Skip to content
2000
Volume 11, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Introduction

Biochar application and research have experienced a significant increase in recent decades. It can produce different kinds of organic materials, and it can be employed for different purposes, such as soil conditioning, carbon sequestration and filtration of pollutants from gas and aqueous media. Biochar is a C-rich material, which can be obtained from different types of organic feedstock, such as animal manure, sewage sludge, wood and crop residues and other organic waste. It is also considered an environmentally friendly and resource-saving approach in medicinal and aromatic plants production. Biochar can lead to plant growth improvement and influence on chemical components of medicinal plants, stimulate the growth of soil microflora, increase soil carbon-sequestration, bioremediation of soil, regulate carbon fluxes between atmosphere and biosphere, reduce biotic stress in plants, improve soil nutrient availability, decrease abiotic stress in plants, wastewater treatment, immobilization and sorption of soil heavy metal contaminants.

Methods

Relevant literature has been obtained using the keywords “biochar”, “organic amendment”, “soil quality”, “medicinal Plants”, “natural products”, “soil quality”, “macronutrient”, and “chemical components” in scientific databases, such as “PubMed”, “SciFinder”, “Elsevier”, and “Web of Science”.

Results

The aim of this literature review is to study the impact of different kinds of biochars on medicinal and aromatic plants, soil quality and soil fertility by considering case studies of successful paradigms.

Conclusion

Conclusively, we consider our review article will provide an appropriate guide for practitioners and researchers for future studies as well as large-scale field applications.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461286440240123055247
2024-01-31
2025-01-19
Loading full text...

Full text loading...

References

  1. ShahrajabianM.H. SunW. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid.Curr. Org. Synth.202310.2174/157017942066623080310225337534487
    [Google Scholar]
  2. ShahrajabianM.H. SunW. Five important seeds in traditional medicine and pharmacological benefits.Seeds20232329030810.3390/seeds2030022
    [Google Scholar]
  3. SunW. ShahrajabianM.H. PetropoulosS.A. ShahrajabianN. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants.Plants20231213246910.3390/plants1213246937447031
    [Google Scholar]
  4. ShahrajabianM.H. SunW. The golden spice for life: Turmeric with the pharmacological benefits of curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycurcumin.Curr. Org. Synth.20232010.2174/157017942066623060712494937287298
    [Google Scholar]
  5. ShahrajabianM.H. SunW. The importance of salicylic acid, humic acid and fulvic acid on crop production.Lett. Drug Des. Discov.2023202011610.2174/1570180820666230411102209
    [Google Scholar]
  6. ShahrajabianM.H. SunW. Survey on multi-omics, and multi-omics data analysis, integration and application.Curr. Pharm. Anal.202319426728110.2174/1573412919666230406100948
    [Google Scholar]
  7. ShahrajabianM.H. SunW. Great health benefits of essential oils of pennyroyal (Mentha pulegium L.): A natural and organic medicine.Curr. Nutr. Food Sci.202319434034510.2174/1573401318666220620145213
    [Google Scholar]
  8. ShahrajabianM.H. SunW. The important nutritional benefits and wonderful health benefits of cashew (Anacardium occidentale L.).Nat. Prod. J.2023134e27042220412710.2174/2210315512666220427113702
    [Google Scholar]
  9. ShahrajabianM.H. SunW. Assessment of wine quality, traceability and detection of grapes wine, detection of harmful substances in alcohol and liquor composition analysis.Lett. Drug Des. Discov.20232010.2174/1570180820666230228115450
    [Google Scholar]
  10. ShahrajabianM.H. SunW. A friendly strategy for an organic life by considering Syrian bean caper (Zygophyllum fabago L.), and parsnip (Pastinaca sativa L.).Curr. Nutr. Food Sci.202319987087410.2174/1573401319666230207093757
    [Google Scholar]
  11. SunW. ShahrajabianM.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health.Molecules2023284184510.3390/molecules2804184536838831
    [Google Scholar]
  12. ShahrajabianM.H. PetropoulosS.A. SunW. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms.Horticulturae20239219310.3390/horticulturae9020193
    [Google Scholar]
  13. SunW. ShahrajabianM.H. LinM. Research progress of fermented functional foods and protein factory-microbial fermentation technology.Fermentation202281268810.3390/fermentation8120688
    [Google Scholar]
  14. ShahrajabianM.H. SunW. Potential roles of longan as a natural remedy with tremendous nutraceutical values.Curr. Nutr. Food Sci.202319988889510.2174/1573401319666230221111242
    [Google Scholar]
  15. ShahrajabianM.H. SunW. Kashk and doogh: The yogurt-based national Persian products.Curr. Nutr. Food Sci.202319992292710.2174/1573401319666230228115432
    [Google Scholar]
  16. ShahrajabianM.H. SunW. Survey on medicinal plants and herbs in traditional Iranian medicine with anti-oxidant, anti-viral, anti-microbial, and anti-inflammation properties.Lett. Drug Des. Discov.202320111707174310.2174/1570180819666220816115506
    [Google Scholar]
  17. SoleymaniA. ShahrajabianM.H. Hosseini FarS.H. NaranjaniL. Morphological traits, yield and yield components of safflower (Carthamus tinctorius L.) cultivars under drought stress condition in Kerman province.J. Food Agric. Environ.201193&4249251
    [Google Scholar]
  18. SoleymaniA. HoodagiM. ShahrajabianM.H. KarimiA. The influence of manganese sulfate on yield and yield components of three wheat cultivars in Abadeh region.J. Food Agric. Environ.201193&4247248
    [Google Scholar]
  19. SoleymaniA. KhoshkharamM. ShahrajabianM.H. Influence of green manures and crop residue management on yield and yield components of silage corn.Res. Crops2012133871876
    [Google Scholar]
  20. QiaoL. SilvaJ.V. FanM. MehmoodI. FanJ. LiR. van IttersumM.K. Assessing the contribution of nitrogen fertilizer and soil quality to yield gaps: A study for irrigated and rainfed maize in China.Field Crops Res.202127310830410.1016/j.fcr.2021.108304
    [Google Scholar]
  21. SenU. LongoA. GonçalvesM. MirandaI. PereiraH. The potential of waste phloem fraction of Quercus cerris Bark in biochar production.Environments20231057110.3390/environments10050071
    [Google Scholar]
  22. Mota-PanizioR. Carmo-CaladoL. AssisA.C. MatosV. Hermoso-OrzáezM.J. RomanoP. GonçalvesM. BritoP. Properties and uses of biochars incorporated into mortars.Environments20231034710.3390/environments10030047
    [Google Scholar]
  23. BarbosaC.F. CorreaD.A. CarneiroJ.S.S. MeloL.C.A. Biochar phosphate fertilizer loaded with urea preserves available nitrogen longer than conventional urea.Sustainability202214268610.3390/su14020686
    [Google Scholar]
  24. MaviM.S. SinghG. ChoudharyO.P. SinghA. VashishtB.B. SekhonK.S. PathaniaN. SinghB. Successive addition of rice straw biochar enhances carbon accumulation in soil irrigated with saline or non-saline water.Environ. Res.202321711473310.1016/j.envres.2022.11473336402185
    [Google Scholar]
  25. YuanR. SalamM. MiaoX. YangY. LiH. WeiY. Potential disintegration and transport of biochar in the soil-water environment: A case study towards purple soil.Environ. Res.202322211538310.1016/j.envres.2023.11538336716806
    [Google Scholar]
  26. BilgiliA.V. AydemirS. AltunO. SayğanE.P. YalçınH. SchindelbeckR. The effects of biochars produced from the residues of locally grown crops on soil quality variables and indexes.Geoderma201934512313310.1016/j.geoderma.2019.03.010
    [Google Scholar]
  27. ZhangR. ZhangY. SongL. SongX. HänninenH. WuJ. Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition.For. Ecol. Manage.201739132132910.1016/j.foreco.2017.02.036
    [Google Scholar]
  28. ParmarA. Biochar production from agro-food industry residues: A sustainable approach for soil and environmental management.Curr. Sci.201410716731682
    [Google Scholar]
  29. PanwarN.L. PawarA. SalviB.L. Comprehensive review on production and utilization of biochar.SN Appl. Sci.20191216810.1007/s42452‑019‑0172‑6
    [Google Scholar]
  30. KanT. StrezovV. EvansT.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters.Renew. Sustain. Energy Rev.2016571126114010.1016/j.rser.2015.12.185
    [Google Scholar]
  31. KapoorR. GhoshP. KumarM. SenguptaS. GuptaA. KumarS.S. VijayV. KumarV. Kumar VV. PantD. Valorization of agricultural waste for biogas based circular economy in India: A research outlook.Bioresour. Technol.202030412303610.1016/j.biortech.2020.12303632107150
    [Google Scholar]
  32. RenaudC. LeysN. WattiezR. Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture.J. Plant Interact.2023181224269710.1080/17429145.2023.2242697
    [Google Scholar]
  33. Singh YadavS.P. BhandariS. BhattaD. PoudelA. BhattaraiS. YadavP. GhimireN. PaudelP. PaudelP. ShresthaJ. OliB. Biochar application: A sustainable approach to improve soil health.J. Agricult. Food Res.20231110049810.1016/j.jafr.2023.100498
    [Google Scholar]
  34. AgarwalH. KashyapV.H. MishraA. BordoloiS. SinghP.K. JoshiN.C. Biochar-based fertilizers and their applications in plant growth promotion and protection.3 Biotech20221213610.1007/s13205‑022‑03195‑2
    [Google Scholar]
  35. VenkateshG. GopinathK.A. ReddyK.S. ReddyB.S. PrabhakarM. SrinivasaraoC. Visha KumariV. SinghV.K. Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use.Sustainability2022144229510.3390/su14042295
    [Google Scholar]
  36. SeowY.X. TanY.H. MubarakN.M. KansedoJ. KhalidM. IbrahimM.L. GhasemiM. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications.J. Environ. Chem. Eng.202210110701710.1016/j.jece.2021.107017
    [Google Scholar]
  37. ChaudharyD.K. ParkJ.H. KimP.G. OkY.S. HongY. Enrichment cultivation of VOC-degrading bacteria using diffusion bioreactor and development of bacterial-immobilized biochar for VOC bioremediation.Environ. Pollut.202332012108910.1016/j.envpol.2023.12108936669717
    [Google Scholar]
  38. ShangQ. ChiJ. Impact of biochar coexistence with polar/nonpolar microplastics on phenanthrene sorption in soil.J. Hazard. Mater.202344713076110.1016/j.jhazmat.2023.13076136638674
    [Google Scholar]
  39. GuS. YangX. ChenH. JeyakumarP. ChenJ. WangH. Crawfish shell- and Chinese banyan branch-derived biochars reduced phytoavailability of As and Pb and altered community composition of bacteria in a contaminated arable soil.Sci. Total Environ.202386516128410.1016/j.scitotenv.2022.16128436587703
    [Google Scholar]
  40. LiuL. YangX. AhmadS. LiX. RiC. TangJ. EllamR.M. SongZ. Silicon (Si) modification of biochars from different Si-bearing precursors improves cadmium remediation.Chem. Eng. J.202345714119410.1016/j.cej.2022.141194
    [Google Scholar]
  41. ShahrajabianM.H. SunW. ChengQ. The importance of rhizobium, agrobacterium, bradyrhizobium, herbaspirillum, sinorhizobium in sustainable agricultural production.Not. Bot. Horti Agrobot. Cluj-Napoca20214931218310.15835/nbha49312183
    [Google Scholar]
  42. BolanN. SarmahA.K. BordoloiS. BolanS. PadhyeL.P. Van ZwietenL. SooriyakumarP. KhanB.A. AhmadM. SolaimanZ.M. RinklebeJ. WangH. SinghB.P. SiddiqueK.H.M. Soil acidification and the liming potential of biochar.Environ. Pollut.202331712063210.1016/j.envpol.2022.12063236384210
    [Google Scholar]
  43. SharmaS. RanaV.S. RanaN. PrasadH. SharmaU. PatiyalV. Biochar from fruit crops waste and its potential impact on fruit crops.Sci. Hortic.202229911105210.1016/j.scienta.2022.111052
    [Google Scholar]
  44. NkohJ.N. BaquyM.A.A. MiaS. ShiR. KamranM.A. MehmoodK. XuR. A critical-systematic review of the interactions of biochar with soils and the observable outcomes.Sustainability202113241372610.3390/su132413726
    [Google Scholar]
  45. MaruA. HarunaA.O. AsapA. MajidN.M.A. MaikolN. JeffaryA.V. Reducing acidity of tropical acid soil to improve phosphorus availability and Zea mays L. productivity through efficient use of chicken litter biochar and triple superphosphate.Appl. Sci.2020106212710.3390/app10062127
    [Google Scholar]
  46. KhawkomolS. NeamchanR. ThongsamerT. VinitnantharatS. PanpraditB. SohsalamP. WernerD. MrozikW. Potential of biochar derived from agricultural residues for sustainable management.Sustainability20211315814710.3390/su13158147
    [Google Scholar]
  47. Van TruongT. KimY.J. KimD.J. Study of biochar impregnated with Al recovered from water sludge for phosphate adsorption/desorption.J. Clean. Prod.202338313550710.1016/j.jclepro.2022.135507
    [Google Scholar]
  48. DornerM. LokeshS. YangY. BehrensS. Biochar-mediated abiotic and biotic degradation of halogenated organic contaminants - A review.Sci. Total Environ.202285215838110.1016/j.scitotenv.2022.15838136055499
    [Google Scholar]
  49. YuanY. KongQ. ZhengY. ZhengH. LiuY. ChengY. ZhangX. LiZ. YouX. LiY. Co-application of biochar and pyroligneous acid improved peanut production and nutritional quality in a coastal soil.Environm. Technol. Innov.20222810288610.1016/j.eti.2022.102886
    [Google Scholar]
  50. AhmadA. ZahraM. Fakhar e Alam AliS. PervaizM. SaeedZ. YounasU. MushtaqM. RajendranS. LuqueR. A sustainable approach for the multi-dimensional exploitation of mixed biochar based nano-composites.Fuel202333612693010.1016/j.fuel.2022.126930
    [Google Scholar]
  51. KhalediS. DelbariM. GalaviH. BagheriH. ChariM.M. Effects of biochar particle size, biochar application rate, and moisture content on thermal properties of an unsaturated sandy loam soil.Soil Tillage Res.202322610557910.1016/j.still.2022.105579
    [Google Scholar]
  52. BassA.M. BirdM.I. KayG. MuirheadB. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems.Sci. Total Environ.201655045947010.1016/j.scitotenv.2016.01.14326845182
    [Google Scholar]
  53. Farhangi-AbrizS. Ghassemi-GolezaniK. Improving electrochemical characteristics of plant roots by biochar is an efficient mechanism in increasing mechanism in increasing cations uptake by plants.Chemosphere202331313736510.1016/j.chemosphere.2022.13736536427572
    [Google Scholar]
  54. SchmidtM.P. AshworthD.J. CelisN. IbekweA.M. Optimizing date palm leaf and pistachio shell biochar properties for antibiotic adsorption by varying pyrolysis temperature.Bioresour. Technol. Rep.20232110132510.1016/j.biteb.2022.101325
    [Google Scholar]
  55. QianS. ZhouX. FuY. SongB. YanH. ChenZ. SunQ. YeH. QinL. LaiC. Biochar-compost as a new option for soil improvement: Application in various problem soils.Sci. Total Environ.202387016202410.1016/j.scitotenv.2023.16202436740069
    [Google Scholar]
  56. CooperJ.A. MalakarA. KaiserM. Self-functionalization of soil-aged biochar surfaces increases nitrate retention.Sci. Total Environ.202386116064410.1016/j.scitotenv.2022.16064436464046
    [Google Scholar]
  57. ZhaoK. ShangJ. Transport of biochar colloids under unsaturated flow condition: Roles of chemical aging and cation type.Sci. Total Environ.2023859Pt 216041510.1016/j.scitotenv.2022.16041536427725
    [Google Scholar]
  58. BrionesM.J.I. PanzacchiP. DaviesC.A. InesonP. Contrasting responses of macro- and meso-fauna to biochar additions in a bioenergy cropping system.Soil Biol. Biochem.202014510780310.1016/j.soilbio.2020.107803
    [Google Scholar]
  59. TaoB. ChenQ. YangH. JiangY. WangJ. ZhangB. Combined effect of biochar addition and temperature on methane absorption of topsoil in a temperate forest, China.Ecol. Eng.202318710684410.1016/j.ecoleng.2022.106844
    [Google Scholar]
  60. AnandA. GautamS. RamL.C. Feedstock and pyrolysis conditions affect suitability of biochar for various sustainable energy and environmental applications.J. Anal. Appl. Pyrolysis202317010588110.1016/j.jaap.2023.105881
    [Google Scholar]
  61. LiuQ. HeX. WangK. LiD. Biochar drives humus formation during composting by regulating the specialized metabolic features of microbiome.Chem. Eng. J.202345814138010.1016/j.cej.2023.141380
    [Google Scholar]
  62. Farhangi-AbrizS. TorabianS. QinR. NoulasC. LuY. GaoS. Biochar effects on yield of cereal and legume crops using meta-analysis.Sci. Total Environ.202177514586910.1016/j.scitotenv.2021.145869
    [Google Scholar]
  63. ZongY. XiaoQ. MalikZ. SuY. WangY. LuS. Crop straw-derived biochar alleviated cadmium and copper phytotoxicity by reducing bioavailability and accumulation in a field experiment of rice-rape-corn rotation system.Chemosphere202128013083010.1016/j.chemosphere.2021.13083034162097
    [Google Scholar]
  64. AzeemM. HayatR. HussainQ. AhmedM. PanG. Ibrahim TahirM. ImranM. IrfanM. Mehmood-ul-Hassan Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system.Soil Tillage Res.201918617218210.1016/j.still.2018.10.007
    [Google Scholar]
  65. HuY. SunB. WuS. FengH. GaoM. ZhangB. LiuY. After-effects of straw and straw-derived biochar application on crop growth, yield, and soil properties in wheat (Triticum aestivum L.) -maize (Zea mays L.) rotations: A four-year field experiment.Sci. Total Environ.202178014656010.1016/j.scitotenv.2021.14656033770594
    [Google Scholar]
  66. ZhouR. WangY. TianM. Shah JahanM. ShuS. SunJ. LiP. AhammedG.J. GuoS. Mixing of biochar, vinegar and mushroom residues regulates soil microbial community and increases cucumber yield under continuous cropping regime.Appl. Soil Ecol.202116110388310.1016/j.apsoil.2021.103883
    [Google Scholar]
  67. ZeeshanM. AhmadW. HussainF. AhamdW. NumanM. ShahM. AhmadI. Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield.J. Clean. Prod.202025512031810.1016/j.jclepro.2020.120318
    [Google Scholar]
  68. ZhouY. BerrutiF. GreenhalfC. HenryH.A.L. Combined effects of biochar amendment, leguminous cover crop addition and snow removal on nitrogen leaching losses and nitrogen retention over winter and subsequent yield of a test crop (Eruca sativa L.).Soil Biol. Biochem.201711422022810.1016/j.soilbio.2017.07.023
    [Google Scholar]
  69. GalinatoS.P. YoderJ.K. GranatsteinD. The economic value of biochar in crop production and carbon sequestration.Energy Policy201139106344635010.1016/j.enpol.2011.07.035
    [Google Scholar]
  70. FrenchE. Iyer-PascuzziA.S. A role for the gibberellin pathway in biochar-mediated growth promotion.Sci. Rep.201881538910.1038/s41598‑018‑23677‑929599525
    [Google Scholar]
  71. BoharaH. DodlaS. WangJ.J. DarapuneniM. KongchumM. FrommeD.D. HarrellD. Impacts of N-stabilizers and biochar on nitrogen losses, nitrogen phytoavailability, and cotton yield in poultry litter-fertilized soils.Agron. J.201811052016202410.2134/agronj2018.01.0007
    [Google Scholar]
  72. MilonA.R. ChangS.W. RavindranB. Biochar amended compost maturity evaluation using commercial vegetable crops seedlings through phytotoxicity germination bioassay.J. King Saud Univ. Sci.202234210177010.1016/j.jksus.2021.101770
    [Google Scholar]
  73. BarontiS. MagnoR. MaienzaA. MontagnoliA. UngaroF. VaccariF.P. Long term effect of biochar on soil plant water relation and fine roots: Results after 10 years of vineyard experiment.Sci. Total Environ.2022851Pt 115822510.1016/j.scitotenv.2022.15822535998720
    [Google Scholar]
  74. ZhangY. LiM. DongL. HanC. LiM. WuH. Effects of biochar dosage on treatment performance, enzyme activity and microbial community in aerated constructed wetlands for treating low C/N domestic sewage.Environm. Technol. Innov.20212410191910.1016/j.eti.2021.101919
    [Google Scholar]
  75. KochanekJ. SooR.M. MartinezC. DakuidreketiA. MudgeA.M. Biochar for intensification of plant-related industries to meet productivity, sustainability and economic goals: A review.Resour. Conserv. Recycling202217910610910.1016/j.resconrec.2021.106109
    [Google Scholar]
  76. ErdemH. The effects of biochars produced in different pyrolsis temperatures from agricultural wastes on cadmium uptake of tobacco plant.Saudi J. Biol. Sci.20212873965397110.1016/j.sjbs.2021.04.01634220253
    [Google Scholar]
  77. YouX. YinS. SuoF. XuZ. ChuD. KongQ. ZhangC. LiY. LiuL. Biochar and fertilizer improved the growth and quality of the ice plant (Mesembryanthemum crystallinum L.) shoots in a coastal soil of Yellow River Delta, China.Sci. Total Environ.202177514489310.1016/j.scitotenv.2020.14489333618299
    [Google Scholar]
  78. BeesleyL. MarmiroliM. PaganoL. PigoniV. FelletG. FresnoT. VameraliT. BandieraM. MarmiroliN. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.).Sci. Total Environ.2013454-45559860310.1016/j.scitotenv.2013.02.04723583727
    [Google Scholar]
  79. LiuA. TianD. XiangY. MoH. Effects of biochar on growth of Asian lotus (Nelumbo nucifera Gaertn.) and cadmium uptake in artificially cadmium-polluted water.Sci. Hortic.201619831131710.1016/j.scienta.2015.11.030
    [Google Scholar]
  80. MaS. ZhuG. ParhatR. JinY. WangX. WuW. XuW. WangY. ChenW. Exogenous selenium and biochar application modulate the growth and selenium uptake of medicinal legume Astragalus species.Plants20231210195710.3390/plants1210195737653874
    [Google Scholar]
  81. PandeyV. PatelA. PatraD.D. Biochar ameliorates crop productivity, soil fertility, essential oil yield and aroma profiling in basil (Ocimum basilicum L.).Ecol. Eng.20169036136610.1016/j.ecoleng.2016.01.020
    [Google Scholar]
  82. JabborovaD. MaH. Bellingrath-KimuraS.D. WirthS. Impacts of biochar on basil (Ocimum basilicum) growth, root morphological traits, plant biochemical and physiological properties and soil enzymatic activities.Sci. Hortic.202129011051810.1016/j.scienta.2021.110518
    [Google Scholar]
  83. MehdizadehL. FarsaraeiS. MoghaddamM. Biochar application modified growth and physiological parameters of Ocimum ciliatum L. and reduced human risk assessment under cadmium stress.J. Hazard. Mater.202140912495410.1016/j.jhazmat.2020.12495433422756
    [Google Scholar]
  84. DingZ. ZhouZ. LinX. ZhaoF. WangB. LinF. GeY. EissaM.A. Biochar impacts on NH3-volatilization kinetics and growth of sweet basil (Ocimum basilicum L.) under saline conditions.Ind. Crops Prod.202015711290310.1016/j.indcrop.2020.112903
    [Google Scholar]
  85. BuX. XueJ. WuY. MaW. Effect of biochar on seed germination and seedling growth of Robinia pseudoacacia L. in Karst calcareous soils.Commun. Soil Sci. Plant Anal.202051335236310.1080/00103624.2019.1709484
    [Google Scholar]
  86. Gul-Lalay UllahS. NafeesM. AhmedI. Resistance induction in Brassica napus L. against water deficit stress through application of biochar and plant growth promoting rhizobacteria.J. Saudi Soc. Agric. Sci.202322742042910.1016/j.jssas.2023.04.001
    [Google Scholar]
  87. LosaccoD. TumoloM. CotugnoP. LeoneN. MassarelliC. ConvertiniS. TursiA. UricchioV.F. AnconaV. Use of biochar to improve the sustainable crop production of Cauliflower (Brassica oleracea L.).Plants2022119118210.3390/plants1109118235567183
    [Google Scholar]
  88. Heidarian DR. DenisA. FoucheJ. BurgeonV. CornelisJ.T. TychonB. Placencia GomezE. MeersmansJ. Remotely-sensed assessment of the impact of century-old biochar on chicory crop growth using high-resolution UAV-based imagery.Int. J. Appl. Earth Obs. Geoinf.20209110214710.1016/j.jag.2020.102147
    [Google Scholar]
  89. XiaoY. LiY. CheY. DengS. LiuM. Effects of biochar and nitrogen addition on nutrient and Cd uptake of Cichorium intybus grown in acidic soil.Int. J. Phytoremediation201820439840410.1080/15226514.2017.136534228949769
    [Google Scholar]
  90. ChunJ.H. KangY.G. LeeJ.H. YunY.U. OhT.K. YoonM.H. The combined effect of nitrogen and biochar amendments on the yield and glucosinolate contents of the Chinese cabbage.J. King Saud Univ. Sci.202234210179910.1016/j.jksus.2021.101799
    [Google Scholar]
  91. ZhaoL. XuW. GuanH. WangK. XiangP. WeiF. YangS. MiaoC. MaL.Q. Biochar increases Panax notoginseng’s survival under continuous cropping by improving soil properties and microbial diversity.Sci. Total Environ.202285015799010.1016/j.scitotenv.2022.15799035963414
    [Google Scholar]
  92. NazirA. Potential application of biochar composte derived from rice straw and animal bones to improve plant growth.Sustainability2021131110410.3390/su131911104
    [Google Scholar]
  93. LiuA. TianD. XiangY. MoH. Biochar improved growth of an important medicinal plant (Salvia miltiorrhiza Bunge) and inhibited its cadmium uptake.J. Plant Biol. States Health2016326
    [Google Scholar]
  94. ZhangJ. ZhouY. WenS. JiaL. ZhangR. ChenY. ZhaoP. LongG. Biochar improves the yield and quality of Erigeron breviscapus in heavily cadmium-polluted soil.Sci. Hortic.202332111237110.1016/j.scienta.2023.112371
    [Google Scholar]
  95. AgbedeT.M. Effect of tillage, biochar, poultry manure and NPK 15-15-15 fertilizer, and their mixture on soil properties, growth and carrot (Daucus carota L.) yield under tropical conditions.Heliyon202176e0739110.1016/j.heliyon.2021.e0739134222703
    [Google Scholar]
  96. AgbedeT.M. OdojaA.S. BayodeL.N. OmotehinseP.O. AdepehinI. Effects of biochar and poultry manure on soil properties, growth, yield and quality of cocoyam (Xanthosoma sagittifolium Schott) grown in sandy soil.Commun. Soil Sci. Plant Anal.202051793294710.1080/00103624.2020.1744621
    [Google Scholar]
  97. RongaD. FranciaE. AllesinaG. PedrazziS. ZaccardelliM. PaneC. TavaA. BignamiC. Valorization of vineyard by-products to obtain composted digestate and biochar suitable for nursery grapevine (Vitis vinifera L.) production.Agronomy20199842010.3390/agronomy9080420
    [Google Scholar]
  98. SahaA. BasakB.B. GajbhiyeN.A. KalariyaK.A. ManivelP. Sustainable fertilization through co-application of biochar and chemical fertilizers improves yield, quality of Andrographis paniculata and soil health.Ind. Crops Prod.201914011160710.1016/j.indcrop.2019.111607
    [Google Scholar]
  99. RegmiA. PoudyalS. SinghS. ColdrenC. Moustaid-MoussaN. SimpsonC. Biochar influences phytochemical concentrations of Viola cornuta flowers.Sustainability (Basel)2023155388210.3390/su15053882
    [Google Scholar]
  100. KhanT.F. SalmaM.U. HossainS.A. Impacts of different sources of biochar on plant growth characteristics.Am. J. Plant Sci.2018991922193410.4236/ajps.2018.99139
    [Google Scholar]
  101. HanY. DoudsD.D.Jr BoatengA.A. Effect of biochar soil-amendments on Allium porrum growth and arbuscular mycorrhizal fungus colonization.J. Plant Nutr.201639111654166210.1080/01904167.2015.1089903
    [Google Scholar]
  102. XuQ. SongX. XuM. XuQ. LiuQ. TangC. WangX. YinW. WangX. Elevated CO2 and biochar differentially affect plant C:N:P stoichiometry and soil microbiota in the rhizosphere of white lupin (Lupinus albus L.).Chemosphere2022308Pt 213634710.1016/j.chemosphere.2022.13634736087720
    [Google Scholar]
  103. TaheriM.R. AstaraeiA.R. LakzianA. EmamiH. Sorbitol and biochar have key roles in microbial and enzymatic activity of saline-sodic and calcareous soil in millet cropping.Rhizosphere20222410059810.1016/j.rhisph.2022.100598
    [Google Scholar]
  104. Keshavarz AR. HashemiM. DaCostaM. SpargoJ. SadeghpourA. Biochar application and drought stress effects on physiological characteristics of Silybum marianum.Commun. Soil Sci. Plant Anal.201647674375210.1080/00103624.2016.1146752
    [Google Scholar]
  105. Ghassemi-GolezaniK. Farhangi-AbrizS. Biochar related treatments improved physiological performance, growth and productivity of Mentha crispa L. plants under fluoride and cadmium toxicities.Ind. Crops Prod.202319411628710.1016/j.indcrop.2023.116287
    [Google Scholar]
  106. YanJ. YuP. LiuC. LiQ. GuM. Replacing peat moss with mixed hardwood biochar as container substrates to produce five types of mint (Mentha spp.).Ind. Crops Prod.202015511282010.1016/j.indcrop.2020.112820
    [Google Scholar]
  107. Silva GonzagaM.I. Oliveira da SilvaP.S. Carlos de Jesus SantosJ. Ganassali de OliveiraJunior, L.F. Biochar increases plant water use efficiency and biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil.Ecotoxicol. Environ. Saf.201918310955710.1016/j.ecoenv.2019.10955731408820
    [Google Scholar]
  108. ChenW. WuZ. LiuC. ZhangZ. LiuX. Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt, and promote radish growth.Ecotoxicol. Environ. Saf.202325111450910.1016/j.ecoenv.2023.11450936621032
    [Google Scholar]
  109. AdekiyaA.O. AgbedeT.M. AboyejiC.M. DunsinO. SimeonV.T. Biochar and poultry manure effects on soil properties and radish (Raphanus sativus L.) yield.Biol. Agric. Hortic.2019351334510.1080/01448765.2018.1500306
    [Google Scholar]
  110. PeirisC. WathuduraP.D. GunatilakeS.R. GajanayakeB. WewalwelaJ.J. AbeysundaraS. VithanageM. Effect of acid modified tea-waste biochar on crop productivity of red onion (Allium cepa L.).Chemosphere2022288Pt 213255110.1016/j.chemosphere.2021.13255134655645
    [Google Scholar]
  111. NoordinN. GhazaliS. AdnanN. Impact of sap-biochar incorporation on controlled release water retention fertilizer (CRWR) towards growth of okras (Abelmoschus esculentus).Mater. Today Proc.2018510219112191810.1016/j.matpr.2018.07.050
    [Google Scholar]
  112. AdeyemiO.R. BashiruddinA.A. AdigunJ.A. AdejuyigbeC.O. OsunletiS.O. Fruit quality and marketability of Okra (Abelmoschus esculentus (L.) Moench) as influenced by biochar rates and weeding regime.Int. J. Pest Manage.20221910.1080/09670874.2022.2094493
    [Google Scholar]
  113. JainS. KhareP. MishraD. ShankerK. SinghP. SinghR.P. DasP. YadavR. SaikiaB.K. BaruahB.P. Biochar aided aromatic grass Cymbopogon martini (Roxb.) Wats. Vegetation: A sustainable method for stabilization of highly acidic mine waste.J. Hazard. Mater.202039012179910.1016/j.jhazmat.2019.12179931818656
    [Google Scholar]
  114. MumivandH. IzadiZ. AmirizadehF. MaggiF. MorshedlooM.R. Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha × piperita L.) grown under waste water and reduces environmental contamination from waste water disposal.J. Hazard. Mater.202344613067410.1016/j.jhazmat.2022.13067436603422
    [Google Scholar]
  115. PrilaningrumS.O. PujiA.B. YunusA. Growth response of Echinacea purpurea (L) Moench to biochar types and hormone doses.IOP Conf. Ser. Earth Environ. Sci.20221016101201310.1088/1755‑1315/1016/1/012013
    [Google Scholar]
  116. Sadegh KasmaeiL. YasrebiJ. ZareiM. RonaghiA. GhasemiR. SaharkhizM.J. AhmadabadiZ. SchnugE. Influence of plant growth promoting rhizobacteria, compost, and biochar of Azolla on rosemary (Rosmarinus officinalis L.) growth and some soil quality indicators in a calcareous soil.Commun. Soil Sci. Plant Anal.201950211913110.1080/00103624.2018.1554669
    [Google Scholar]
  117. BeiranvandiM. AkbariN. AhmadiA. MumivandH. NazarianF. Biochar and super absorbent polymer improved growth, yield, and phytochemical characteristics of Satureja rechingeri Jamzad in water-deficiency conditions.Ind. Crops Prod.202218311495910.1016/j.indcrop.2022.114959
    [Google Scholar]
  118. WacalC. OgataN. BasalirwaD. HandaT. SasagawaD. AcidriR. IshigakiT. KatoM. MasunagaT. YamamotoS. NishiharaE. Growth, seed yield, mineral nutrients and soil properties of sesame (Sesamum indicum L.) as influenced by biochar addition on upland field converted from paddy.Agronomy2019925510.3390/agronomy9020055
    [Google Scholar]
  119. KamranM.A. BibiS. ChenB. Preventative effect of crop straw-derived biochar on plant growth in an arsenic polluted acidic ultisol.Sci. Total Environ.202281215146910.1016/j.scitotenv.2021.15146934742960
    [Google Scholar]
  120. XiuL. GuW. SunY. WuD. WangY. ZhangH. ZhangW. ChenW. The fate and supply capacity of potassium in biochar used in agriculture.Sci. Total Environ.202390216596910.1016/j.scitotenv.2023.16596937541494
    [Google Scholar]
  121. BashirS. RehmanM. YousafM. SalamA. GulshanA.B. IqbalJ. AzizI. AzeemM. RukhS. AsgharR.M.A. Comparative efficiency of wheat straw and sugarcane bagasse biochar reduces the cadmium bioavailability to spinach and enhances the microbial activity in contaminated soil.Int. J. Phytoremediation201921111098110310.1080/15226514.2019.160678131244330
    [Google Scholar]
  122. PrasetyaA. NuryaniH.U.S. HanudinE. Effects of shade and biochar application on the quercetin content of longevity spinach in inceptisol.Appl. Environ. Soil Sci.2021202111210.1155/2021/6699873
    [Google Scholar]
  123. YadavV. KarakT. SinghS. SinghA.K. KhareP. Benefits of biochar over other organic amendments: Responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses.Ind. Crops Prod.20191319610510.1016/j.indcrop.2019.01.045
    [Google Scholar]
  124. WangL. HeD. WangE. ChenG. LiZ. QianX. GaoY. ZhangH. LiuK. Nitrogen management to reduce GHG emissions while maintaining high crop productivity in temperate summer rainfall climate.Field Crops Res.202329010876110.1016/j.fcr.2022.108761
    [Google Scholar]
  125. ZhangQ. SongY. WuZ. YanX. GuninaA. KuzyakovY. XiongZ. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation.J. Clean. Prod.202024211843510.1016/j.jclepro.2019.118435
    [Google Scholar]
  126. PanequeM. De la RosaJ.M. Franco-NavarroJ.D. Colmenero-FloresJ.M. KnickerH. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions.Catena201614728028710.1016/j.catena.2016.07.037
    [Google Scholar]
  127. BorgohainA. SarmahM. GogoiB.B. KonwarK. HandiqueJ.G. PaulR.K. YeasinM. PandeyV. YadavR. MalakarH. SaikiaJ. DekaD. RahmanF.H. PanjaS. KhareP. KarakT. Can tea pruning litter biochar be a friend or foe for tea (Camellia sinensis L.) plants’ growth and growth regulators?: Feasible or fumes of fancy.Ind. Crops Prod.202319511639410.1016/j.indcrop.2023.116394
    [Google Scholar]
  128. BorgohainA. SarmahM. KonwarK. GogoiR. BikashG.B. KhareP. KumarP.R. HandiqueJ.G. MalakarH. DekaD. SaikiaJ. KarakT. Tea pruning litter biochar amendment in soil reduces arsenic, cadmium, and chromium in made tea (Camellia sinensis L.) and tea infusion: A safe drink for tea consumers.Food Chem. X20221310025510.1016/j.fochx.2022.10025535498976
    [Google Scholar]
  129. SarmahM. BorgohainA. GogoiB.B. YeasinM. PaulR.K. MalakarH. HandiqueJ.G. SaikiaJ. DekaD. KhareP. KarakT. Insights into the effects of tea pruning litter biochar on major micronutrients (Cu, Mn, and Zn) pathway from soil to tea plant: An environmental armour.J. Hazard. Mater.202344212997010.1016/j.jhazmat.2022.12997036162303
    [Google Scholar]
  130. KennethF. JoniverC.F.H. MeredithW. AdamsJ.M.M. The productivity effects of macroalgal biochar from Ulva (Linnaeus) bloom species on Arabidopsis thaliana (Linnaeus) seedlings.Eur. J. Phycol.202358328429910.1080/09670262.2022.2103739
    [Google Scholar]
  131. ChangxunG. ZhiyongP. Shu’angP. Effect of biochar on the growth of Poncirus trifoliata (L.) Raf. seedlings in Gannan acidic red soil.Soil Sci. Plant Nutr.201662219420010.1080/00380768.2016.1150789
    [Google Scholar]
  132. SahaA. BasakB.B. BanerjeeA. In-vitro antioxidant evaluation and production of biochar from distillation waste biomass of Mentha arvensis.J. Appl. Res. Med. Aromat. Plants20223110042810.1016/j.jarmap.2022.100428
    [Google Scholar]
  133. NigamN. KhareP. AhsanM. YadavV. ShankerK. SinghR.P. PandeyV. DasP. Biochar amendment reduced the risk associated with metal uptake and improved metabolite content in medicinal hebrs.Physiol. Plant.2021173132132910.1111/ppl.1339333713449
    [Google Scholar]
  134. LianF. SunB. SongZ. ZhuL. QiX. XingB. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole.Chem. Eng. J.201424812813410.1016/j.cej.2014.03.021
    [Google Scholar]
  135. BoersmaM. Wrobel-TobiszewskaA. MurphyL. EylesA. Impact of biochar application on the productivity of a temperate vegetable cropping system.N. Z. J. Crop Hortic. Sci.201745427728810.1080/01140671.2017.1329745
    [Google Scholar]
  136. KulR. ArjumendT. EkinciM. YildirimE. TuranM. ArginS. Biochar as an organic soil conditioner for mitigating salinity stress in tomato.Soil Sci. Plant Nutr.202167669370610.1080/00380768.2021.1998924
    [Google Scholar]
  137. BasakB.B. SahaA. SarkarB. KumarB.P. GajbhiyeN.A. BanerjeeA. Repurposing distillation waste biomass and low-value mineral resources through biochar-mineral-complex for sustainable production of high-value medicinal plants and soil quality improvement.Sci. Total Environ.202176014331910.1016/j.scitotenv.2020.14331933199015
    [Google Scholar]
  138. Blanco-CanquiH. Biochar and soil physical properties.Soil Sci. Soc. Am. J.201781468771110.2136/sssaj2017.01.0017
    [Google Scholar]
  139. DiattaA.A. FikeJ.H. BattagliaM.L. GalbraithJ.M. BaigM.B. Effects of biochar on soil fertility and crop productivity in arid regions: a review.Arab. J. Geosci.2020131459510.1007/s12517‑020‑05586‑2
    [Google Scholar]
  140. ShahrajabianM.H. ChaskiC. PolyzosN. TzortzakisN. PetropoulosS.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants.Biomolecules202111681910.3390/biom1106081934072781
    [Google Scholar]
  141. ShahrajabianM.H. ChaskiC. PolyzosN. PetropoulosS.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables.Biomolecules202111569810.3390/biom1105069834067181
    [Google Scholar]
  142. MarmittD.J. ShahrajabianM.H. Plant species used in Brazil and Asia regions with toxic properties.Phytother. Res.20213594703472610.1002/ptr.710033793002
    [Google Scholar]
  143. SunW. ShahrajabianM.H. ChengQ. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceuutical science.Mini Rev. Med. Chem.202121672473010.2174/18755607MTEx4OTAn533245271
    [Google Scholar]
  144. ShahrajabianM.H. SunW. SoleymaniA. ChengQ. Traditional medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses.Phytother. Res.20202020111110.1002/ptr.688833350538
    [Google Scholar]
  145. ShahrajabianM.H. SunW. ChengQ. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review.Int. J. Food Prop.20202311961197010.1080/10942912.2020.1828456
    [Google Scholar]
  146. AdekiyaA.O. AgbedeT.M. OlayanjuA. EjueW.S. AdekanyeT.A. AdenusiT.T. AyeniJ.F. Effect of biochar on soil properties, soil loss, and cocyam yield on a tropical sandy loam alfisol.Sci. World J.202020201910.1155/2020/939163032158364
    [Google Scholar]
  147. WangD. JiangP. ZhangH. YuanW. Biochar production and applications in agro and forestry systems: A review.Sci. Total Environ.202072313777510.1016/j.scitotenv.2020.13777532213399
    [Google Scholar]
  148. KavithaB. ReddyP.V.L. KimB. LeeS.S. PandeyS.K. KimK.H. Benefits and limitations of biochar amendment in agricultural soils: A review.J. Environ. Manage.201822714615410.1016/j.jenvman.2018.08.08230176434
    [Google Scholar]
  149. KimH.S. KimK.R. YangJ.E. OkY.S. OwensG. NehlsT. WessolekG. KimK.H. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response.Chemosphere201614215315910.1016/j.chemosphere.2015.06.04126138709
    [Google Scholar]
  150. XiaoQ. ZhuL.X. ZhangH.P. LiX.Y. ShenY.F. LiS.Q. Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth.Crop Pasture Sci.201667549550710.1071/CP15351
    [Google Scholar]
  151. AgegnehuG. BassA.M. NelsonP.N. BirdM.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil.Sci. Total Environ.2016543Pt A29530610.1016/j.scitotenv.2015.11.05426590867
    [Google Scholar]
  152. MartinsenV. AllingV. NuridaN.L. MulderJ. HaleS.E. RitzC. RutherfordD.W. HeikensA. BreedveldG.D. CornelissenG. pH effects of the addition of three biochars to acidic Indonesian mineral soils.Soil Sci. Plant Nutr.201561582183410.1080/00380768.2015.1052985
    [Google Scholar]
  153. ChathurikaJ.A.S. KumaragamageD. ZvomuyaF. AkinremiO.O. FlatenD.N. IndraratneS.P. DandeniyaW.S. Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils.Can. J. Soil Sci.201696447248410.1139/cjss‑2015‑0094
    [Google Scholar]
  154. SandhuS.S. UssiriD.A.N. KumarS. ChintalaR. PapiernikS.K. MaloD.D. SchumacherT.E. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation.Chemosphere201718447348110.1016/j.chemosphere.2017.05.16528618279
    [Google Scholar]
  155. RazzaghiF. ObourP.B. ArthurE. Does biochar improve soil water retention? A systematic review and meta-analysis.Geoderma202036111405510.1016/j.geoderma.2019.114055
    [Google Scholar]
  156. MclennonE. SolomonJ.K.Q. NeupaneD. DavisonJ. Biochar and nitrogen application rates effect on phosphorus removal from a mixed grass sward irrigated with reclaimed wastewater.Sci. Total Environ.202071513701210.1016/j.scitotenv.2020.13701232041056
    [Google Scholar]
  157. AlghamdiA.G. Biochar as a potential soil additive for improving soil physical properties-a review.Arab. J. Geosci.2018112476610.1007/s12517‑018‑4056‑7
    [Google Scholar]
  158. DeLucaT.H. GundaleM.J. MackenzieM.D. JonesD.L. Biochar effects on soil nutrient transofrmations.Biochar. Environ. Manag. Sci. Technol. Implement2015242145410.1201/b18920‑17
    [Google Scholar]
  159. TrupianoD. CocozzaC. BarontiS. AmendolaC. VaccariF.P. LustratoG. Di LonardoS. FantasmaF. TognettiR. ScippaG.S. The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance.Int. J. Agron.2017201711210.1155/2017/3158207
    [Google Scholar]
  160. JosephS. KammannC.I. ShepherdJ.G. ConteP. SchmidtH.P. HagemannN. RichA.M. MarjoC.E. AllenJ. MunroeP. MitchellD.R.G. DonneS. SpokasK. GraberE.R. Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release.Sci. Total Environ.20186181210122310.1016/j.scitotenv.2017.09.20029126641
    [Google Scholar]
  161. HuangM. FanL. ChenJ. JiangL. ZouY. Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization.Sci. Rep.2018811146110.1038/s41598‑018‑29877‑730061619
    [Google Scholar]
  162. GrutzmacherP. PugaA.P. BibarM.P.S. CoscioneA.R. PackerA.P. AndradeC.A. Carbon stability and fertilizer induced N2O emissions mitigation in soil treated with biochar.Sci. Total Environ.20186251459146610.1016/j.scitotenv.2017.12.19629996442
    [Google Scholar]
  163. UllahS. ZhaoQ. WuK. AliI. LiangH. IqbalA. WeiS. ChengF. AhmadS. JiangL. GillaniS.W. Amanullah AnwarS. KhanZ. Biochar application to rice with 15N-labelled fertilizers, enhanced leaf nitrogen concentration and assimilation by improving morpho-physiological traits and soil quality.Saudi J. Biol. Sci.20212863399341310.1016/j.sjbs.2021.03.00334121878
    [Google Scholar]
  164. Lo PiccoloE. BecagliM. LauriaG. CantiniV. CeccantiC. CardelliR. MassaiR. RemoriniD. GuidiL. LandiM. Biochar as a soil amendment in the tree establishment phase: What are the consequences for tree physiology, soil quality and carbon sequestration?Sci. Total Environ.202284415717510.1016/j.scitotenv.2022.15717535803424
    [Google Scholar]
  165. OlmoM. LozanoA.M. BarrónV. VillarR. Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield.Sci. Total Environ.201656269070010.1016/j.scitotenv.2016.04.08927110980
    [Google Scholar]
  166. GiagnoniL. RenellaG. Effects of biochar on the C use efficiency of soil microbial communities: Components and mechanisms.Environments202291113810.3390/environments9110138
    [Google Scholar]
  167. YangF. ZhouY. LiuW. TangW. MengJ. ChenW. LiX. Strain-specific effects of biochar and its water-soluble compounds on bacterial growth.Appl. Sci.2019916320910.3390/app9163209
    [Google Scholar]
  168. KarimM.R. HalimM.A. GaleN.V. ThomasS.C. Biochar effects on soil physiochemical properties in degraded managed ecosystems in Northeastern Bangladesh.Soil Syst.2020446910.3390/soilsystems4040069
    [Google Scholar]
  169. AmerM.M. Effect of biochar, compost tea and magnetic iron ore application on some soil properties and productivity of some field crops under saline soil condition at North Nile Delta. Egypt.J. Soil Sci.20175616918610.21608/ejss.2017.1097
    [Google Scholar]
  170. CaraI.G. ȚopaD. PuiuI. JităreanuG. Biochar a promising strategy for pesticide-contaminated soils.Agriculture20221210157910.3390/agriculture12101579
    [Google Scholar]
  171. FayeA. StewartZ.P. DiomeK. EdwardC.T. FallD. GanyoD.K.K. AkploT.M. PrasadP.V.V. Single application of biochar increases fertilizer efficiency, C sequestration, and pH over the long-term in sandy soils of Senegal.Sustainability202113211181710.3390/su132111817
    [Google Scholar]
  172. SolaimanZ.M. ShafiM.I. BeamontE. AnawarH.M. Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil.Agriculture2020101048010.3390/agriculture10100480
    [Google Scholar]
  173. Yasmin KhanK. AliB. CuiX. FengY. YangX. Joseph StoffellaP. Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity.Ecotoxicol. Environ. Saf.201714112913810.1016/j.ecoenv.2017.03.02028324819
    [Google Scholar]
  174. KhoshkharamM. RezaeiA. SoleymaniA. ShahrajabianM.H. Effects of tillage and residue management on yield components and yield of maize in second cropping after barley.Res. Crops2010113659666
    [Google Scholar]
  175. SoleymaniA. ShahrajabianM.H. KhoshkharamM. Effect of different fertility systems on fresh forage yield and qualitative traits of forage.Res. Crops2012133861865
    [Google Scholar]
  176. ZhangY. IdowuO. BrewerC. Using agricultural residue biochar to improve soil quality of desert.Agriculture2016611010.3390/agriculture6010010
    [Google Scholar]
  177. FrydaL. VisserR. Biochar for soil improvement: Evaluation of biochar from gasification and slow pyrolysis.Agriculture2015541076111510.3390/agriculture5041076
    [Google Scholar]
  178. DuceyT. NovakJ. JohnsonM. Effects of biochar blends on microbial community composition in two coastal plain soils.Agriculture2015541060107510.3390/agriculture5041060
    [Google Scholar]
  179. AllohverdiT. MohantyA.K. RoyP. MisraM. A review on current status of biochar uses in agriculture.Molecules20212618558410.3390/molecules2618558434577054
    [Google Scholar]
  180. AguirreJ.L. González-EgidoS. González-LucasM. González-PernasF.M. Medium-term effects and economic analysis of biochar application in three Mediterranean crops.Energies20231610413110.3390/en16104131
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461286440240123055247
Loading
/content/journals/cgc/10.2174/0122133461286440240123055247
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test