Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

sp., a ubiquitous filamentous fungus, poses significant challenges to the food industry as a common spoilage and mycotoxin producing organism. The conventional use of chemical preservatives to control Aspergillus contamination raises concerns about potential health risks and environmental impacts. Therefore, alternative approaches, such as the utilization of natural biopreservatives, as inexpensive, safe, and promising mycotoxin decontamination strategies are being explored. Lactic acid bacteria have gained considerable attention as potential candidates due to their antimicrobial properties and long-standing safe use in food fermentation. This review provides a thorough summary of the potential of lactic acid bacteria as biopreservatives against sp. The inhibitory mechanisms of lactic acid bacteria against the proliferation of Aspergillus and mycotoxin yield are explored, highlighting the role of organic acids, antimicrobial peptides, and other bioactive compounds. The versatile application of lactic acid bacteria based natural preservatives across a range of food matrices, storage conditions, . is also addressed. Further research is warranted to optimize lactic acid bacteria strains, explore synergistic combinations, and investigate their efficacy in real food systems. Implementing lactic acid bacteria based biopreservative strategies could significantly enhance food safety and quality by reducing Aspergillus contamination and mycotoxin risks.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461284473240408075321
2024-04-15
2024-11-26
Loading full text...

Full text loading...

References

  1. MeijerG.W. LähteenmäkiL. StadlerR.H. WeissJ. Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies.Crit. Rev. Food Sci. Nutr.20216119711510.1080/10408398.2020.1718597 32003225
    [Google Scholar]
  2. MahatoD.K. LeeK.E. KamleM. DeviS. DewanganK.N. KumarP. KangS.G. Aflatoxins in food and feed: An overview on prevalence, detection and control strategies.Front. Microbiol.201910226610.3389/fmicb.2019.02266 31636616
    [Google Scholar]
  3. AdeyeyeS.A.O. Mycotoxins in foods: Impact on health. Current Developments in Biotechnology and Bioengineering.Elsevier2022261271
    [Google Scholar]
  4. KolawoleO. MeneelyJ. PetchkongkaewA. ElliottC. A review of mycotoxin biosynthetic pathways: Associated genes and their expressions under the influence of climatic factors.Fungal Biol. Rev.20213782610.1016/j.fbr.2021.04.003
    [Google Scholar]
  5. RozeL.V. HongS.Y. LinzJ.E. Aflatoxin biosynthesis: current frontiers.Annu. Rev. Food Sci. Technol.20134129331110.1146/annurev‑food‑083012‑123702 23244396
    [Google Scholar]
  6. AwuchiC.G. OndariE.N. OgbonnaC.U. UpadhyayA.K. BaranK. OkpalaC.O.R. KorzeniowskaM. GuinéR.P.F. Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—A revisit.Foods2021106127910.3390/foods10061279 34205122
    [Google Scholar]
  7. KumarLK VermaSK ChandelR ThumarM SinghD OnteruSK. Aflatoxin M1 causes cytotoxicity and intestinal epithelial cell integrity damage in differentiated human Caco-2 cells.Res. Sq.2023PPR66635210.21203/rs.3.rs‑2927109/v1
    [Google Scholar]
  8. KumarP. MahatoD.K. KamleM. MohantaT.K. KangS.G. Aflatoxins: A global concern for food safety, human health and their management.Front. Microbiol.20177217010.3389/fmicb.2016.02170 28144235
    [Google Scholar]
  9. Peivasteh-RoudsariL PirhadiM ShahbaziR Eghbaljoo-GharehgheshlaghiH SepahiM Mirza AlizadehA Mycotoxins: Impact on health and strategies for prevention and detoxification in the food chain.Food. Rev. Int.202238sup1193224
    [Google Scholar]
  10. BalanB. DhaulaniyaA.S. KumarM. KumarM. KumarP. Aflatoxins in food: Prevalence, health effects, and emerging trends in its mitigation: An updated review.Food Safety and Health20242116
    [Google Scholar]
  11. VerheeckeC. LibozT. DarrietM. SabaouN. MathieuF. in vitro interaction of actinomycetes isolates with Aspergillus flavus: Impact on aflatoxins B1 and B2 production.Lett. Appl. Microbiol.201458659760310.1111/lam.12233 24698210
    [Google Scholar]
  12. ShehataM.G. BadrA.N. El SohaimyS.A. AskerD. AwadT.S. Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives.Ann. Agric. Sci.2019641717810.1016/j.aoas.2019.05.002
    [Google Scholar]
  13. Greeff-LaubscherM.R. BeukesI. MaraisG.J. JacobsK. Mycotoxin production by three different toxigenic fungi genera on formulated abalone feed and the effect of an aquatic environment on fumonisins.Mycology202011210511710.1080/21501203.2019.1604575 32923019
    [Google Scholar]
  14. MedeirosF.H.V. MartinsS.J. ZucchiT.D. MeloI.S. BatistaL.R. MachadoJ.C. Biological control of mycotoxin-producing molds.Cienc. Agrotec.201236548349710.1590/S1413‑70542012000500001
    [Google Scholar]
  15. AbediE. PourmohammadiK. MousavifardM. SayadiM. Comparison between surface hydrophobicity of heated and thermosonicated cells to detoxify aflatoxin B1 by co-culture Lactobacillus plantarum and Lactobacillus rhamnosus in sourdough: Modeling studies.Lebensm. Wiss. Technol.202215411261610.1016/j.lwt.2021.112616
    [Google Scholar]
  16. SamuelA. Fungal mycotoxins in foods: A review.Cogent Food Agric.20162121127
    [Google Scholar]
  17. BansalA. SharmaM. PandeyA. ShankarJ. Aflatoxins: Occurrence, Biosynthesis Pathway, Management, and Impact on Health. Fungal Resources for Sustainable Economy: Current Status and Future Perspectives.Springer202356559410.1007/978‑981‑19‑9103‑5_21
    [Google Scholar]
  18. OmaraT. KipropA.K. WangilaP. WacooA.P. KagoyaS. NteziyaremyeP. Peter OderoM. Kiwanuka NakiguliC. Baker ObakiroS. The scourge of aflatoxins in Kenya: A 60-year review (1960 to 2020).J. Food Qual.2021202113110.1155/2021/8899839
    [Google Scholar]
  19. WacooA. MukisaI. MeemeR. ByakikaS. WendiroD. SybesmaW. KortR. Probiotic enrichment and reduction of aflatoxins in a traditional African maize-based fermented food.Nutrients201911226510.3390/nu11020265 30691002
    [Google Scholar]
  20. MisihairabgwiJ.M. EzekielC.N. SulyokM. ShephardG.S. KrskaR. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007–2016).Crit. Rev. Food Sci. Nutr.2019591435810.1080/10408398.2017.1357003 28799776
    [Google Scholar]
  21. JoshiP. ChauysrinuleC. MahakarnchanakulW. ManeeboonT. Multi-mycotoxin contamination, mold incidence and risk assessment of aflatoxin in maize kernels originating from Nepal.Microbiol. Res.202213225827710.3390/microbiolres13020021
    [Google Scholar]
  22. ZhangW. LiuY. LiangB. ZhangY. ZhongX. LuoX. HuangJ. WangY. ChengW. ChenK. Probabilistic risk assessment of dietary exposure to aflatoxin B1 in Guangzhou, China.Sci. Rep.2020101797310.1038/s41598‑020‑64295‑8 32409649
    [Google Scholar]
  23. UdovickiB. DjekicI. Gajdos KljusuricJ. PapageorgiouM. SkendiA. DjugumJ. RajkovicA. Exposure assessment and risk characterization of aflatoxins intake through consumption of maize products in the adult populations of Serbia, Croatia and Greece.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201936694095110.1080/19440049.2019.1600748 31009320
    [Google Scholar]
  24. BelasliA. HerreraM. AriñoA. DjenaneD. Occurrence and exposure assessment of major mycotoxins in foodstuffs from Algeria.Toxins202315744910.3390/toxins15070449 37505718
    [Google Scholar]
  25. FoersterC. Ríos-GajardoG. GómezP. MuñozK. CortésS. MaldonadoC. FerreccioC. Assessment of mycotoxin exposure in a rural county of Chile by urinary biomarker determination.Toxins202113743910.3390/toxins13070439 34202116
    [Google Scholar]
  26. AliS. Battaglini FrancoB. Theodoro RezendeV. Gabriel Dionisio FreireL. Lima de PaivaE. Clara Fogacio HaikalM. Leme GuerraE. Eliana RosimR. Gustavo ToninF. Savioli FerrazI. Antonio Del CiampoL. Augusto Fernandes de OliveiraC. Exposure assessment of children to dietary mycotoxins: A pilot study conducted in Ribeirão Preto, São Paulo, Brazil.Food Res. Int.202418011408710.1016/j.foodres.2024.114087 38395556
    [Google Scholar]
  27. HathoutA.S. Abel-FattahS.M. Abou-SreeY.H. FouzyA.S.M. Incidence and exposure assessment of aflatoxins and ochratoxin A in Egyptian wheat.Toxicol. Rep.2020786787310.1016/j.toxrep.2020.07.003 32760654
    [Google Scholar]
  28. KorteiN.K. AnnanT. Kyei-BaffourV. EssumanE.K. OkyereH. TetteyC.O. Exposure and risk characterizations of ochratoxins A and aflatoxins through maize (Zea mays) consumed in different agro-ecological zones of Ghana.Sci. Rep.20211112333910.1038/s41598‑021‑02822‑x 34857860
    [Google Scholar]
  29. PelesF. SiposP. KovácsS. GyőriZ. PócsiI. PusztahelyiT. Biological control and mitigation of aflatoxin contamination in commodities.Toxins202113210410.3390/toxins13020104 33535580
    [Google Scholar]
  30. Ben TaheurF. KouidhiB. Al QurashiY.M.A. Ben Salah-AbbèsJ. ChaiebK. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes.Toxicon2019160122210.1016/j.toxicon.2019.02.001 30772433
    [Google Scholar]
  31. MøllerC.O.A. FreireL. RosimR.E. MargalhoL.P. BalthazarC.F. FrancoL.T. Sant’AnaA.S. CorassinC.H. RattrayF.P. OliveiraC.A.F. Effect of lactic acid bacteria strains on the growth and aflatoxin production potential of Aspergillus parasiticus, and their ability to bind aflatoxin B1, ochratoxin A, and zearalenone in vitro.Front. Microbiol.20211265538610.3389/fmicb.2021.655386 33967993
    [Google Scholar]
  32. OgunremiO.R. Freimüller LeischtfeldS. MischlerS. Miescher SchwenningerS. Antifungal activity of lactic acid bacteria isolated from kunu-zaki, a cereal-based Nigerian fermented beverage.Food Biosci.20224910164810.1016/j.fbio.2022.101648
    [Google Scholar]
  33. Pérez-RamosA. Madi-MoussaD. CoucheneyF. DriderD. Current knowledge of the mode of action and immunity mechanisms of lab-bacteriocins.Microorganisms2021910210710.3390/microorganisms9102107 34683428
    [Google Scholar]
  34. JuodeikieneG. BasinskieneL. BartkieneE. MatuseviciusP. Mycotoxin decontamination aspects in food, feed and renewables using fermentation processes. Struc. Funct.Food. Eng.2012171204
    [Google Scholar]
  35. LiuL. XieM. WeiD. Biological detoxification of mycotoxins: Current status and future advances.Int. J. Mol. Sci.2022233106410.3390/ijms23031064 35162993
    [Google Scholar]
  36. AbdiM. AsadiA. MalekiF. KouhsariE. FattahiA. OhadiE. Microbiological detoxification of mycotoxins: Focus on mechanisms and advances.Infect. Disord. Drug. Targets.202121333935710.2174/1871526520666200616145150
    [Google Scholar]
  37. NasrollahzadehA. MokhtariS. KhomeiriM. SarisP. Mycotoxin detoxification of food by lactic acid bacteria.Int. J. Food. Contam.2022911910.1186/s40550‑021‑00087‑w
    [Google Scholar]
  38. LiliZ. JunyanW. HongfeiZ. BaoqingZ. BolinZ. Detoxification of cancerogenic compounds by lactic acid bacteria strains.Crit. Rev. Food Sci. Nutr.201858162727274210.1080/10408398.2017.1339665 29053003
    [Google Scholar]
  39. KumaraS.S. BashishtA. VenkateswaranG. HariprasadP. GayathriD. Characterization of novel Lactobacillus fermentum from curd samples of indigenous cows from Malnad region, Karnataka, for their aflatoxin B 1 binding and probiotic properties.Probiotics Antimicrob. Proteins20191141100110910.1007/s12602‑018‑9479‑7 30368716
    [Google Scholar]
  40. HaskardC.A. El-NezamiH.S. KankaanpääP.E. SalminenS. AhokasJ.T. Surface binding of aflatoxin B(1) by lactic acid bacteria.Appl. Environ. Microbiol.20016773086309110.1128/AEM.67.7.3086‑3091.2001 11425726
    [Google Scholar]
  41. Adami GhamsariF. Tajabadi EbrahimiM. Bagheri VarzanehM. IranbakhshA. Akhavan SepahiA. In vitro reduction of mycotoxin deoxynivalenol by organic adsorbent.J. Food Process. Preserv.2021453e1521210.1111/jfpp.15212
    [Google Scholar]
  42. ZhaiY. HuS. ZhongL. LuZ. BieX. ZhaoH. ZhangC. LuF. Characterization of deoxynivalenol detoxification by Lactobacillus paracasei LHZ-1 isolated from yogurt.J. Food Prot.20198281292129910.4315/0362‑028X.JFP‑18‑581 31310167
    [Google Scholar]
  43. LuoY. LiuX. YuanL. LiJ. Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects.Trends Food Sci. Technol.20209612713410.1016/j.tifs.2019.12.012
    [Google Scholar]
  44. WacooA.P. AtukundaP. MuhooziG. BrasterM. WagnerM. van den BroekT.J. SybesmaW. WesterbergA.C. IversenP.O. KortR. Aflatoxins: Occurrence, exposure, and binding to Lactobacillus species from the gut microbiota of rural Ugandan children.Microorganisms20208334710.3390/microorganisms8030347 32121365
    [Google Scholar]
  45. LewandowskiZ. BoltzJ.P. Biofilms in water and wastewater treatment. Water-Quality EngineeringElsevier2011452957010.1016/B978‑0‑444‑53199‑5.00095‑6
    [Google Scholar]
  46. Salas-JaraM. IlabacaA. VegaM. GarcíaA. Biofilm forming Lactobacillus: New challenges for the development of probiotics.Microorganisms2016433510.3390/microorganisms4030035 27681929
    [Google Scholar]
  47. NahleS. AtouiA. AssafJ.C. El KhouryA. LoukaN. ChokrA. Time-dependent effect of surface material on Lactobacillus rhamnosus GG biofilm formation and gene expression.Microbiology2023921556510.1134/S0026261721102142 36864390
    [Google Scholar]
  48. AssafJ.C. KhouryA.E. ChokrA. LoukaN. AtouiA. A novel method for elimination of aflatoxin M1 in milk using Lactobacillus rhamnosus GG biofilm.Int. J. Dairy Technol.201972224825610.1111/1471‑0307.12578
    [Google Scholar]
  49. NahleS. El KhouryA. SavvaidisI. ChokrA. LoukaN. AtouiA. Detoxification approaches of mycotoxins: By microorganisms, biofilms and enzymes.Int. J. Food. Contam.202291310.1186/s40550‑022‑00089‑2
    [Google Scholar]
  50. AfsharP. ShokrzadehM. RaeisiS.N. Ghorbani-HasanSaraeiA. NasiraiiL.R. Aflatoxins biodetoxification strategies based on probiotic bacteria.Toxicon2020178505810.1016/j.toxicon.2020.02.007 32250747
    [Google Scholar]
  51. HathoutA.S. AlyS.E. Biological detoxification of mycotoxins: A review.Ann. Microbiol.201464390591910.1007/s13213‑014‑0899‑7
    [Google Scholar]
  52. WafulaE.N. MuhonjaC.N. KujaJ.O. OwagaE.E. MakondeH.M. MatharaJ.M. KimaniV.W. Lactic acid bacteria from african fermented cereal-based products: Potential biological control agents for mycotoxins in kenya.J. Toxicol.2022202211710.1155/2022/2397767 35242183
    [Google Scholar]
  53. SiposP. PelesF. BrassóD.L. BériB. PusztahelyiT. PócsiI. GyőriZ. Physical and chemical methods for reduction in aflatoxin content of feed and food.Toxins202113320410.3390/toxins13030204 33808964
    [Google Scholar]
  54. PankajS.K. ShiH. KeenerK.M. A review of novel physical and chemical decontamination technologies for aflatoxin in food.Trends Food Sci. Technol.201871738310.1016/j.tifs.2017.11.007
    [Google Scholar]
  55. JaliliM. JinapS. Role of sodium hydrosulphite and pressure on the reduction of aflatoxins and ochratoxin A in black pepper.Food Control2012271111510.1016/j.foodcont.2012.02.022
    [Google Scholar]
  56. PengZ. ChenL. ZhuY. HuangY. HuX. WuQ. NüsslerA.K. LiuL. YangW. Current major degradation methods for aflatoxins: A review.Trends Food Sci. Technol.20188015516610.1016/j.tifs.2018.08.009
    [Google Scholar]
  57. DeshpandeS. Toxic metals, radionuclides, and food packaging contaminantsDeshpande SS editör Hand Book of Food Toxicology Marcel Dekker, IncNew York, USA2002783810
    [Google Scholar]
  58. Ben TaheurF. MansourC. KouidhiB. ChaiebK. Use of lactic acid bacteria for the inhibition of Aspergillus flavus and Aspergillus carbonarius growth and mycotoxin production.Toxicon2019166152310.1016/j.toxicon.2019.05.004 31095961
    [Google Scholar]
  59. MateoE.M. TarazonaA. JiménezM. MateoF. Lactic acid bacteria as potential agents for biocontrol of aflatoxigenic and ochratoxigenic fungi.Toxins2022141180710.3390/toxins14110807 36422981
    [Google Scholar]
  60. SimõesL. FernandesN. TeixeiraJ. AbrunhosaL. DiasD.R. Brazilian table olives: A source of lactic acid bacteria with antimycotoxigenic and antifungal activity.Toxins20231517110.3390/toxins15010071 36668890
    [Google Scholar]
  61. ZhengX. WeiW. RaoS. GaoL. LiH. YangZ. Degradation of patulin in fruit juice by a lactic acid bacteria strain Lactobacillus casei YZU01.Food Cont.202011210714710.1016/j.foodcont.2020.107147
    [Google Scholar]
  62. CruzP.O. MatosC.J. NascimentoY.M. TavaresJ.F. SouzaE.L. MagalhãesH.I.F. Efficacy of potentially probiotic fruit-derived Lactobacillus fermentum, L. paracasei and L. plantarum to remove aflatoxin M1 in vitro.Toxins2020131410.3390/toxins13010004 33374495
    [Google Scholar]
  63. Punia BangarS. SharmaN. BhardwajA. PhimolsiripolY. Lactic acid bacteria.Qual. Assur. Saf. Crops Foods2022142133110.15586/qas.v14i2.1014
    [Google Scholar]
  64. ZhaoY. ZhangC. FollyY.M.E. ChangJ. WangY. ZhouL. ZhangH. LiuY. Morphological and transcriptomic analysis of the inhibitory effects of Lactobacillus plantarum on Aspergillus flavus growth and aflatoxin production.Toxins2019111163610.3390/toxins11110636 31683906
    [Google Scholar]
  65. mohammadiR. AbbaszadehS. SharifzadehA. SepandiM. TaghdirM. Youseftabar MiriN. ParastoueiK. in vitro activity of encapsulated lactic acid bacteria on aflatoxin production and growth of Aspergillus Spp.Food Sci. Nutr.2021931282128810.1002/fsn3.2015 33747444
    [Google Scholar]
  66. OuyangW. LiaoZ. YangX. ZhangX. ZhuX. ZhongQ. WangL. FangX. WangJ. Microbial composition of water kefir grains and their application for the detoxification of aflatoxin B1.Toxins202416210710.3390/toxins16020107 38393185
    [Google Scholar]
  67. NasrollahzadehA. MokhtariS. KhomeiriM. SarisP.E.J. Antifungal preservation of food by lactic acid bacteria.Foods202211339510.3390/foods11030395 35159544
    [Google Scholar]
  68. RahayuE.S. TriyadiR. KhusnaR.N.B. DjaafarT.F. UtamiT. MarwatiT. HatmiR.U. indigenous yeast, lactic acid bacteria, and acetic acid bacteria from cocoa bean fermentation in Indonesia can inhibit fungal-growth-producing mycotoxins.Fermentation20217319210.3390/fermentation7030192
    [Google Scholar]
  69. SiedlerS. BaltiR. NevesA.R. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food.Curr. Opin. Biotechnol.20195613814610.1016/j.copbio.2018.11.015 30504082
    [Google Scholar]
  70. MuhialdinB.J. AlgbooryH.L. KadumH. MohammedN.K. SaariN. HassanZ. Meor HussinA.S. Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds.Food Cont.202010910689810.1016/j.foodcont.2019.106898
    [Google Scholar]
  71. LuzC. D’OpazoV. QuilesJ.M. RomanoR. MañesJ. MecaG. Biopreservation of tomatoes using fermented media by lactic acid bacteria.Lebensm. Wiss. Technol.202013010961810.1016/j.lwt.2020.109618
    [Google Scholar]
  72. PradhanS. AnanthanarayanL. PrasadK. Bhatnagar-MathurP. Anti-fungal activity of lactic acid bacterial isolates against aflatoxigenic fungi inoculated on peanut kernels.Lebensm. Wiss. Technol.202114311110410.1016/j.lwt.2021.111104
    [Google Scholar]
  73. IlluecaF. MorenoA. CalpeJ. NazarethT.M. DopazoV. MecaG. QuilesJ.M. LuzC. Bread biopreservation through the addition of lactic acid bacteria in sourdough.Foods202312486410.3390/foods12040864 36832942
    [Google Scholar]
  74. Abdel-NasserA. HathoutA.S. BadrA.N. BarakatO.S. FathyH.M. Extraction and characterization of bioactive secondary metabolites from lactic acid bacteria and evaluating their antifungal and antiaflatoxigenic activity.Biotechnol. Rep.202338e0079910.1016/j.btre.2023.e00799 37206916
    [Google Scholar]
  75. PurnawitaW. RahayuW.P. LioeH.N. NurjanahS. MaryamR. Antifungal activity of reuterin against aflatoxigenic Aspergillus flavus.J. Microbiol. Biotechnol. Food. Sci.2023132e1003210.55251/jmbfs.10032
    [Google Scholar]
  76. NazarethT.M. LuzC. TorrijosR. QuilesJ.M. LucianoF.B. MañesJ. MecaG. Potential application of lactic acid bacteria to reduce aflatoxin B1 and fumonisin B1 occurrence on corn kernels and corn ears.Toxins20191212110.3390/toxins12010021 31906161
    [Google Scholar]
  77. DopazoV. MustoL. NazarethT.M. LafuenteC. MecaG. LuzC. Revalorization of rice bran as a potential ingredient for reducing fungal contamination in bread by lactic acid bacterial fermentation.Food Biosci.20245810370310.1016/j.fbio.2024.103703
    [Google Scholar]
  78. DopazoV. NavarréA. CalpeJ. RioloM. MorenoA. MecaG. LuzC. Revalorization of beer brewing waste as an antifungal ingredient for bread biopreservation.Food Biosci.20245810358810.1016/j.fbio.2024.103588
    [Google Scholar]
  79. EL HoussniI. KhedidK. ZahidiA. HassikouR. The inhibitory effects of lactic acid bacteria isolated from sourdough on the mycotoxigenic fungi growth and mycotoxins from wheat bread.Biocatal. Agric. Biotechnol.20235010270210.1016/j.bcab.2023.102702
    [Google Scholar]
  80. GuimarãesA. VenancioA. AbrunhosaL. Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.20183591803181810.1080/19440049.2018.1500718 30016195
    [Google Scholar]
  81. Abdul HakimB.N. XuanN.J. OslanS.N.H. A comprehensive review of bioactive compounds from lactic acid bacteria: Potential functions as functional food in dietetics and the food industry.Foods20231215285010.3390/foods12152850 37569118
    [Google Scholar]
  82. ArenaM.P. SilvainA. NormannoG. GriecoF. DriderD. SpanoG. FioccoD. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms.Front. Microbiol.2016746410.3389/fmicb.2016.00464 27148172
    [Google Scholar]
  83. KimJ. KimY.M. LebakaV.R. WeeY.J. Lactic acid for green chemical industry: Recent advances in and future prospects for production technology, recovery, and applications.Fermentation202281160910.3390/fermentation8110609
    [Google Scholar]
  84. DagnasS. GauvryE. OnnoB. MembréJ.M. Quantifying effect of lactic, acetic, and propionic acids on growth of molds isolated from spoiled bakery products.J. Food Prot.20157891689169810.4315/0362‑028X.JFP‑15‑046 26319723
    [Google Scholar]
  85. SangmaneeP. HongpattarakereT. Inhibitory of multiple antifungal components produced by Lactobacillus plantarum K35 on growth, aflatoxin production and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus.Food Cont.20144022423310.1016/j.foodcont.2013.12.005
    [Google Scholar]
  86. FugabanJ.I.I. JungE.S. TodorovS.D. HolzapfelW.H. Evaluation of antifungal metabolites produced by lactic acid bacteria.Probiotics Antimicrob. Proteins20231551447146310.1007/s12602‑022‑09995‑5 36227534
    [Google Scholar]
  87. VougiouklakiD. TsironiT. PapaparaskevasJ. HalvatsiotisP. HouhoulaD. Characterization of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum metabolites and evaluation of their antimicrobial activity against food pathogens.Appl. Sci.202212266010.3390/app12020660
    [Google Scholar]
  88. ParappillyS.J. IdiculaD.V. ChandranA. Mathil RadhakrishnanK. GeorgeS.M. Antifungal activity of human gut lactic acid bacteria against aflatoxigenic Aspergillus flavus MTCC 2798 and their potential application as food biopreservative.J. Food Saf.2021416e1294210.1111/jfs.12942
    [Google Scholar]
  89. BukhariS.A. SalmanM. NumanM. JavedM.R. ZubairM. MustafaG. Characterization of antifungal metabolites produced by Lactobacillus plantarum and Lactobacillus coryniformis isolated from rice rinsed water.Mol. Biol. Rep.20204731871188110.1007/s11033‑020‑05281‑1 32006197
    [Google Scholar]
  90. JungS. HwangH. LeeJ.H. Effect of lactic acid bacteria on phenyllactic acid production in kimchi.Food Cont.201910610670110.1016/j.foodcont.2019.06.027
    [Google Scholar]
  91. WangprasertkulJ. SiriwattanapongR. HarnkarnsujaritN. Antifungal packaging of sorbate and benzoate incorporated biodegradable films for fresh noodles.Food Contr.202112310776310.1016/j.foodcont.2020.107763
    [Google Scholar]
  92. GuimarãesA. SantiagoA. TeixeiraJ.A. VenâncioA. AbrunhosaL. Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum.Int. J. Food Microbiol.2018264313810.1016/j.ijfoodmicro.2017.10.025 29107194
    [Google Scholar]
  93. YépezA. LuzC. MecaG. VignoloG. MañesJ. AznarR. Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin.Food Control20177839340010.1016/j.foodcont.2017.03.009
    [Google Scholar]
  94. EngelsC. SchwabC. ZhangJ. StevensM.J.A. BieriC. EbertM.O. McNeillK. SturlaS.J. LacroixC. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin.Sci. Rep.2016613624610.1038/srep36246 27819285
    [Google Scholar]
  95. SchaeferL. AuchtungT.A. HermansK.E. WhiteheadD. BorhanB. BrittonR.A. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups.Microbiology201015661589159910.1099/mic.0.035642‑0 20150236
    [Google Scholar]
  96. VimontA. FernandezB. AhmedG. FortinH.P. FlissI. Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its potential application in yogurt.Int. J. Food. Microbiol.201928918218810.1016/j.ijfoodmicro.2018.09.005 30253311
    [Google Scholar]
  97. GerezC.L. TorresM.J. Font de ValdezG. RollánG. Control of spoilage fungi by lactic acid bacteria.Biol. Cont.201364323123710.1016/j.biocontrol.2012.10.009
    [Google Scholar]
  98. SalmanM. TariqA. IjazA. NaheedS. HashemA. Abd AllahE.F. SolimanM.H. JavedM.R. in vitro antimicrobial and antioxidant activities of Lactobacillus coryniformis BCH-4 bioactive compounds and determination of their bioprotective effects on nutritional components of Maize (Zea mays L.).Molecules20202520468510.3390/molecules25204685 33066377
    [Google Scholar]
  99. MuhialdinB.J. HassanZ. SaariN. in vitro antifungal activity of lactic acid bacteria low molecular peptides against spoilage fungi of bakery products.Ann. Microbiol.201868955756710.1007/s13213‑018‑1363‑x
    [Google Scholar]
  100. GuillénG López CaballeroM AlemánA Lacey, A.L.; Giménez, B.; Montero Gracia, P. Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin.Chem. Environ. Sci.2010
    [Google Scholar]
  101. JooS.H. Cyclic peptides as therapeutic agents and biochemical tools.Biomol. Ther.2012201192610.4062/biomolther.2012.20.1.019 24116270
    [Google Scholar]
  102. BartkieneE. LeleV. RuzauskasM. DomigK.J. StarkuteV. ZavistanaviciuteP. BartkevicsV. PugajevaI. KlupsaiteD. JuodeikieneG. MickieneR. RochaJ.M. Lactic acid bacteria isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation.Microorganisms2019816410.3390/microorganisms8010064 31905993
    [Google Scholar]
  103. CiullaM.G. GelainF. Structure activity relationships of antibacterial peptides.Microb. Biotechnol.202316475777710.1111/1751‑7915.14213 36705032
    [Google Scholar]
  104. KovacevikB. VeličkovskaS.K. EsatbeyogluT. CvetkovskiA. QamarM. RochaJ.M. Biopreservation in flours and bread. Novel Approaches in Biopreservation for Food and Clinical Purposes.CRC Press2024130204
    [Google Scholar]
  105. OuiddirM. BettacheG. Leyva SalasM. PawtowskiA. DonotC. BrahimiS. MabroukK. CotonE. MounierJ. Selection of Algerian lactic acid bacteria for use as antifungal bioprotective cultures and application in dairy and bakery products.Food Microbiol.20198216017010.1016/j.fm.2019.01.020 31027770
    [Google Scholar]
  106. ZhaoZ. SimpsonD.J. GänzleM.G. Bioprotective lactobacilli in Crescenza and Gouda cheese models to inhibit fungal spoilage.Int. Dairy J.202415210588310.1016/j.idairyj.2024.105883
    [Google Scholar]
  107. SjögrenJ. MagnussonJ. BrobergA. SchnürerJ. KenneL. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14.Appl. Environ. Microbiol.200369127554755710.1128/AEM.69.12.7554‑7557.2003 14660414
    [Google Scholar]
  108. ZhaoX. ZhouJ. TianR. LiuY. Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges.Front. Microbiol.20221392245010.3389/fmicb.2022.922450 35910607
    [Google Scholar]
  109. SuzukiK. ShonoF. KaiH. UnoT. UyedaM. Inhibition of topoisomerases by fatty acids.J. Enzyme Inhib.200015435736610.1080/14756360009040693 10995067
    [Google Scholar]
  110. GuimarãesA. VenâncioA. The potential of fatty acids and their derivatives as antifungal agents: A review.Toxins202214318810.3390/toxins14030188 35324685
    [Google Scholar]
  111. SoltaniS. HammamiR. CotterP.D. RebuffatS. SaidL.B. GaudreauH. BédardF. BironE. DriderD. FlissI. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations.FEMS Microbiol. Rev.2021451fuaa03910.1093/femsre/fuaa039 32876664
    [Google Scholar]
  112. DarbandiA. AsadiA. Mahdizade AriM. OhadiE. TalebiM. Halaj ZadehM. Darb EmamieA. GhanavatiR. KakanjM. Bacteriocins: Properties and potential use as antimicrobials.J. Clin. Lab. Anal.2022361e2409310.1002/jcla.24093 34851542
    [Google Scholar]
  113. ŠuškovićJ. KosB. BeganovićJ. Leboš PavuncA. HabjaničK. MatošićS. Antimicrobial activity–the most important property of probiotic and starter lactic acid bacteria.Food Technol. Biotechnol.2010483296307
    [Google Scholar]
  114. RoshanakS. ShahidiF. YazdiF.T. JavadmaneshA. MovaffaghJ. Evaluation of antimicrobial activity of Buforin I and Nisin and the synergistic effect of their combination as a novel antimicrobial preservative.J. Food Prot.202083112018202510.4315/JFP‑20‑127 32502264
    [Google Scholar]
  115. AndH.C. HooverD.G. Bacteriocins and their food applications.Compr. Rev. Food Sci. Food Saf.2003238210010.1111/j.1541‑4337.2003.tb00016.x 33451234
    [Google Scholar]
  116. Hernández-GonzálezJ.C. Martínez-TapiaA. Lazcano-HernándezG. García-PérezB.E. Castrejón-JiménezN.S. Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine.Animals202111497910.3390/ani11040979 33915717
    [Google Scholar]
  117. CotterP.D. HillC. RossR.P. Bacteriocins: Developing innate immunity for food.Nat. Rev. Microbiol.200531077778810.1038/nrmicro1273 16205711
    [Google Scholar]
  118. LiuG. NieR. LiuY. MehmoodA. Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review.Sci. Total Environ.202282515405810.1016/j.scitotenv.2022.154058 35217045
    [Google Scholar]
  119. van StadenA.D.P. van ZylW.F. TrindadeM. DicksL.M.T. SmithC. Therapeutic application of lantibiotics and other lanthipeptides: Old and new findings.Appl. Environ. Microbiol.20218714e00186e2110.1128/AEM.00186‑21 33962984
    [Google Scholar]
  120. ChenL. SongZ. TanS.Y. ZhangH. YukH.G. Application of bacteriocins produced from lactic acid bacteria for microbiological food safety. Curr/Top.Lact. Acid. Bact. Probiot.2020611810.35732/ctlabp.2020.6.1.1
    [Google Scholar]
  121. KumariyaR. GarsaA.K. RajputY.S. SoodS.K. AkhtarN. PatelS. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria.Microb. Pathog.201912817117710.1016/j.micpath.2019.01.002 30610901
    [Google Scholar]
  122. ZapaśnikA. SokołowskaB. BryłaM. Role of lactic acid bacteria in food preservation and safety.Foods2022119128310.3390/foods11091283 35564005
    [Google Scholar]
  123. SouzaL.V. Rodrigues da SilvaR. FalquetoA. FusiegerA. MartinsE. CaggiaC. RandazzoC.L. CarvalhoA.F. Evaluation of antifungal activity of lactic acid bacteria against fungi in simulated cheese matrix.Lebensm. Wiss. Technol.202318211477310.1016/j.lwt.2023.114773
    [Google Scholar]
  124. Venegas-OrtegaM.G. Flores-GallegosA.C. Martínez-HernándezJ.L. AguilarC.N. Nevárez-MoorillónG.V. Production of bioactive peptides from lactic acid bacteria: A sustainable approach for healthier foods.Compr. Rev. Food Sci. Food Saf.20191841039105110.1111/1541‑4337.12455 33336997
    [Google Scholar]
  125. AzeemN. NawazM. AnjumA.A. SaeedS. SanaS. MustafaA. YousufM.R. Activity and anti-aflatoxigenic effect of indigenously characterized probiotic lactobacilli against Aspergillus flavus—A common poultry feed contaminant.Animals20199416610.3390/ani9040166 30991667
    [Google Scholar]
  126. ZhaoS. HaoX. YangF. WangY. FanX. WangY. Antifungal activity of Lactobacillus plantarum ZZUA493 and its application to extend the shelf life of Chinese steamed buns.Foods202211219510.3390/foods11020195 35053928
    [Google Scholar]
  127. DallagnolA.M. BustosA.Y. MartosG.I. ValdezG.F. GerezC.L. Antifungal and antimycotoxigenic effect of Lactobacillus plantarum CRL 778 at different water activity values.Rev. Argent. Microbiol.201951216416910.1016/j.ram.2018.04.004 30144992
    [Google Scholar]
  128. RamanJ. KimJ.S. ChoiK.R. EunH. YangD. KoY.J. KimS.J. Application of lactic acid bacteria (LAB) in sustainable agriculture: Advantages and limitations.Int. J. Mol. Sci.20222314778410.3390/ijms23147784 35887142
    [Google Scholar]
  129. SouzaL.V. MartinsE. MoreiraI.M.F.B. de CarvalhoA.F. Strategies for the development of bioprotective cultures in food preservation.Int. J. Microbiol.20222022626417010.1155/2022/6264170
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461284473240408075321
Loading
/content/journals/cgc/10.2174/0122133461284473240408075321
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test