Skip to content
2000
Volume 11, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

In addition to the economic losses because of insect pests, a significant part of insect pests can instantly lead to the deterioration and mildew of agricultural products, which all have great hidden hazards to human health. In view of insect pests, the principle means of control and prevention in China is spraying chemical agents. Nevertheless, spraying a large number of chemical factors to control insect pests for a long time will not only have a consequential impact on the ecological environment, but also make insect pests boost resistance, and because a large number of chemical residues on the surface of crops will also have an unfavourable impact on the human body. The detection and application of insecticidal proteins are of great significance for the progress of modern insecticidal science. This article studies the research progress of insecticidal proteins and considering their target pests, lists their common insecticidal utilization scenarios, and anticipates the development direction of insecticidal proteins in the future.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461275040231026045521
2024-01-12
2024-11-01
Loading full text...

Full text loading...

References

  1. Hadj SaadounJ. SogariG. BerniniV. CamoraliC. RossiF. NevianiE. LazziC. A critical review of intrinsic and extrinsic antimicrobial properties of insects.Trends Food Sci. Technol.2022122404810.1016/j.tifs.2022.02.018
    [Google Scholar]
  2. OchiaiM. KomiyaY. Detection of edible insect derived phospholipids with polyunsaturated fatty acids by thin-layer chromatography, gas chromatography, and enzymatic methods.J. Food Compos. Anal.20219910386910.1016/j.jfca.2021.103869
    [Google Scholar]
  3. SunW. ShahrajabianM.H. ChengQ. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in pot-COVID-19 era.Appl. Sci. (Basel)20211117788910.3390/app11177889
    [Google Scholar]
  4. GravelA. DoyenA. The use of edible insect proteins in food: Challenges and issues related to their functional properties.Innov. Food Sci. Emerg. Technol.20205910227210.1016/j.ifset.2019.102272
    [Google Scholar]
  5. ShahrajabianM.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing.Curr. Org. Chem.202125232885290110.2174/1385272825666211110115656
    [Google Scholar]
  6. MoarW.J. GiddingsK.S. NarvaK.E. NelsonM.E. Enhancing global food security by using bacterial proteins with improved safety profiles to control insect pests.J. Invertebr. Pathol.202218710770410.1016/j.jip.2021.10770434896129
    [Google Scholar]
  7. FrigerioJ. AgostinettoG. GalimbertiA. De MattiaF. LabraM. BrunoA. Tasting the differences: Microbiota analysis of different insect-based novel food.Food Res. Int.202013710942610.1016/j.foodres.2020.10942633233108
    [Google Scholar]
  8. ShahrajabianM.H. SunW. ChengQ. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities.Mini Rev. Org. Chem.202219329331810.2174/1570178618666210707161025
    [Google Scholar]
  9. VeenstraJ.A. RombautsS. GrbićM. In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite.Insect Biochem. Mol. Biol.201242427729510.1016/j.ibmb.2011.12.00922214827
    [Google Scholar]
  10. OnsS. LavoreA. SterkelM. WulffJ.P. SierraI. Martínez-BarnetcheJ. RodriguezM.H. Rivera-PomarR. Identification of G protein coupled receptors for opsines and neurohormones in Rhodnius prolixus. Genomic and transcriptomic analysis.Insect Biochem. Mol. Biol.201669345010.1016/j.ibmb.2015.05.00325976540
    [Google Scholar]
  11. CinelS.D. HahnD.A. KawaharaA.Y. Predator-induced stress responses in insects: A review.J. Insect Physiol.202012210403910.1016/j.jinsphys.2020.10403932113954
    [Google Scholar]
  12. RigliettiA. RuggieroP. CrecchioC. Investigating the influence of transgenic tobacco plants codifying a protease inhibitor on soil microbial community.Soil Biol. Biochem.200840122928293610.1016/j.soilbio.2008.07.027
    [Google Scholar]
  13. MalefoM.B. MathibelaE.O. CramptonB.G. MakgopaM.E. Investigating the role of Bowman-Birk serine protease inhibitor in Arabidopsis plants under drought stress.Plant Physiol. Biochem.202014928629310.1016/j.plaphy.2020.02.00732097847
    [Google Scholar]
  14. QiuY. LeeK.S. ChooY.M. KongD. YoonH.J. JinB.R. Molecular cloning and antifibrinolytic activity of a serine protease inhibitor from bumblebee (Bombus terrestris) venom.Toxicon2013631610.1016/j.toxicon.2012.11.00423164714
    [Google Scholar]
  15. PilonA.M. CamposW.G. SilvaC.R. CordeiroG. SilvaC.R. OliveiraM.G.A. Protease inhibitory, insecticidal and deterrent effects of the trypsin-inhibitor benzamidine on the velvetbean caterpillar in soybean.An. Acad. Bras. Cienc.20189043475348210.1590/0001‑376520182018015930365718
    [Google Scholar]
  16. SharmaH.C. KumarG.S. RegodeV. JabaJ. AkbarS.M.D. Plant protease inhibitors and their interactions with insect gut proteinases. The Biology of Plant-Insect Interactions.Boca RatonCRC Press2018147
    [Google Scholar]
  17. SinghS. SinghA. KumarS. MittalP. SinghI.K. Protease inhibitors: Recent advancement in its usage as a potential biocontrol agent for insect pest management.Insect Sci.202027218620110.1111/1744‑7917.1264130230264
    [Google Scholar]
  18. SilvaE.M. ValenciaA. Grossi-de-SáM.F. RochaT.L. FreireÉ. de PaulaJ.E. EspindolaL.S. Inhibitory action of Cerrado plants against mammalian and insect α-amylases.Pestic. Biochem. Physiol.200995314114610.1016/j.pestbp.2009.08.003
    [Google Scholar]
  19. SvenssonB. FukudaK. NielsenP.K. BønsagerB.C. Proteinaceous α-amylase inhibitors.Biochim. Biophys. Acta. Proteins Proteomics20041696214515610.1016/j.bbapap.2003.07.004
    [Google Scholar]
  20. ZibaeeA. BandaniA.R. KafilM. RamziS. Characterization of α-amylase in the midgut and the salivary glands of rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae).J. Asia Pac. Entomol.200811420120510.1016/j.aspen.2008.09.003
    [Google Scholar]
  21. PandeyB. SainiM. SharmaP. Molecular phylogenetic and sequence variation analysis of dimeric α-amylase inhibitor genes in wheat and its wild relative species.Plant Gene20166485810.1016/j.plgene.2016.03.004
    [Google Scholar]
  22. YamadaT. HattoriK. IshimotoM. Purification and characterization of two α-amylase inhibitors from seeds of tepary bean (Phaseolus acutifolius A. Gray).Phytochemistry2001581596610.1016/S0031‑9422(01)00178‑911524114
    [Google Scholar]
  23. LopesK.V.G. SilvaL.B. ReisA.P. OliveiraM.G.A. GuedesR.N.C. Modified α-amylase activity among insecticide-resistant and -susceptible strains of the maize weevil, Sitophilus zeamais.J. Insect Physiol.20105691050105710.1016/j.jinsphys.2010.02.02020223242
    [Google Scholar]
  24. LiH. ZhouH. ZhangJ. FuX. YingZ. LiuX. Proteinaceous α-amylase inhibitors: Purification, detection methods, types and mechanisms.Int. J. Food Prop.202124127729010.1080/10942912.2021.1876087
    [Google Scholar]
  25. KarrayA. AlonaziM. JallouliR. AlanaziH. Ben BachaA. A proteinaceous Alpha-Amylase inhibitor from Moringa Oleifera leaf extract: Purification, characterization, and insecticide effects against C. maculates insect larvae.Molecules20222713422210.3390/molecules2713422235807466
    [Google Scholar]
  26. ShenZ. CorbinD.R. GreenplateJ.T. GrebenokR.J. GalbraithD.W. PurcellJ.P. Studies on the mode of action of cholesterol oxidase on insect midgut membranes.Arch. Insect Biochem. Physiol.199734442944210.1002/(SICI)1520‑6327(1997)34:4<429::AID‑ARCH3>3.0.CO;2‑N
    [Google Scholar]
  27. HejaziM.S. Kazemi TabarK. AzarbaijaniR. Zereshki NobarL. Cloning and sequencing of partial segment of cholesterol oxidase encoding gene from Streptomyces luridus.Ann. Microbiol.200757225926310.1007/BF03175216
    [Google Scholar]
  28. KumarR. SinghC.K. KamleS. SinhaR.P. BhatnagarR.K. KachruD.N. Development of nanocolloidal gold based immunochromatographic assay for rapid detection of transgenic vegetative insecticidal protein in genetically modified crops.Food Chem.201012241298130310.1016/j.foodchem.2010.03.086
    [Google Scholar]
  29. AroraN. SelvapandiyanA. AgrawalN. BhatnagarR.K. Relocating expression of vegetative insecticidal protein into mother cell of Bacillus thuringiensis.Biochem. Biophys. Res. Commun.2003310115816210.1016/j.bbrc.2003.08.13714511664
    [Google Scholar]
  30. MesratiL.A. TounsiS. KamounF. JaouaS. Identification of a promoter for the vegetative insecticidal protein-encoding gene vip3LB from Bacillus thuringiensis.FEMS Microbiol. Lett.2005247110110410.1016/j.femsle.2005.04.03215927753
    [Google Scholar]
  31. KomanoT. TakabeS. SakaiH. Transcription of the insecticidal crystal protein genes of Bacillus thuringiensis.Biotechnol. Annu. Rev. (Amst)2000513115410.1016/S1387‑2656(00)05034‑110874999
    [Google Scholar]
  32. GeA.Z. RiversD. MilneR. DeanD.H. Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c).J. Biol. Chem.199126627179541795810.1016/S0021‑9258(18)55221‑21917934
    [Google Scholar]
  33. FerreJ. EscricheB. BelY. RieJ.V. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins.FEMS Microbiol. Lett.19951321-21710.1016/0378‑1097(95)00271‑67737469
    [Google Scholar]
  34. TanY. DonovanW.P. Deletion of aprA and nprA genes for alkaline protease A and neutral protease A from Bacillus thuringiensis: effect on insecticidal crystal proteins.J. Biotechnol.2000841677210.1016/S0168‑1656(00)00328‑X11035189
    [Google Scholar]
  35. VachonV. LapradeR. SchwartzJ.L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review.J. Invertebr. Pathol.2012111111210.1016/j.jip.2012.05.00122617276
    [Google Scholar]
  36. LinY. CaiF. ZhangG. A prediction model for the activity of insecticidal crystal proteins from Bacillus thuringiensis based on support vector machine.Chin. J. Biotechnol.200723112713310.1016/S1872‑2075(07)60011‑917366901
    [Google Scholar]
  37. ChoiJ.Y. JungM.P. ParkH.H. TaoX.Y. JinB.R. JeY.H. Insecticidal activity of recombinant baculovirus co-expressing Bacillus thuringiensis crystal protein and Kunitz-type toxin isolated from the venom of bumblebee Bombus ignitus.J. Asia Pac. Entomol.2013161758010.1016/j.aspen.2012.11.002
    [Google Scholar]
  38. HössS. MenzelR. GesslerF. NguyenH.T. JehleJ.A. TraunspurgerW. Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans.Environ. Pollut.201317814715110.1016/j.envpol.2013.03.00223570782
    [Google Scholar]
  39. YujiS. AkemiY. NorihisaN. ToshihikoI. HiroyukiS. MituruT. Nucleotide sequence coding for the insecticidal fragment of the Bacillus thuringiensis crystal protein.Gene1985342-324325110.1016/0378‑1119(85)90133‑72989108
    [Google Scholar]
  40. Jurat-FuentesJ.L. CrickmoreN. Specificity determinants for Cry insecticidal proteins: Insights from their mode of action.J. Invertebr. Pathol.201714251010.1016/j.jip.2016.07.01827480404
    [Google Scholar]
  41. NaimovS. ValkovaR. DukiandjievS. MinkovI. de MaagdR.A. Carboxy-terminal extension effects on crystal formation and insecticidal properties of Cry15Aa.J. Invertebr. Pathol.20111081565810.1016/j.jip.2011.05.01921723871
    [Google Scholar]
  42. BaumJ.A. MalvarT. Regulation of insecticidal crystal protein production in Bacillus thuringiensis.Mol. Microbiol.199518111210.1111/j.1365‑2958.1995.mmi_18010001.x8596449
    [Google Scholar]
  43. BaranekJ. KaznowskiA. KoneckaE. NaimovS. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.J. Invertebr. Pathol.2015130728110.1016/j.jip.2015.06.00626146224
    [Google Scholar]
  44. DossV.A. Anup KumarK. JayakumarR. SekarV. Cloning and expression of the vegetative insecticidal protein (vip3V) gene of Bacillus thuringiensis in Escherichia coli.Protein Expr. Purif.2002261828810.1016/S1046‑5928(02)00515‑612356474
    [Google Scholar]
  45. LiaoC. HeckelD.G. AkhurstR. Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton.J. Invertebr. Pathol.2002801556310.1016/S0022‑2011(02)00035‑612234543
    [Google Scholar]
  46. SellamiS. JemliS. AbdelmalekN. DabbécheE. JamoussiK. Localization and in silico study of the vegetative insecticidal proteins Vip2S-Vip1S of Bacillus thuringiensis.Int. J. Biol. Macromol.20169151051710.1016/j.ijbiomac.2016.06.00327264647
    [Google Scholar]
  47. Pagel-WiederS. NiemeyerJ. FischerW.R. GesslerF. Effects of physical and chemical properties of soils on adsorption of the insecticidal protein (Cry1Ab) from Bacillus thuringiensis at Cry1Ab protein concentrations relevant for experimental field sites.Soil Biol. Biochem.200739123034304210.1016/j.soilbio.2007.06.015
    [Google Scholar]
  48. BhallaR. DalalM. PanguluriS.K. JagadishB. MandaokarA.D. SinghA.K. KumarP.A. Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis.FEMS Microbiol. Lett.2005243246747210.1016/j.femsle.2005.01.01115686851
    [Google Scholar]
  49. Thamthiankul ChankhamhaengdechaS. TantichodokA. PanbangredW. Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua.J. Biotechnol.20081363-412212810.1016/j.jbiotec.2008.05.01318602953
    [Google Scholar]
  50. SinghC.K. KumarR. SinhaR.P. MisraP.C. RETRACTED: Immunodiagnostic analysis of transgenic vegetative insecticidal protein in genetically modified crops/produce.Food Chem.2011126278679210.1016/j.foodchem.2010.11.077
    [Google Scholar]
  51. StraubL. StroblV. BrucknerS. CamenzindD.W. Van OystaeyenA. WäckersF. WilliamsG.R. NeumannP. Buffered fitness components: Antagonism between malnutrition and an insecticide in bumble bees.Sci. Total Environ.202283315509810.1016/j.scitotenv.2022.15509835398139
    [Google Scholar]
  52. HammoudZ. Ben AbadaM. Greige-GergesH. ElaissariA. Mediouni Ben JemâaJ. Insecticidal effects of natural products in free and encapsulated forms: An overview.J. Nat. Pest. Res.2022110000710.1016/j.napere.2022.100007
    [Google Scholar]
  53. Ben Hamadou-CharfiD. BoukediH. Abdelkefi-MesratiL. TounsiS. JaouaS. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin.J. Invertebr. Pathol.2013114213914310.1016/j.jip.2013.07.00323876657
    [Google Scholar]
  54. BoukediH. Ben KhedherS. HadhriR. JaouaS. TounsiS. Abdelkefi-MesratiL. Vegetative insecticidal protein of Bacillus thuringiensis BLB459 and its efficiency against Lepidoptera.Toxicon2017129899410.1016/j.toxicon.2017.02.01828223048
    [Google Scholar]
  55. PalmaL. MuñozD. BerryC. MurilloJ. CaballeroP. Draft genome sequences of two Bacillus thuringiensis strains and characterization of a putative 41.9-kDa insecticidal toxin.Toxins (Basel)2014651490150410.3390/toxins605149024784323
    [Google Scholar]
  56. ChattopadhyayP. BanerjeeG. Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field.3 Biotech20188201
    [Google Scholar]
  57. Quesada-MoragaE. Carrasco-DíazJ.A. Santiago-ÁlvarezC. Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae).J. Appl. Entomol.2006130844245210.1111/j.1439‑0418.2006.01079.x
    [Google Scholar]
  58. WangS. LiuJ. DongY. LiY. HuangY. RenM. YangM. WangJ. Dynamic monitoring of the impact of insect-resistant transgenic poplar field stands on arthropod communities.For. Ecol. Manage.202250511992110.1016/j.foreco.2021.119921
    [Google Scholar]
  59. ShaJ. ZhangJ. ChiB. LiuR. LiH. GaoJ. Sip1Ab gene from a native Bacillus thuringiensis strain QZL38 and its insecticidal activity against Colaphellus bowringi Baly.Biocontrol Sci. Technol.201828545946710.1080/09583157.2018.1460313
    [Google Scholar]
  60. ShenX. YuQ. LiuH. WangJ. ZhangR. PengQ. SongF. Transition phase regulator AbrB positively regulates the sip1Ab1 gene expression in Bacillus thuringiensis.Microbiol. Spectr.202191e000752110.1128/Spectrum.00075‑2134319140
    [Google Scholar]
  61. MurookaY. YamashitaM. Genetic and protein engineering of diagnostic enzymes, cholesterol oxidase and xylitol oxidase.J. Biosci. Bioeng.200191543344110.1016/S1389‑1723(01)80270‑X16233019
    [Google Scholar]
  62. VarmaR. NeneS. Biosynthesis of cholesterol oxidase by Streptomyces lavendulae NCIM 2421.Enzyme Microb. Technol.2003332-328629110.1016/S0141‑0229(03)00126‑1
    [Google Scholar]
  63. YaparE. KayahanS.K. BozkurtA. ToppareL. Immobilizing cholesterol oxidase in chitosan–alginic acid network.Carbohydr. Polym.200976343043610.1016/j.carbpol.2008.11.001
    [Google Scholar]
  64. JingX. GrebenokR.J. BehmerS.T. Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development, growth and reproduction in two lepidopteran insects.J. Insect Physiol.201467859610.1016/j.jinsphys.2014.06.00424953330
    [Google Scholar]
  65. CorbinD.R. GrebenokR.J. OhnmeissT.E. GreenplateJ.T. PurcellJ.P. Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants.Plant Physiol.200112631116112810.1104/pp.126.3.111611457962
    [Google Scholar]
  66. EntringerP.F. MajerowiczD. GondimK.C. The fate of dietary cholesterol in the kissing bug Rhodnius prolixus.Front. Physiol.20211265456510.3389/fphys.2021.65456533868022
    [Google Scholar]
  67. KumariL. KanwarS.S. Cholesterol oxidase and its applications.Adv. Microbiol.20122496510.4236/aim.2012.22007
    [Google Scholar]
  68. PurcellJ.P. GreenplateJ.T. JenningsM.G. RyerseJ.S. PershingJ.C. SimsS.R. PrinsenM.J. CorbinD.R. TranM. SammonsR.D. StonardR.J. Cholesterol oxidase: A potent insecticidal protein active against boll weevil larvae.Biochem. Biophys. Res. Commun.199319631406141310.1006/bbrc.1993.24098250897
    [Google Scholar]
  69. SmithA.G. BrooksC.J.W. Cholesterol oxidases: Properties and applications.J. Steroid Biochem.19767970571310.1016/0022‑4731(76)90071‑6790024
    [Google Scholar]
  70. YaoK. WangF.Q. ZhangH.C. WeiD.Z. Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum.Metab. Eng.201315758710.1016/j.ymben.2012.10.00523164577
    [Google Scholar]
  71. AbellA.D. RatcliffeM.J. GerrardJ. Ascorbic acid-based inhibitors of α-amylases.Bioorg. Med. Chem. Lett.19988131703170610.1016/S0960‑894X(98)00298‑49873419
    [Google Scholar]
  72. MatsushitaH. TakenakaM. OgawaH. Porcine pancreatic α-amylase shows binding activity toward N-linked oligosaccharides of glycoproteins.J. Biol. Chem.200227774680468610.1074/jbc.M10587720011741899
    [Google Scholar]
  73. RobertX. HaserR. GottschalkT.E. RatajczakF. DriguezH. SvenssonB. AghajariN. The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: A pair of sugar tongs.Structure200311897398410.1016/S0969‑2126(03)00151‑512906828
    [Google Scholar]
  74. GutierrezC. Sanchez-MongeR. GomezL. Ruiz-TapiadorM. CastañeraP. SalcedoG. α-amylase activities of agricultural insect pests are specifically affected by different inhibitor preparations from wheat and barley endosperms.Plant Sci.1990721374410.1016/0168‑9452(90)90184‑P
    [Google Scholar]
  75. AshouriS. FarshbafP.A.R. ZihniogluF. KocadagE. Extraction and purification of protease inhibitor(s) from seeds of Helianthus annuus with effects on Leptinotarsa decemlineata digestive cysteine protease.Biocatal. Agric. Biotechnol.2017911311910.1016/j.bcab.2016.12.005
    [Google Scholar]
  76. StroblS. MaskosK. BetzM. WiegandG. HuberR. Gomis-RüthF.X. GlockshuberR. Crystal structure of yellow meal worm α-amylase at 1.64 Å resolution.J. Mol. Biol.1998278361762810.1006/jmbi.1998.16679600843
    [Google Scholar]
  77. RaneA.S. VenkateshV. JoshiR.S. GiriA.P. Molecular investigation of Coleopteran specific α-Amylase inhibitors from Amaranthaceae members.Int. J. Biol. Macromol.20201631444145010.1016/j.ijbiomac.2020.07.21932735926
    [Google Scholar]
  78. KaurR. KaurN. GuptaA.K. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors.Pestic. Biochem. Physiol.2014116839310.1016/j.pestbp.2014.09.00525454524
    [Google Scholar]
  79. RaneA.S. JoshiR.S. GiriA.P. Molecular determinant for specificity: Differential interaction of α-amylases with their proteinaceous inhibitors.Biochim. Biophys. Acta, Gen. Subj.202018641212970310.1016/j.bbagen.2020.12970332805319
    [Google Scholar]
  80. SivakumarS. MohanM. FrancoO.L. ThayumanavanB. Inhibition of insect pest α-amylases by little and finger millet inhibitors.Pestic. Biochem. Physiol.200685315516010.1016/j.pestbp.2005.11.008
    [Google Scholar]
  81. RekhaM.R. SasikiranK. PadmajaG. Inhibitor potential of protease and α-amylase inhibitors of sweet potato and taro on the digestive enzymes of root crop storage pests.J. Stored Prod. Res.200440446147010.1016/j.jspr.2003.07.001
    [Google Scholar]
  82. RahimiV. BandaniA.R. Comparison of the effects of cereal and Legume proteinaceous seed extracts on α-amylase activity and development of the Sunn pest.J. Asia Pac. Entomol.201417171110.1016/j.aspen.2013.09.003
    [Google Scholar]
  83. MehrabadiM. BandaniA.R. MehrabadiR. AlizadehH. Inhibitory activity of proteinaceous α-amylase inhibitors from Triticale seeds against Eurygaster integriceps salivary α-amylases: Interaction of the inhibitors and the insect digestive enzymes.Pestic. Biochem. Physiol.2012102322022810.1016/j.pestbp.2012.01.008
    [Google Scholar]
  84. González-RuizC.R. Del Toro-SánchezC.L. Cornejo-RamírezY.I. Rodríguez-FélixF. Wong-CorralF.J. Márquez-RíosE. Cárdenas-LópezJ.L. Cinco-MoroyoquiF.J. Differential biochemical and kinetic properties of α-amylases from Rhyzopertha dominica (F.) progenies reared on wheat varieties differing in α-amylase inhibitory activity.J. Stored Prod. Res.20219010174810.1016/j.jspr.2020.101748
    [Google Scholar]
  85. DaylerC.S.A. MendesP.A.M. PratesM.V. BlochC.Jr FrancoO.L. Grossi-de-SáM.F. Identification of a novel bean α-amylase inhibitor with chitinolytic activity.FEBS Lett.2005579255616562010.1016/j.febslet.2005.09.03016213488
    [Google Scholar]
  86. HámoriC. RemenyikJ. KandraL. GyémántG. Colorado potato beetle alpha-amylase: Purification, action pattern and subsite mapping for exploration of active centre.Int. J. Biol. Macromol.202116835035510.1016/j.ijbiomac.2020.12.07133310101
    [Google Scholar]
  87. SilvaM.C.M. Del SartoR.P. LucenaW.A. RigdenD.J. TeixeiraF.R. BezerraC.A. AlbuquerqueÉ.V.S. Grossi-de-SaM.F. Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme.J. Biotechnol.2013167437738510.1016/j.jbiotec.2013.07.01623892157
    [Google Scholar]
  88. AlvesD.T. VasconcelosI.M. OliveiraJ.T.A. FariasL.R. DiasS.C. ChiarelloM.D. Maria-NetoS. FrancoO.L. Identification of four novel members of Kunitz-like α-amylase inhibitors family from Delonix regia with activity toward Coleopteran insects.Pestic. Biochem. Physiol.200995316617210.1016/j.pestbp.2009.08.011
    [Google Scholar]
  89. FariasL.R. CostaF.T. SouzaL.A. PelegriniP.B. Grossi-de-SáM.F. NetoS.M. BlochC.Jr LaumannR.A. NoronhaE.F. FrancoO.L. Isolation of a novel Carica papaya α-amylase inhibitor with deleterious activity toward Callosobruchus maculatus.Pestic. Biochem. Physiol.200787325526010.1016/j.pestbp.2006.08.004
    [Google Scholar]
  90. KumarP.N. SwapnaT.H. KhanM.Y. DaddamJ.R. HameedaB. Molecular dynamics and protein interaction studies of lipopeptide (Iturin A) on α- amylase of Spodoptera litura.J. Theor. Biol.2017415414710.1016/j.jtbi.2016.12.00327940096
    [Google Scholar]
  91. PereiraP.J.B. LozanovV. PatthyA. HuberR. BodeW. PongorS. StroblS. Specific inhibition of insect α-amylases: Yellow meal worm α-amylase in complex with the Amaranth α-amylase inhibitor at 2.0 Å resolution.Structure1999791079108810.1016/S0969‑2126(99)80175‑010508777
    [Google Scholar]
  92. BezerraC.A. MacedoL.L.P. AmorimT.M.L. SantosV.O. FragosoR.R. LucenaW.A. MeneguimA.M. Valencia-JimenezA. EnglerG. SilvaM.C.M. AlbuquerqueE.V.S. Grossi-de-SaM.F. Molecular cloning and characterization of an α-amylase cDNA highly expressed in major feeding stages of the coffee berry borer, Hypothenemus hampei.Gene2014553171610.1016/j.gene.2014.09.05025264343
    [Google Scholar]
  93. SilvaC.P. TerraW.R. Xavier-FilhoJ. Grossi de SáM.F. IsejimaE.M. DaMattaR.A. MiguensF.C. BifanoT.D. Digestion of legume starch granules by larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) and the induction of α–amylases in response to different diets.Insect Biochem. Mol. Biol.2001311415010.1016/S0965‑1748(00)00103‑X11102833
    [Google Scholar]
  94. IshimotoM. YamadaT. KagaA. Insecticidal activity of an α-amylase inhibitor-like protein resembling a putative precursor of α-amylase inhibitor in the common bean, Phaseolus vulgaris L.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.19991432110411210.1016/S0167‑4838(99)00093‑X10366733
    [Google Scholar]
  95. ValenciaA. BustilloA.E. OssaG.E. ChrispeelsM.J. α-Amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors.Insect Biochem. Mol. Biol.200030320721310.1016/S0965‑1748(99)00115‑010732988
    [Google Scholar]
  96. WisessingA. EngkagulA. WongpiyasatidA. ChuwongkomonK. Proteomic and characterization of α-amylase inhibitor from Mungbean (Vigna radiate).Kasetsart J.200842245250
    [Google Scholar]
  97. BarberD. Sánchez-MongeR. GómezL. CarpizoJ. ArmentiaA. López-OtínC. JuanF. SalcedoG. A barley flour inhibitor of insect α‐amylase is a major allergen associated with baker’s asthma disease.FEBS Lett.19892481-211912210.1016/0014‑5793(89)80444‑22785932
    [Google Scholar]
  98. AryM.B. RichardsonM. ShewryP.R. Purification and characterization of an insect α-amylase inhibitor/endochitinase from seeds of Job’s Tears (Coix lachryma-jobi).Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.1989999326026610.1016/0167‑4838(89)90007‑12605263
    [Google Scholar]
  99. StroblS. Gomis-RüthF.X. MaskosK. FrankG. HuberR. GlockshuberR. The α‐amylase from the yellow meal worm: Complete primary structure, crystallization and preliminary X‐ray analysis.FEBS Lett.1997409110911410.1016/S0014‑5793(97)00451‑19199514
    [Google Scholar]
  100. LomateP.R. DewanganV. MahajanN.S. KumarY. KulkarniA. WangL. SaxenaS. GuptaV.S. GiriA.P. Integrated transcriptomic and proteomic analyses suggest the participation of endogenous protease inhibitors in the regulation of protease gene expression in Helicoverpa armigera.Mol. Cell. Proteomics20181771324133610.1074/mcp.RA117.00053329661852
    [Google Scholar]
  101. GatehouseJ.A. Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects.Curr. Protein Pept. Sci.201112540941610.2174/13892031179639114221418023
    [Google Scholar]
  102. ShamsiT.N. ParveenR. FatimaS. Characterization, biomedical and agricultural applications of protease inhibitors: A review.Int. J. Biol. Macromol.2016911120113310.1016/j.ijbiomac.2016.02.06926955746
    [Google Scholar]
  103. VolpicellaM. CordewenerJ. JongsmaM.A. GalleraniR. CeciL.R. BeekwilderJ. Identification and characterization of digestive serine proteases from inhibitor-resistant Helicoverpa zea larval midgut.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20068331263210.1016/j.jchromb.2005.10.02116269275
    [Google Scholar]
  104. FerreiraR.S. BritoM.V. NapoleãoT.H. SilvaM.C.C. PaivaP.M.G. OlivaM.L.V. Effects of two protease inhibitors from Bauhinia bauhinoides with different specificity towards gut enzymes of Nasutitermes corniger and its survival.Chemosphere201922236437010.1016/j.chemosphere.2019.01.10830710762
    [Google Scholar]
  105. RousselA. MathieuM. DobbsA. LuuB. CambillauC. KellenbergerC. Complexation of two proteic insect inhibitors to the active site of chymotrypsin suggests decoupled roles for binding and selectivity.J. Biol. Chem.200127642388933889810.1074/jbc.M10570720011495915
    [Google Scholar]
  106. AshouriS. FarshbafP.R. Regulation of gene expression encoding the digestive α-amylase in the larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say) in response to plant protein extracts.Gene202176614515910.1016/j.gene.2020.14515932971186
    [Google Scholar]
  107. CamposI.T.N. Tanaka-AzevedoA.M. TanakaA.S. Identification and characterization of a novel factor XIIa inhibitor in the hematophagous insect, Triatoma infestans (Hemiptera: Reduviidae).FEBS Lett.2004577351251610.1016/j.febslet.2004.10.05215556638
    [Google Scholar]
  108. ChouguleN.P. DoyleE. FitchesE. GatehouseJ.A. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays.J. Insect Physiol.200854356357210.1016/j.jinsphys.2007.12.00518241882
    [Google Scholar]
  109. SaikhedkarN.S. JoshiR.S. BhoiteA.S. MohandasanR. YadavA.K. FernandesM. KulkarniK.A. GiriA.P. Tripeptides derived from reactive centre loop of potato type II protease inhibitors preferentially inhibit midgut proteases of Helicoverpa armigera.Insect Biochem. Mol. Biol.201895172510.1016/j.ibmb.2018.02.00129486250
    [Google Scholar]
  110. KhanA.A. FaziliA.B.A. BhatS.A. BhatW.F. AsgharM.N. KhanM.S. BanoB. Purification, characterization and studies of a novel cysteine protease inhibitor from Juglans regia: Implications as a potential biopesticide.J. King Saud Univ. Sci.202234310182910.1016/j.jksus.2022.101829
    [Google Scholar]
  111. BoigegrainR.A. PugnièreM. ParoutaudP. BertrandC. BrehélinM. Low molecular weight serine protease inhibitors from insects are proteins with highly conserved sequences.Insect Biochem. Mol. Biol.200030214515210.1016/S0965‑1748(99)00109‑510696590
    [Google Scholar]
  112. LeeK.Y. KimB.Y. LeeK.S. YoonH.J. JinB.R. A serine protease inhibitor from the hornfaced bee, Osmia cornifrons, exhibits antimicrobial activities.J. Asia Pac. Entomol.201518348949510.1016/j.aspen.2015.06.004
    [Google Scholar]
  113. YangY. XuH. WuZ. LuZ. Effects of inhibitors on the protease profiles and degradation of activated Cry toxins in larval midgut juices of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae).J. Integr. Agric.20212082195220310.1016/S2095‑3119(20)63316‑0
    [Google Scholar]
  114. BownD.P. WilkinsonH.S. GatehouseJ.A. Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families.Insect Biochem. Mol. Biol.199727762563810.1016/S0965‑1748(97)00043‑X9404008
    [Google Scholar]
  115. BurgessE.P.J. PhilipB.A. ChristellerJ.T. PageN.E.M. MarshallR.K. WohlersM.W. Tri-trophic effects of transgenic insect-resistant tobacco expressing a protease inhibitor or a biotin-binding protein on adults of the predatory carabid beetle Ctenognathus novaezelandiae.J. Insect Physiol.200854251852810.1016/j.jinsphys.2007.12.00218199450
    [Google Scholar]
  116. GubbD. Sanz-ParraA. BarcenaL. TroxlerL. FullaondoA. Protease inhibitors and proteolytic signalling cascades in insects.Biochimie201092121749175910.1016/j.biochi.2010.09.00420850496
    [Google Scholar]
  117. KimB.Y. KimY.H. ParkM.J. YoonH.J. LeeK.Y. KimH.K. LeeK.S. JinB.R. Dual function of a bumblebee (Bombus ignitus) serine protease inhibitor that acts as a microbicidal peptide and anti-fibrinolytic venom toxin.Dev. Comp. Immunol.202213510447810.1016/j.dci.2022.10447835716829
    [Google Scholar]
  118. KanostM.R. JiangH. Clip-domain serine proteases as immune factors in insect hemolymph.Curr. Opin. Insect Sci.201511475510.1016/j.cois.2015.09.00326688791
    [Google Scholar]
  119. LiY. ZhaoP. LiuS. DongZ. ChenJ. XiangZ. XiaQ. A novel protease inhibitor in Bombyx mori is involved in defense against Beauveria bassiana.Insect Biochem. Mol. Biol.2012421076677510.1016/j.ibmb.2012.07.00422841512
    [Google Scholar]
  120. SangM. XuC. WeiZ. WuX. GuoY. LiJ. WangZ. ZhangJ. Cloning and high-level SUMO-mediated fusion expression of a serine protease inhibitor from Hyphantria cunea Drury that exhibits activity against papain.Protein Expr. Purif.2019158364310.1016/j.pep.2019.02.01130807851
    [Google Scholar]
  121. YangJ. LeeK.S. KimB.Y. ChoiY.S. YoonH.J. JiaJ. JinB.R. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2017201111810.1016/j.cbpc.2017.09.00128917645
    [Google Scholar]
  122. KimB.Y. LeeK.S. ZouF.M. WanH. ChoiY.S. YoonH.J. KwonH.W. JeY.H. JinB.R. Antimicrobial activity of a honeybee (Apis cerana) venom Kazal-type serine protease inhibitor.Toxicon20137611011710.1016/j.toxicon.2013.09.01724076031
    [Google Scholar]
  123. QianC. LiangD. LiuY. WangP. KausarS. WeiG. ZhuB. WangL. LiuC. Identification of a small pacifastin protease inhibitor from Nasonia vitripennis venom that inhibits humoral immunity of host (Musca domestica).Toxicon2017131546210.1016/j.toxicon.2017.03.00528283430
    [Google Scholar]
  124. ZhangX. GuoK. DongZ. ChenZ. ZhuH. ZhangY. XiaQ. ZhaoP. Kunitz-type protease inhibitor BmSPI51 plays an antifungal role in the silkworm cocoon.Insect Biochem. Mol. Biol.202011610325810.1016/j.ibmb.2019.10325831678582
    [Google Scholar]
  125. JamalF. PandeyP.K. SinghD. AhmedW. A Kunitz-type serine protease inhibitor from Butea monosperma seed and its influence on developmental physiology of Helicoverpa armigera.Process Biochem.201550231131610.1016/j.procbio.2014.12.003
    [Google Scholar]
  126. WanH. KimB.Y. LeeK.S. YoonH.J. LeeK.Y. JinB.R. A bumblebee (Bombus ignitus) venom serine protease inhibitor that acts as a microbial serine protease inhibitor.Comp. Biochem. Physiol. B Biochem. Mol. Biol.2014167596410.1016/j.cbpb.2013.10.00224158004
    [Google Scholar]
  127. LomateP.R. HivraleV.K. Wound and methyl jasmonate induced pigeon pea defensive proteinase inhibitor has potency to inhibit insect digestive proteinases.Plant Physiol. Biochem.20125719319910.1016/j.plaphy.2012.05.02322721949
    [Google Scholar]
  128. MohanrajS.S. TetaliS.D. MallikarjunaN. Dutta-GuptaA. PadmasreeK. Biochemical properties of a bacterially-expressed Bowman-Birk inhibitor from Rhynchosia sublobata (Schumach.) Meikle seeds and its activity against gut proteases of Achaea janata.Phytochemistry2018151789010.1016/j.phytochem.2018.02.00929674106
    [Google Scholar]
  129. de AlmeidaW.A. NovaI.C.V. NascimentoJ.S. de MouraM.C. Agra-NetoA.C. da CostaH.N. CruzG.S. TeixeiraÁ.A.C. Wanderley-TeixeiraV. FerreiraM.R.A. SoaresL.A.L. CoelhoL.C.B.B. MariaNavarroD.A.F. PaivaP.M.G. NapoleãoT.H. de AlbuquerqueL.P. PontualE.V. Effects of Plectranthus barbatus leaf extract on survival, digestive proteases, midgut morphophysiology and gut microbiota homeostasis of Aedes aegypti larvae.S. Afr. J. Bot.202114111612510.1016/j.sajb.2021.04.023
    [Google Scholar]
  130. Abd El-latifA.O. In vivo and in vitro inhibition of Spodoptera littoralis gut-serine protease by protease inhibitors isolated from maize and sorghum seeds.Pestic. Biochem. Physiol.2014116404810.1016/j.pestbp.2014.09.00925454519
    [Google Scholar]
  131. JadhavA.R. WarA.R. NikamA.N. AdhavA.S. GuptaV.S. SharmaH.C. GiriA.P. TamhaneV.A. Capsicum annuum proteinase inhibitor ingestion negatively impacts the growth of sorghum pest Chilo partellus and promotes differential protease expression.Biochem. Biophys. Rep.2016830230910.1016/j.bbrep.2016.09.01628955969
    [Google Scholar]
  132. LiuX. McCarronR. NordinJ.H. A cysteine protease that process insect vitellin: Purification and partial characterization of the enzyme and the proenzyme.J. Biol. Chem.19962715233343335110.1074/jbc.271.52.33344
    [Google Scholar]
  133. SoaresT.S. Rodriguez GonzalezB.L. TorquatoR.J.S. LemosF.J.A. Costa-da-SilvaA.L. Capurro GuimarãesM.L. TanakaA.S. Functional characterization of a serine protease inhibitor modulated in the infection of the Aedes aegypti with dengue virus.Biochimie201814416016810.1016/j.biochi.2017.11.00529133118
    [Google Scholar]
  134. KimB.Y. LeeK.S. LeeK.Y. YoonH.J. JinB.R. Anti-fibrinolytic activity of a metalloprotease inhibitor from bumblebee (Bombus ignitus) venom.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202124510904210.1016/j.cbpc.2021.10904233838314
    [Google Scholar]
  135. DuW. GaoZ. WangK. ZhaoY. ZhengP. YuZ. LiuJ. YangX. Expression and function assessment of two serpin-type serine protease inhibitors from Haemaphysalis doenitzi.Res. Vet. Sci.20201321910.1016/j.rvsc.2020.05.01532464311
    [Google Scholar]
  136. ShamsiT.N. ParveenR. AhmadA. SamalR.R. KumarS. FatimaS. Inhibition of gut proteases and development of dengue vector, Aedes aegypti by Allium sativum protease inhibitor.Acta Ecol. Sin.201838532532810.1016/j.chnaes.2018.01.002
    [Google Scholar]
  137. WanH. KangT. KimB.Y. LeeK.S. LiJ. JinB.R. AvCystatin, a novel cysteine protease inhibitor from spider (Araneus ventricosus) venom.J. Asia Pac. Entomol.2015181131810.1016/j.aspen.2014.10.009
    [Google Scholar]
  138. MeloI.R.S. DiasL.P. AraújoN.M.S. VasconcelosI.M. MartinsT.F. de MoraisG.A. GonçalvesJ.F.C. NaganoC.S. CarneiroR.F. OliveiraJ.T.A. ClCPI, a cysteine protease inhibitor purified from Cassia leiandra seeds has antifungal activity against Candida tropicalis by inducing disruption of the cell surface.Int. J. Biol. Macromol.20191331115112410.1016/j.ijbiomac.2019.04.17431034905
    [Google Scholar]
  139. SchlüterU. BenchabaneM. MungerA. KiggunduA. VorsterJ. GouletM.C. CloutierC. MichaudD. Recombinant protease inhibitors for herbivore pest control: A multitrophic perspective.J. Exp. Bot.201061154169418310.1093/jxb/erq16620581122
    [Google Scholar]
  140. Peric-MatarugaV. NenadovicV. IvanovicJ. Neurohormones in insect stress: A review.Arch. Biol. Sci.200658111210.2298/ABS0601006P
    [Google Scholar]
  141. ZandawalaM. Calcitonin-like diuretic hormones in insects.Insect Biochem. Mol. Biol.2012421081682510.1016/j.ibmb.2012.06.00622820711
    [Google Scholar]
  142. GrimmelikhuijzenC.J.P. CazzamaliG. WilliamsonM. SchneiderM. HauserF. Invertebrate Neurohormone GPCRS.Encyclopedia of Neuroscience.Berlin, HeidelbergSpringer2009205212
    [Google Scholar]
  143. ManièreG. VanhemsE. RondotI. DelbecqueJ.P. Control of ovarian steroidogenesis in insects: A locust neurohormone is active in vitro on blowfly ovaries.Gen. Comp. Endocrinol.2009163329229710.1016/j.ygcen.2009.04.03419463823
    [Google Scholar]
  144. VeenstraJ.A. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects.Gen. Comp. Endocrinol.201016718610310.1016/j.ygcen.2010.02.01020171220
    [Google Scholar]
  145. VeenstraJ.A. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications.Gen. Comp. Endocrinol.2016229415510.1016/j.ygcen.2015.11.01926928473
    [Google Scholar]
  146. PicquotM. ProuxJ. Biosynthesis and degradation of the arginine-vasopressin-like insect diuretic hormone, A neurohormone in the migratory locust.Regul. Pept.199031313915610.1016/0167‑0115(90)90001‑D2091066
    [Google Scholar]
  147. GirardieJ. RichardO. GirardieA. Time-dependent variations in the activity of a novel ovary maturating neurohormone from the nervous corpora cardiaca during oögenesis in the locust, Locusta migratoria migratorioides.J. Insect Physiol.199238321522110.1016/0022‑1910(92)90069‑P
    [Google Scholar]
  148. MendiveF.M. Van LoyT. ClaeysenS. PoelsJ. WilliamsonM. HauserF. GrimmelikhuijzenC.J.P. VassartG. Vanden BroeckJ. Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2.FEBS Lett.2005579102171217610.1016/j.febslet.2005.03.00615811337
    [Google Scholar]
  149. GroseC. PutmanZ. EspositoD. A review of alternative promoters for optimal recombinant protein expression in baculovirus-infected insect cells.Protein Expr. Purif.202118610592410.1016/j.pep.2021.10592434087362
    [Google Scholar]
  150. NakajimaY. OguraA. Genomics and effective trait candidates of edible insects.Food Biosci.20224810179310.1016/j.fbio.2022.101793
    [Google Scholar]
  151. FuS.F. WangD.H. XieZ. ZouH. ZhengY. Producing insect protein from food waste digestate via black soldier fly larvae cultivation: A promising choice for digestate disposal.Sci. Total Environ.202283015465410.1016/j.scitotenv.2022.15465435307441
    [Google Scholar]
  152. KäßerL. HarnischfegerJ. SalzigD. CzermakP. The effect of different insect cell culture media on the efficiency of protein production by Spodoptera frugiperda cells.Electron. J. Biotechnol.202256546410.1016/j.ejbt.2022.01.004
    [Google Scholar]
  153. WangL. DingM.Y. WangJ. GaoJ.G. LiuR.M. LiH.T. Effects of site-directed mutagenesis of Cysteine on the structure of Sip proteins.Front. Microbiol.20221380532510.3389/fmicb.2022.80532535572629
    [Google Scholar]
  154. Mabashi-AsazumaH. JarvisD.L. A new insect cell line engineered to produce recombinant glycoproteins with cleavable N-glycans.J. Biol. Chem.2022298110145410.1016/j.jbc.2021.10145434838817
    [Google Scholar]
  155. JergaA. EvdokimovA.G. MoshiriF. HaasJ.A. ChenM. ClintonW. FuX. HallsC. Jimenez-JuarezN. KretzlerC.N. PanosianT.D. PleauM. RobertsJ.K. RydelT.J. SalvadorS. SequeiraR. WangY. ZhengM. BaumJ.A. Disabled insecticidal proteins: A novel tool to understand differences in insect receptor utilization.Insect Biochem. Mol. Biol.2019105798810.1016/j.ibmb.2018.12.00630605769
    [Google Scholar]
  156. AmezianD. NauenR. Le GoffG. Transcriptional regulation of xenobiotic detoxification genes in insects - An overview.Pestic. Biochem. Physiol.202117410482210.1016/j.pestbp.2021.10482233838715
    [Google Scholar]
  157. ShahrajabianM.H. PetropoulosS.A. SunW. Survey of the influence of microbial biostimulants on horticultural crops: Case studies and successful paradigms.Horticulturae20239219310.3390/horticulturae9020193
    [Google Scholar]
  158. SunW. ShahrajabianM.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health.Molecules2023284184510.3390/molecules2804184536838831
    [Google Scholar]
  159. ShahrajabianM.H. SunW. Various techniques for molecular and rapid detection of infectious and epidemic diseases.Lett. Org. Chem.202320977980110.2174/1570178620666230331095720
    [Google Scholar]
  160. ShahrajabianM.H. SunW. Survey on multi-omics, and multi-omics data analysis, integration and application.Curr. Pharm. Anal.202319426728110.2174/1573412919666230406100948
    [Google Scholar]
  161. CuiH. ShahrajabianM.H. KuangY. ZhangH.Y. SunW. Heterologous expression and function of cholesterol oxidase: A review.Protein Pept. Lett.202330753154010.2174/092986653066623052516254537231716
    [Google Scholar]
  162. ShahrajabianM.H. SunW. Five important seeds in traditional medicine, and pharmacological benefits.Seeds20232329030810.3390/seeds2030022
    [Google Scholar]
  163. SunW. ShahrajabianM.H. PetropoulosS.A. ShahrajabianN. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants.Plants20231213246910.3390/plants1213246937447031
    [Google Scholar]
  164. ShahrajabianM.H. SunW. Study of different types of fermentation in wine making process and considering aromatic substances and organic acid.Curr. Org. Synth.2023202010.2174/157017942066623080310225337534487
    [Google Scholar]
  165. SunW. ShahrajabianM.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture.Plants20231217310110.3390/plants1217310137687348
    [Google Scholar]
  166. ShahrajabianM.H. SunW. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods.Mini Rev. Med. Chem.202424445347737587815
    [Google Scholar]
  167. JamesC. Global status of commercialized biotech?GM crops: 2010. ISAAA brief no.42 IthacaISAAANY2010
    [Google Scholar]
  168. CannonR.J.C. Bacillus thuringiensis use in agriculture: A molecular perspective.Biol. Rev. Camb. Philos. Soc.199671456163610.1111/j.1469‑185X.1996.tb01285.x
    [Google Scholar]
  169. SongX.X. WangS.M. Status and evaluation on the expression of cotton varieties in the production in China in the past 20 years.Mianhua Xuebao200013315320
    [Google Scholar]
  170. HeK.L. WangZ.Y. ZhangY.J. Monitoring Bt resistance in the field: China as a case study. Environmental impact of genetically modified crops FerryN. GatehouseA.M.R. Wallingford, UKCAB International200934435910.1079/9781845934095.0344
    [Google Scholar]
  171. GatehouseJ.A. Plant resistance towards insect herbivores: A dynamic interaction.New Phytol.2002156214516910.1046/j.1469‑8137.2002.00519.x33873279
    [Google Scholar]
  172. GatehouseJ.A. Biotechnological prospects for engineering insect-resistant plants.Plant Physiol.2008146388188710.1104/pp.107.11109618316644
    [Google Scholar]
  173. ChristouP. CapellT. KohliA. GatehouseJ.A. GatehouseA.M.R. Recent developments and future prospects in insect pest control in transgenic crops.Trends Plant Sci.200611630230810.1016/j.tplants.2006.04.00116690346
    [Google Scholar]
  174. WaltzE. GM crops: Battlefield.Nature20094617260273210.1038/461027a19727179
    [Google Scholar]
  175. MulliganE.A. FerryN. JouaninL. WaltersK.F.A. PortG.R. GatehouseA.M.R. Comparing the impact of conventional pesticide and use of a transgenic pest‐resistant crop on the beneficial carabid beetle Pterostichus melanarius.Pest Manag. Sci.20066210999101210.1002/ps.127616906504
    [Google Scholar]
  176. MulliganE.A. FerryN. JouaninL. RomeisJ. GatehouseA.M.R. Characterization adult green lacewing (Chrysoperla carnea) digestive physiology: Comparison of the impact of genetically modified crops and conventional pest control.Pest Manag. Sci.20106632533610.1002/ps.187919924733
    [Google Scholar]
  177. GatehouseA.M.R. FerryN. EdwardsM.G. BellH.A. Insect-resistant biotech crops and their impacts on beneficial arthropods.Philos. Trans. R. Soc. Lond. B Biol. Sci.201136615691438145210.1098/rstb.2010.033021444317
    [Google Scholar]
  178. WangG. DongY. LiuX. YaoG. YuX. YangM. The current status and development of insect-resistant genetically engineered poplar in China.Front. Plant Sci.20189140810.3389/fpls.2018.0140830298085
    [Google Scholar]
  179. WeiT. HarrisL. NewtonR.J. Plant biotechnology: A case study of Bacillus thuringiensis (Bt) and its application to the future of genetic engineered trees.J. For. Res.200415111010.1007/BF02858002
    [Google Scholar]
  180. TianY.C. HanY.F. LiT.Y. Studies on insect-resistant transgenic (Populus nigra) plants.Chin. J. Biotechnol.19939291297
    [Google Scholar]
  181. TianY.C. ZhengJ.B. YuH.M. LiangH.Y. LiC.Q. WangJ.M. Studies of transgenic hybrid poplar 741 carrying two insect resistant genes.Acta Bot. Sin.200042263268
    [Google Scholar]
  182. QuanY. WuK. Managing practical resistance of lepidopteran pests to Bt cotton in China.Insects202314217910.3390/insects1402017936835748
    [Google Scholar]
  183. XiaoZ. YaoX. BaiS. WeiJ. AnS. Involvement of an enhanced immunity mechanism in the resistance to Bacillus thuringiensis in lepidopteran pests.Insects202314215110.3390/insects1402015136835720
    [Google Scholar]
  184. ShahrajabianM.H. SunW. Importance of thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits.Lett. Drug Des. Discov.202421220922510.2174/1570180819666220902115521
    [Google Scholar]
  185. ShahrajabianM.H. KuangY. CuiH. FuL. SunW. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses.Curr. Org. Chem.202327978280610.2174/1385272827666230807150910
    [Google Scholar]
  186. CarrièreY. TabashnikB.E. Fitness costs and incomplete resistance associated with delayed evolution of practical resistance to Bt crops.Insects202314321410.3390/insects1403021436975899
    [Google Scholar]
  187. FabrickJ.A. LiX. CarrièreY. TabashnikB.E. Molecular genetics basis of lab- and field-selected Bt resistance in pink bollworm.Insects202314220110.3390/insects1402020136835770
    [Google Scholar]
  188. YuW. HeadG.P. HuangF. Inheritance of Resistance to Cry1A.105 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae).Insects2022131087510.3390/insects1310087536292823
    [Google Scholar]
  189. DivelyG.P. KuharT.P. TaylorS.V. DoughtyH. HolmstromK. GilreinD.O. NaultB.A. Ingerson-MaharJ. HusethA. ReisigD. FleischerS. OwensD. TilmonK. Reay-JonesF. PorterP. SmithJ. SaguezJ. WellsJ. CongdonC. BykerH. JensenB. DiFonzoC. HutchisonW.D. BurknessE. WrightR. CrossleyM. DarbyH. BilboT. SeiterN. KrupkeC. AbelC. CoatesB.S. McManusB. FullerB. BradshawJ. PetersonJ.A. BuntinD. Paula-MoraesS. KesheimerK. CrowW. GoreJ. HuangF. LudwickD.C. RaudenbushA. JimenezS. CarrièreY. ElknerT. HambyK. Extended sentinel monitoring of Helicoverpa zea resistance to Cry and Vip3Aa toxins in Bt sweet corn: Assessing changes in phenotypic and allele frequencies of resistance.Insects202314757710.3390/insects1407057737504584
    [Google Scholar]
  190. HuangK. HeH. WangS. ZhangM. ChenX. DengZ. NiX. LiX. Sequential and simultaneous interactions of plant allelochemical flavone, Bt toxin Vip3A, and insecticide emamectin benzoate in Spodoptera frugiperda.Insects202314973610.3390/insects1409073637754704
    [Google Scholar]
  191. MontezanoD.G. HuntT.E. Colombo da LuzP.M. KarnikK. KachmanS.D. VélezA.M. PetersonJ.A. Movement of Striacosta albicosta (Smith) (lepidoptera: Noctuidae) larvae on transgenic Bt and non-Bt maize.Insects202314652410.3390/insects1406052437367340
    [Google Scholar]
  192. Yates-StewartA.D. YorkeB.T. WillseA. FridleyJ. HeadG.P. Using sentinel plots to monitor for changes in thrips susceptibility to MON 88702 cotton containing the Cry51Aa2.834_16 Bt protein.Insects202314649710.3390/insects1406049737367313
    [Google Scholar]
  193. ShahrajabianM.H. SunW. The importance of salicylic acid, humic acid and fulvic acid on crop production.Lett. Drug Des. Discov.202320211610.2174/1570180820666230411102209
    [Google Scholar]
  194. ShahrajabianM.H. PetropoulosS.A. SunW. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms.Horticulturae20239219310.3390/horticulturae9020193
    [Google Scholar]
  195. ShahrajabianM.H. SunW. Potential roles of longan as a natural remedy with tremendous nutraceutical values.Curr. Nutr. Food Sci.202319988889510.2174/1573401319666230221111242
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461275040231026045521
Loading
/content/journals/cgc/10.2174/0122133461275040231026045521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test