810.1002/app.26729
    [Google Scholar]
  173. MishraR.K. SutarP.B. SinghalJ.P. BanthiaA.K. Graft copolymerization of pectin with polyacrylamide.Polym. Plast. Technol. Eng.200746111079108510.1080/03602550701525164
    [Google Scholar]
  174. GamonpilasC. BuathongjanC. SangwanW. RattanaprasertM. WeizmanK.C. KlomtunM. PhonsattaN. MethacanonP. Production of low molecular weight pectins via electron beam irradiation and their potential prebiotic functionality.Food Hydrocoll.202111310655110.1016/j.foodhyd.2020.106551
    [Google Scholar]
  175. SabaterC. Blanco-DovalA. MontillaA. CorzoN. Optimisation of an enzymatic method to obtain modified artichoke pectin and pectic oligosaccharides using artificial neural network tools. In silico and in vitro assessment of the antioxidant activity.Food Hydrocoll.202111010616110.1016/j.foodhyd.2020.106161
    [Google Scholar]
  176. KrallS.M. McFeetersR.F. Pectin hydrolysis: Effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates.J. Agric. Food Chem.19984641311131510.1021/jf970473y
    [Google Scholar]
  177. LeeB.H. JungH.T. KimH.S. YooS.H. Structural and gelling properties of very low methoxyl pectin produced by an alkali-treatment.KJFST2021532121125
    [Google Scholar]
  178. CaoJ. YangJ. YueK. WangZ. Preparation of modified citrus pectin (MCP) using an advanced oxidation process with hydroxyl radicals generated by UV-H2O2.Food Hydrocoll.202010210558710.1016/j.foodhyd.2019.105587
    [Google Scholar]
  179. ArrutiaF. AdamM. Calvo-CarrascalM.Á. MaoY. BinnerE. Development of a continuous-flow system for microwave-assisted extraction of pectin-derived oligosaccharides from food waste.Chem. Eng. J.202039512505610.1016/j.cej.2020.125056
    [Google Scholar]
  180. DuanH. YanX. AzarakhshN. HuangX. WangC. Effects of high‐pressure pretreatment on acid extraction of pectin from pomelo peel.Int. J. Food Sci. Technol.20225785239524910.1111/ijfs.15840
    [Google Scholar]
  181. FishmanM.L. PfefferP.E. BarfordR.A. DonerL.W. Studies of pectin solution properties by high-performance size exclusion chromatography.J. Agric. Food Chem.198432237237810.1021/jf00122a048
    [Google Scholar]
  182. Burana-osotJ. SoonthornchareonnonN. ChaidedgumjornA. HosoyamaS. ToidaT. Determination of galacturonic acid from pomelo pectin in term of galactose by HPAEC with fluorescence detection.Carbohydr. Polym.201081246146510.1016/j.carbpol.2010.03.001
    [Google Scholar]
  183. JouiniM. AbdelhamidA. ChaouchM.A. le CerfD. BouraouiA. MajdoubH. Physico-chemical characterization and pharmacological activities of polysaccharides from Opuntia microdasys var. rufida cladodes.Int. J. Biol. Macromol.201810713301338
    [Google Scholar]
  184. NaghshinehM. LarsenJ. GeorgiouC. OlsenK. A green analytical method for rapid determination of pectin degree of esterification using micro sequential injection lab-on-valve system.Food Chem.201620451352010.1016/j.foodchem.2013.11.048 26988531
    [Google Scholar]
  185. KyomugashoC. ChristiaensS. ShpigelmanA. Van LoeyA.M. HendrickxM.E. FT-IR spectroscopy, a reliable method for routine analysis of the degree of methylesterification of pectin in different fruit- and vegetable-based matrices.Food Chem.2015176829010.1016/j.foodchem.2014.12.033 25624209
    [Google Scholar]
  186. KumarA. ChauhanG.S. Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor.Carbohydr. Polym.201082245445910.1016/j.carbpol.2010.05.001
    [Google Scholar]
  187. LiewS.Q. ChinN.L. YusofY.A. Extraction and characterization of pectin from passion fruit peels.Agric. Agric. Sci. Procedia2014223123610.1016/j.aaspro.2014.11.033
    [Google Scholar]
  188. JungJ. WickerL. β-Lactoglobulin conformation and mixed sugar beet pectin gel matrix is changed by laccase.Lebensm. Wiss. Technol.201455191510.1016/j.lwt.2013.07.017
    [Google Scholar]
  189. JohnA. YangJ. LiuJ. JiangY. YangB. The structure changes of water-soluble polysaccharides in papaya during ripening.Int. J. Biol. Macromol.201811511515215610.1016/j.ijbiomac.2018.04.059 29654863
    [Google Scholar]
  190. WangM. YangX. ZhaoJ. LuC. ZhuW. Structural characterization and macrophage immunomodulatory activity of a novel polysaccharide from Smilax glabra Roxb.Carbohydr. Polym.201715639040210.1016/j.carbpol.2016.09.033 27842838
    [Google Scholar]
  191. MartăuG.A. MihaiM. VodnarD.C. The use of chitosan, alginate, and pectin in the biomedical and food sector—biocompatibility, bioadhesiveness, and biodegradability.Polymers (Basel)20191111183710.3390/polym11111837 31717269
    [Google Scholar]
  192. NaqashF. MasoodiF.A. RatherS.A. WaniS.M. GaniA. Emerging concepts in the nutraceutical and functional properties of pectin—A Review.Carbohydr. Polym.201716822723910.1016/j.carbpol.2017.03.058 28457445
    [Google Scholar]
  193. BrounsF. TheuwissenE. AdamA. BellM. BergerA. MensinkR.P. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women.Eur. J. Clin. Nutr.201266559159910.1038/ejcn.2011.208 22190137
    [Google Scholar]
  194. UllahK. SohailM. BuabeidM.A. MurtazaG. UllahA. RashidH. KhanM.A. KhanS.A. Pectin-based (LA-co-MAA) semi-IPNS as a potential biomaterial for colonic delivery of oxaliplatin.Int. J. Pharm.201956911855710.1016/j.ijpharm.2019.118557 31377405
    [Google Scholar]
  195. BeckerB. KuhnU. Hardewig-BudnyB. Double-blind, randomized evaluation of clinical efficacy and tolerability of an apple pectin-chamomile extract in children with unspecific diarrhea.Arzneimittelforschung2006566387393 16889120
    [Google Scholar]
  196. RehmanA. AhmadT. AadilR.M. SpottiM.J. BakryA.M. KhanI.M. ZhaoL. RiazT. TongQ. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds.Trends Food Sci. Technol.201990354610.1016/j.tifs.2019.05.015
    [Google Scholar]
  197. ShishirM.R.I. KarimN. GowdV. XieJ. ZhengX. ChenW. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property.Food Hydrocoll.20199543244410.1016/j.foodhyd.2019.04.059
    [Google Scholar]
  198. TummalapalliM. BerthetM. VerrierB. DeopuraB.L. AlamM.S. GuptaB. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents.Int. J. Biol. Macromol.20168210411310.1016/j.ijbiomac.2015.10.087 26529192
    [Google Scholar]
  199. DouglasT.E.L. HempelU. ŻydekJ. VladescuA. PietrygaK. KaeswurmJ.A.H. BuchweitzM. SurmenevR.A. SurmenevaM.A. CotrutC.M. KoptyugA.V. PamułaE. Pectin coatings on titanium alloy scaffolds produced by additive manufacturing: Promotion of human bone marrow stromal cell proliferation.Mater. Lett.201822722522810.1016/j.matlet.2018.05.060
    [Google Scholar]
  200. ZhuY. YaoZ. LiuY. ZhangW. GengL. NiT. Incorporation of ROS-responsive substance P-loaded zeolite imidazolate framework-8 nanoparticles into a Ca2+-cross-linked alginate/pectin hydrogel for wound dressing applications.Int. J. Nanomedicine20201533334610.2147/IJN.S225197 32021183
    [Google Scholar]
  201. SariogluE. Arabacioglu KocaagaB. TuranD. BatirelS. GunerF.S. Theophylline‐loaded pectin‐based hydrogels. II. Effect of concentration of initial pectin solution, crosslinker type and cation concentration of external solution on drug release profile.J. Appl. Polym. Sci.2019136434815510.1002/app.48155
    [Google Scholar]
  202. AbbasiM. SohailM. MinhasM.U. KhanS. HussainZ. MahmoodA. ShahS.A. KousarM. Novel biodegradable pH-sensitive hydrogels: An efficient controlled release system to manage ulcerative colitis.Int. J. Biol. Macromol.2019136839610.1016/j.ijbiomac.2019.06.046 31195039
    [Google Scholar]
  203. KatavT. LiuL. TraitelT. GoldbartR. WolfsonM. KostJ. Modified pectin-based carrier for gene delivery: Cellular barriers in gene delivery course.J. Control. Release2008130218319110.1016/j.jconrel.2008.06.002 18585414
    [Google Scholar]
  204. OpanasopitP. ApirakaramwongA. NgawhirunpatT. RojanarataT. RuktanonchaiU. Development and characterization of pectinate micro/nanoparticles for gene delivery.AAPS PharmSciTech200891677410.1208/s12249‑007‑9007‑7 18446463
    [Google Scholar]
  205. BuaronN. MangravitiA. VolpinF. LiuA. PedoneM. SankeyE. AranovichD. AdarI. RodriguezF.J. NyskaA. GoldbartR. TraitelT. BremH. TylerB. KostJ. Pectic galactan polysaccharide‐based gene delivery system for targeting neuroinflammation.Adv. Funct. Mater.20213144210064310.1002/adfm.202100643
    [Google Scholar]
  206. JinM.Y. LiM.Y. HuangR.M. WuX.Y. SunY.M. XuZ.L. Structural features and anti-inflammatory properties of pectic polysaccharides: A review.Trends Food Sci. Technol.202110728429810.1016/j.tifs.2020.10.042
    [Google Scholar]
  207. HuS. KuwabaraR. BeukemaM. FerrariM. de HaanB.J. WalvoortM.T.C. de VosP. SminkA.M. Low methyl-esterified pectin protects pancreatic β-cells against diabetes-induced oxidative and inflammatory stress via galectin-3.Carbohydr. Polym.202024911686310.1016/j.carbpol.2020.116863 32933690
    [Google Scholar]
  208. DemirD. CeylanS. GöktürkD. BölgenN. Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scaffolds.Polym. Bull.20217842211222610.1007/s00289‑020‑03208‑1
    [Google Scholar]
  209. GhorbaniM. RoshangarL. Soleimani RadJ. Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering.Eur. Polym. J.202013010969710.1016/j.eurpolymj.2020.109697
    [Google Scholar]
  210. LapomardaA. De AcutisA. ChiesaI. FortunatoG.M. MontemurroF. De MariaC. MattioliB.M. GottardiR. VozziG. Pectin-GPTMS-based biomaterial: Toward a sustainable bioprinting of 3D scaffolds for tissue engineering application.Biomacromolecules202021231932710.1021/acs.biomac.9b01332 31808680
    [Google Scholar]
  211. EmranT.B. IslamF. MitraS. PaulS. NathN. KhanZ. DasR. ChandranD. SharmaR. LimaC.M.G. AwadhA.A.A. AlmazniI.A. AlhasaniahA.H. GuinéR.P.F. Pectin: A bioactive food polysaccharide with cancer preventive potential.Molecules20222721740510.3390/molecules27217405 36364232
    [Google Scholar]
  212. Kiaei PourP. AlemzadehI. VaziriA.S. BeirotiA. Potential effects of alginate-pectin biocomposite on the release of folic acid and their physicochemical characteristics.J. Food Sci. Technol.20205793363337010.1007/s13197‑020‑04369‑7 32728283
    [Google Scholar]
  213. Cazorla-LunaR. Notario-PérezF. Martín-IllanaA. Ruiz-CaroR. TamayoA. RubioJ. VeigaM.D. Chitosan-based mucoadhesive vaginal tablets for controlled release of the anti-HIV drug tenofovir.Pharmaceutics20191112010.3390/pharmaceutics11010020 30621307
    [Google Scholar]
  214. KhuranaR. SinghK. SapraB. TiwaryA.K. RanaV. Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength.Carbohydr. Polym.20141021556510.1016/j.carbpol.2013.11.005 24507255
    [Google Scholar]
  215. TummalapalliM. BerthetM. VerrierB. DeopuraB.L. AlamM.S. GuptaB. Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing.Int. J. Pharm.20165051-223424510.1016/j.ijpharm.2016.04.007 27063849
    [Google Scholar]
  216. Lara-EspinozaC. Carvajal-MillánE. Balandrán-QuintanaR. López-FrancoY. Rascón-ChuA. Pectin and pectin-based composite materials: Beyond food texture.Molecules201823494210.3390/molecules23040942 29670040
    [Google Scholar]
  217. Akin-AjaniD OkunlolaA Pharmaceutical applications of pectinInTechOpenLondon202210.5772/intechopen.100152
    [Google Scholar]
  218. Calvete-TorreI. SabaterC. AntónM.J. MorenoF.J. RiestraS. MargollesA. RuizL. Prebiotic potential of apple pomace and pectins from different apple varieties: Modulatory effects on key target commensal microbial populations.Food Hydrocoll.202213310795810.1016/j.foodhyd.2022.107958
    [Google Scholar]
  219. BabbarN. DejongheW. GattiM. SforzaS. ElstK. Pectic oligosaccharides from agricultural by-products: Production, characterization and health benefits.Crit. Rev. Biotechnol.201636459460610.3109/07388551.2014.996732 25641325
    [Google Scholar]
  220. MoonJ.S. ShinS.Y. ChoiH.S. JooW. ChoS.K. LiL. KangJ.H. KimT.J. HanN.S. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides.Carbohydr. Polym.2015131505610.1016/j.carbpol.2015.05.022 26256159
    [Google Scholar]
  221. IslamovaZ.I. OgaiD.K. AbramenkoO.I. LimA.L. AbduazimovB.B. MalikovaM.K. RakhmanberdyevaR.K. KhushbaktovaZ.A. SyrovV.N. Comparative assessment of the prebiotic activity of some pectin polysaccharides.Pharm. Chem. J.201751428829110.1007/s11094‑017‑1600‑9
    [Google Scholar]
  222. SinghalS. RasaneP. KaurS. GarbaU. BankarA. SinghJ. GuptaN. 3D food printing: Paving way towards novel foods.An. Acad. Bras. Cienc.2020923e2018073710.1590/0001‑3765202020180737 33053099
    [Google Scholar]
  223. AgarwalT. CostantiniM. MaitiT.K. Extrusion 3D printing with Pectin-based ink formulations: Recent trends in tissue engineering and food manufacturing.Biomed. Eng. Adv.2021210001810.1016/j.bea.2021.100018
    [Google Scholar]
  224. VancauwenbergheV. Baiye Mfortaw MbongV. VanstreelsE. VerbovenP. LammertynJ. NicolaiB. 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink.J. Food Eng.201926345446410.1016/j.jfoodeng.2017.12.003
    [Google Scholar]
  225. Diaz-HerreraR. Alvarez-PérezO.B. Ventura-SobrevillaJ. Ascacio-ValdésA. Aguilar-GonzalezM.A. Buenrostro-FigueroaJ. AguilarC.N. Pomegranate peel polyphenols as an antioxidant additive for the development and characterization of a new active pectin edible film.eFood202346e11510.1002/efd2.115
    [Google Scholar]
  226. KostićM. BajacB. JanjuševićL. BajacJ. AntovM. Edible coatings based on plant components for active packaging of fresh/fresh-cut fruits.S. Afr. J. Bot.202316139540310.1016/j.sajb.2023.08.039
    [Google Scholar]
  227. ZhuK. MaoG. WuD. YuC. ChengH. XiaoH. YeX. LinhardtR.J. OrfilaC. ChenS. Highly branched RG-I domain enrichment is indispensable for pectin mitigating against high-fat diet-induced obesity.J. Agric. Food Chem.202068328688870110.1021/acs.jafc.0c02654 32633953
    [Google Scholar]
  228. RenT. LiuF. WangD. LiB. JiangP. LiJ. LiH. ChenC. WuW. JiaoL. Rhamnogalacturonan-I enriched pectin from steamed ginseng ameliorates lipid metabolism in type 2 diabetic rats via gut microbiota and AMPK pathway.J. Ethnopharmacol.202330111586210.1016/j.jep.2022.115862 36283638
    [Google Scholar]
  229. MinzanovaS. MironovV. ArkhipovaD. KhabibullinaA. MironovaL. ZakirovaY. MilyukovV. Biological activity and pharmacological application of pectic polysaccharides: A review.Polymers (Basel)20181012140710.3390/polym10121407 30961332
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461332276240903075341
Loading
/content/journals/cgc/10.2174/0122133461332276240903075341
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): agro-industrial waste; drug delivery; green methods; Pectin; purification
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test