Skip to content
2000
Volume 11, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

This comprehensive analysis investigates the current state of development and emerging applications of aerogels and xerogels in wastewater treatment. Aerogels and xerogels, which are characterized by their distinctive porosity architectures and extraordinary material qualities (low density and high surface area), have received much interest in recent years for their potential to transform the field of wastewater treatment. In this study, we present a complete overview of the synthesis processes and structural properties of these materials, highlighting current advancements and innovations. As adsorbents, catalysts, thermal insulation materials, or drug delivery matrices, they have been employed in a number of different disciplines. Aerogels and xerogels have demonstrated their adsorption capability by effectively collecting a wide spectrum of pollutants contained in wastewater. These include the removal of potentially hazardous and deleterious components such as metal ions and organic dyes, which are prevalent in wastewater streams, as well as other organic compounds. Our analysis not only covers the synthesis and applications of aerogels and xerogels, but it also highlights eco-friendly synthesis alternatives, in line with the growing demand for sustainable material preparation methods. Against the backdrop of rising global water concerns, this analysis highlights the promising potential of these materials to play a crucial role in providing sustainable wastewater treatment solutions, thereby establishing a critical future goal.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461273226231208060050
2024-01-12
2025-01-19
Loading full text...

Full text loading...

References

  1. RenW. ZhongY. MeligranaJ. AndersonB. WattW.E. ChenJ. LeungH.L. Urbanization, land use, and water quality in Shanghai.Environ. Int.200329564965910.1016/S0160‑4120(03)00051‑512742408
    [Google Scholar]
  2. TengY. YangJ. ZuoR. WangJ. Impact of urbanization and industrialization upon surface water quality: A pilot study of Panzhihua mining town.J. Earth Sci.201122565866810.1007/s12583‑011‑0217‑2
    [Google Scholar]
  3. LalR. Deforestation effects on soil degradation and rehabilitation in western Nigeria. IV. Hydrology and water quality.Land Degrad. Dev.1997829512610.1002/(SICI)1099‑145X(199706)8:2<95::AID‑LDR241>3.0.CO;2‑K
    [Google Scholar]
  4. MukhopadhyayR. SarkarB. KhanE. AlessiD.S. BiswasJ.K. ManjaiahK.M. EguchiM. WuK.C.W. YamauchiY. OkY.S. Nanomaterials for sustainable remediation of chemical contaminants in water and soil.Crit. Rev. Environ. Sci. Technol.202252152611266010.1080/10643389.2021.1886891
    [Google Scholar]
  5. HasanM.M. SalmanM.S. HasanM.N. RehanA.I. AwualM.E. RaseeA.I. WaliullahR.M. HossainM.S. KubraK.T. SheikhM.C. KhalequeM.A. MarwaniH.M. IslamA. AwualM.R. Facial conjugate adsorbent for sustainable Pb(II) ion monitoring and removal from contaminated water.Colloids Surf. A Physicochem. Eng. Asp.202367313179410.1016/j.colsurfa.2023.131794
    [Google Scholar]
  6. SheikhM.C. HasanM.M. HasanM.N. SalmanM.S. KubraK.T. AwualM.E. WaliullahR.M. RaseeA.I. RehanA.I. HossainM.S. MarwaniH.M. IslamA. KhalequeM.A. AwualM.R. Toxic cadmium(II) monitoring and removal from aqueous solution using ligand-based facial composite adsorbent.J. Mol. Liq.202338912285410.1016/j.molliq.2023.122854
    [Google Scholar]
  7. AnandA. RajchakitU. SarojiniV. Detection and removal of biological contaminants in water: The role of nanotechnology, Nanomaterials for the Detection and Removal of Wastewater Pollutants.AmsterdamElsevier20206911010.1016/B978‑0‑12‑818489‑9.00004‑9
    [Google Scholar]
  8. RajkhowaS. SarmaJ. DasA.R. Radiological contaminants in water: Pollution, health risk, and treatment, Contamination of Water.AmsterdamElsevier202121723610.1016/B978‑0‑12‑824058‑8.00013‑X
    [Google Scholar]
  9. IsmailM. AkhtarK. KhanM.I. KamalT. KhanM.A. M AsiriA. SeoJ. KhanS.B. Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation.Curr. Pharm. Des.201925343645366310.2174/138161282566619102114202631656147
    [Google Scholar]
  10. KhanS.A. KhanT.A. Clay-hydrogel nanocomposites for adsorptive amputation of environmental contaminants from aqueous phase: A review.J. Environ. Chem. Eng.20219410557510.1016/j.jece.2021.105575
    [Google Scholar]
  11. WangL.K. VaccariD.A. LiY. ShammasN.K. Chemical precipitation, Physicochemical treatment processes.Berlin, HeidelbergSpringer200514119710.1385/1‑59259‑820‑x:141
    [Google Scholar]
  12. ChenL. XueY. LuoT. WuF. AlshawabkehA.N. Electrolysis-assisted UV/sulfite oxidation for water treatment with automatic adjustments of solution pH and dissolved oxygen.Chem. Eng. J.202140312627810.1016/j.cej.2020.12627833162784
    [Google Scholar]
  13. AndreozziR. CaprioV. InsolaA. MarottaR. Advanced oxidation processes (AOP) for water purification and recovery.Catal. Today1999531515910.1016/S0920‑5861(99)00102‑9
    [Google Scholar]
  14. KorngoldE. KockK. StrathmannH. Electrodialysis in advanced waste water treatment.Desalination1977241-312913910.1016/S0011‑9164(00)88079‑0
    [Google Scholar]
  15. MarkingL.L. PiperR.G. Carbon filter for removing therapeutants from hatchery water.Prog. Fish-Cult.1976382697210.1577/1548‑8659(1976)38[69:CFFRTF]2.0.CO;2
    [Google Scholar]
  16. PirkanniemiK. SillanpääM. Heterogeneous water phase catalysis as an environmental application: A review.Chemosphere200248101047106010.1016/S0045‑6535(02)00168‑612227510
    [Google Scholar]
  17. MengY. JianY. LiJ. WuH. ZhangH. SaravanamuruganS. YangS. LiH. Surface-active site engineering: Synergy of photo- and supermolecular catalysis in hydrogen transfer enables biomass upgrading and H2 evolution.Chem. Eng. J.202345213947710.1016/j.cej.2022.139477
    [Google Scholar]
  18. AwualM.R. HasanM.M. AsiriA.M. RahmanM.M. Cleaning the arsenic(V) contaminated water for safe-guarding the public health using novel composite material.Compos., Part B Eng.201917129430110.1016/j.compositesb.2019.05.078
    [Google Scholar]
  19. AwualM.R. HasanM.M. IqbalJ. IslamM.A. IslamA. KhandakerS. AsiriA.M. RahmanM.M. Ligand based sustainable composite material for sensitive nickel(II) capturing in aqueous media.J. Environ. Chem. Eng.20208110359110.1016/j.jece.2019.103591
    [Google Scholar]
  20. DottoG.L. McKayG. Current scenario and challenges in adsorption for water treatment.J. Environ. Chem. Eng.20208410398810.1016/j.jece.2020.103988
    [Google Scholar]
  21. SharmaG. KumarA. NaushadM. García-PeñasA. Al-MuhtasebA.H. GhfarA.A. SharmaV. AhamadT. StadlerF.J. Fabrication and characterization of Gum arabic-cl-poly(acrylamide) nanohydrogel for effective adsorption of crystal violet dye.Carbohydr. Polym.201820244445310.1016/j.carbpol.2018.09.00430287021
    [Google Scholar]
  22. SharmaS. SharmaG. KumarA. AlGarniT.S. NaushadM. ALOthmanZ.A. StadlerF.J. Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: Synthesis, characterization and isotherm analysis.J. Hazard. Mater.202242112672910.1016/j.jhazmat.2021.12672934388920
    [Google Scholar]
  23. KubraK.T. HasanM.M. HasanM.N. SalmanM.S. KhalequeM.A. SheikhM.C. RehanA.I. RaseeA.I. WaliullahR.M. AwualM.E. HossainM.S. AlsukaibiA.K.D. AlshammariH.M. AwualM.R. The heavy lanthanide of Thulium(III) separation and recovery using specific ligand-based facial composite adsorbent.Colloids Surf. A Physicochem. Eng. Asp.202366713141510.1016/j.colsurfa.2023.131415
    [Google Scholar]
  24. SalmanM.S. SheikhM.C. HasanM.M. HasanM.N. KubraK.T. RehanA.I. AwualM.E. RaseeA.I. WaliullahR.M. HossainM.S. KhalequeM.A. AlsukaibiA.K.D. AlshammariH.M. AwualM.R. Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media.Appl. Surf. Sci.202362215700810.1016/j.apsusc.2023.157008
    [Google Scholar]
  25. SalmanM.S. HasanM.N. HasanM.M. KubraK.T. SheikhM.C. RehanA.I. WaliullahR.M. RaseeA.I. AwualM.E. HossainM.S. AlsukaibiA.K.D. AlshammariH.M. AwualM.R. Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent.J. Mol. Struct.2023128213525910.1016/j.molstruc.2023.135259
    [Google Scholar]
  26. AwualM.R. HasanM.M. Fine-tuning mesoporous adsorbent for simultaneous ultra-trace palladium(II) detection, separation and recovery.J. Ind. Eng. Chem.20152150751510.1016/j.jiec.2014.03.013
    [Google Scholar]
  27. HasanM.M. KubraK.T. HasanM.N. AwualM.E. SalmanM.S. SheikhM.C. RehanA.I. RaseeA.I. WaliullahR.M. IslamM.S. KhandakerS. IslamA. HossainM.S. AlsukaibiA.K.D. AlshammariH.M. AwualM.R. Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater.J. Mol. Liq.202337112112510.1016/j.molliq.2022.121125
    [Google Scholar]
  28. HacıosmanoğluG.G. MejíasC. MartínJ. SantosJ.L. AparicioI. AlonsoE. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review.J. Environ. Manage.202231711539710.1016/j.jenvman.2022.11539735660825
    [Google Scholar]
  29. AltintigE. AlsancakA. KaracaH. AngınD. AltundagH. The comparison of natural and magnetically modified zeolites as an adsorbent in methyl violet removal from aqueous solutions.Chem. Eng. Commun.2022209455556910.1080/00986445.2021.1874368
    [Google Scholar]
  30. AmbikaS. KumarM. PisharodyL. MalhotraM. KumarG. SreedharanV. SinghL. NidheeshP.V. BhatnagarA. Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: Mechanisms, methods, and prospects.Chem. Eng. J.202243913571610.1016/j.cej.2022.135716
    [Google Scholar]
  31. WangK. ZhaiY. DongS. LiuJ. WeiD. ChenH. BaiL. YangH. YangL. WangW. Synthesis of biomass-based polymer brush-on-brush composite for adsorption of copper(II) from aqueous media.Cellulose202229147901791510.1007/s10570‑022‑04764‑7
    [Google Scholar]
  32. HamadaT. HoshinaH. SekoN. Poly(vinyl diglycolic acid ester)-grafted polyethylene/polypropylene fiber adsorbent for selective recovery of samarium.ACS Appl. Polym. Mater.2022431846185410.1021/acsapm.1c01731
    [Google Scholar]
  33. LiuC. ZhangH.X. Modified-biochar adsorbents (MBAs) for heavy-metal ions adsorption: A critical review.J. Environ. Chem. Eng.202210210739310.1016/j.jece.2022.107393
    [Google Scholar]
  34. RehanA.I. RaseeA.I. AwualM.E. WaliullahR.M. HossainM.S. KubraK.T. SalmanM.S. HasanM.M. HasanM.N. SheikhM.C. MarwaniH.M. KhalequeM.A. IslamA. AwualM.R. Improving toxic dye removal and remediation using novel nanocomposite fibrous adsorbent.Colloids Surf. A Physicochem. Eng. Asp.202367313185910.1016/j.colsurfa.2023.131859
    [Google Scholar]
  35. AwualM.R. Assessing of lead(III) capturing from contaminated wastewater using ligand doped conjugate adsorbent.Chem. Eng. J.2016289657310.1016/j.cej.2015.12.078
    [Google Scholar]
  36. AwualM.R. A facile composite material for enhanced cadmium(II) ion capturing from wastewater.J. Environ. Chem. Eng.20197510337810.1016/j.jece.2019.103378
    [Google Scholar]
  37. AwualM.R. HasanM.M. IslamA. AsiriA.M. RahmanM.M. Optimization of an innovative composited material for effective monitoring and removal of cobalt(II) from wastewater.J. Mol. Liq.202029811203510.1016/j.molliq.2019.112035
    [Google Scholar]
  38. JainN. GargM. MinochaA.K. Green concrete from sustainable recycled coarse aggregates: Mechanical and durability properties.J. Waste Manag.201520151810.1155/2015/281043
    [Google Scholar]
  39. Dhruv PatelD. BhattS. Environmental pollution, toxicity profile, and physico-chemical and biotechnological approaches for treatment of textile wastewater.Biotechnol. Genet. Eng. Rev.2022381338610.1080/02648725.2022.204843435297320
    [Google Scholar]
  40. ThakurS. VermaA. KumarV. Jin YangX. KrishnamurthyS. CoulonF. ThakurV.K. Cellulosic biomass-based sustainable hydrogels for wastewater remediation: Chemistry and prospective.Fuel202230912211410.1016/j.fuel.2021.122114
    [Google Scholar]
  41. KornprobstT. PlankJ. Synthesis and properties of magnesium carbonate xerogels and aerogels.J. Non-Cryst. Solids201336110010510.1016/j.jnoncrysol.2012.10.023
    [Google Scholar]
  42. LiuW. HerrmannA.K. BigallN.C. RodriguezP. WenD. OezaslanM. SchmidtT.J. GaponikN. EychmüllerA. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts.Acc. Chem. Res.201548215416210.1021/ar500237c25611348
    [Google Scholar]
  43. CampbellL.K. NaB.K. KoE.I. Synthesis and characterization of titania aerogels.Chem. Mater.1992461329133310.1021/cm00024a037
    [Google Scholar]
  44. Gallegos-SuárezE. Pérez-CadenasA.F. Maldonado-HódarF.J. Carrasco-MarínF. On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes.Chem. Eng. J.2012181-18285185510.1016/j.cej.2011.12.002
    [Google Scholar]
  45. Guzel KayaG. YilmazE. DeveciH. Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: A comparison study.Adv. Powder Technol.202031392693610.1016/j.apt.2019.12.013
    [Google Scholar]
  46. Ibarra TorresC.E. Serrano QuezadaT.E. KharissovaO.V. KharisovB.I. Gómez de la FuenteM.I. Carbon-based aerogels and xerogels: Synthesis, properties, oil sorption capacities, and DFT simulations.J. Environ. Chem. Eng.20219110488610.1016/j.jece.2020.104886
    [Google Scholar]
  47. de OliveiraM. FrihlingB.E.F. VelasquesJ. FilhoF.J.C.M. CavalheriP.S. MiglioloL. Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment.Sci. Total Environ.202070513556810.1016/j.scitotenv.2019.13556831846817
    [Google Scholar]
  48. Pérez-LucasG. AatikA.E. AlisteM. NavarroG. FenollJ. NavarroS. Removal of contaminants of emerging concern from a wastewater effluent by solar-driven heterogeneous photocatalysis: A case study of pharmaceuticals.Water Air Soil Pollut.202323415510.1007/s11270‑023‑06075‑4
    [Google Scholar]
  49. IancuV.I. RaduG.L. ScutariuR. A new analytical method for the determination of beta-blockers and one metabolite in the influents and effluents of three urban wastewater treatment plants.Anal. Methods201911364668468010.1039/C9AY01597C
    [Google Scholar]
  50. LofranoG. FaiellaM. CarotenutoM. MurgoloS. MascoloG. PucciL. RizzoL. Thirty contaminants of emerging concern identified in secondary treated hospital wastewater and their removal by solar Fenton (like) and sulphate radicals-based advanced oxidation processes.J. Environ. Chem. Eng.20219610661410.1016/j.jece.2021.106614
    [Google Scholar]
  51. PérkoJ. KamenickáB. WeidlichT. Degradation of the antibacterial agents triclosan and chlorophene using hydrodechlorination by Al-based alloys.Monatshefte für Chemie-Chemical Monthly.201814917771786Available From: https://inis.iaea.org/search/search.aspx?orig_q=RN:51100995
    [Google Scholar]
  52. PiconeM. DistefanoG.G. MarchettoD. RussoM. VecchiatoM. GambaroA. BarbanteC. GhirardiniA.V. Fragrance materials (FMs) affect the larval development of the copepod Acartia tonsa: An emerging issue for marine ecosystems.Ecotoxicol. Environ. Saf.202121511214610.1016/j.ecoenv.2021.11214633744517
    [Google Scholar]
  53. AhmedM.B. JohirM.A.H. ZhouJ.L. NgoH.H. GuoW. SornalingamK. Photolytic and photocatalytic degradation of organic UV filters in contaminated water.Curr. Opin. Green Sustain. Chem.20176859210.1016/j.cogsc.2017.06.010
    [Google Scholar]
  54. TongX. YouL. ZhangJ. ChenH. NguyenV.T. HeY. GinK.Y.H. A comprehensive modelling approach to understanding the fate, transport and potential risks of emerging contaminants in a tropical reservoir.Water Res.202120011729810.1016/j.watres.2021.11729834102387
    [Google Scholar]
  55. KumariR. VivekanandV. PareekN. Elimination of alkylphenols from wastewater using various treatment technologies. Current Developments in Biotechnology and Bioengineering HaqI. KalamdhadA. PandeyA. AmsterdamElsevier20238510210.1016/B978‑0‑323‑91902‑9.00008‑0
    [Google Scholar]
  56. AlemánJ.V. ChadwickA.V. HeJ. HessM. HorieK. JonesR.G. KratochvílP. MeiselI. MitaI. MoadG. PenczekS. SteptoR.F.T. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007).Pure Appl. Chem.200779101801182910.1351/pac200779101801
    [Google Scholar]
  57. KistlerS.S. Coherent expanded aerogels.Rubber Chem. Technol.19325460060310.5254/1.3539386
    [Google Scholar]
  58. KhalilH.A. YahyaE.B. JummaatF. AdnanA. OlaiyaN. RizalS. AbdullahC. PasquiniD. ThomasS. Biopolymers based Aerogels: A review on revolutionary solutions for smart therapeutics delivery.Prog. Mater. Sci.20222022101014
    [Google Scholar]
  59. DhuaS. GuptaA.K. MishraP. Aerogel: Functional emerging material for potential application in food: A review.Food Bioprocess Technol.202215112396242110.1007/s11947‑022‑02829‑w
    [Google Scholar]
  60. XuX. ChangQ. XueC. LiN. WangH. YangJ. HuS. A carbonized carbon dot-modified starch aerogel for efficient solar-powered water evaporation.J. Mater. Chem. A Mater. Energy Sustain.20221021117121172010.1039/D2TA02302D
    [Google Scholar]
  61. LiuH. LiA. LiuZ. TaoQ. LiJ. PengJ. LiuY. Preparation of lightweight and hydrophobic natural biomass-based carbon aerogels for adsorption oils and organic solvents.J. Porous Mater.20222941001100910.1007/s10934‑022‑01233‑1
    [Google Scholar]
  62. MeadorM.A.B. MalowE.J. SilvaR. WrightS. QuadeD. VivodS.L. GuoH. GuoJ. CakmakM. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine.ACS Appl. Mater. Interfaces20124253654410.1021/am201463522233638
    [Google Scholar]
  63. Radwan-PragłowskaJ. PiątkowskiM. JanusŁ. BogdaD. MatysekD. Biodegradable, pH-responsive chitosan aerogels for biomedical applications.RSC Advances2017752329603296510.1039/C6RA27474A
    [Google Scholar]
  64. GuoH. MeadorM.A.B. McCorkleL. QuadeD.J. GuoJ. HamiltonB. CakmakM. SprowlG. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane.ACS Appl. Mater. Interfaces20113254655210.1021/am101123h21294517
    [Google Scholar]
  65. KistlerS.S. Coherent expanded aerogels and jellies.Nature1931127321174174110.1038/127741a0
    [Google Scholar]
  66. KistlerS.S. Method of making aerogels.Google Patents1941
    [Google Scholar]
  67. KistlerS.S. Treatment of aerogels to render them waterproof.Google Patents1952
    [Google Scholar]
  68. PierreA.C. History of aerogels.Aerogels Handbook.ChamSpringer2011318
    [Google Scholar]
  69. RussoR.E. HuntA.J. Comparison of ethyl versus methyl sol-gels for silica aerogels using polar nephelometry.J. Non-Cryst. Solids1986861-221923010.1016/0022‑3093(86)90490‑4
    [Google Scholar]
  70. NicolaonG. TeichnerS. On a new process of preparation of silica xerogels and aerogels and their textural properties.Bull. Soc. Chim. Fr.1968151900
    [Google Scholar]
  71. TewariP.H. HuntA.J. LofftusK.D. Ambient-temperature supercritical drying of transparent silica aerogels.Mater. Lett.198539-1036336710.1016/0167‑577X(85)90077‑1
    [Google Scholar]
  72. PekalaR.W. Low density, resorcinol-formaldehyde aerogels, Lawrence Livermore National Lab.US4997804A1989
  73. SmithD.M. DeshpandeR. Jeffrey BrinkeC. Preparation of low-density aerogels at ambient pressure.Proc. MRS199227156757210.1557/PROC‑271‑567
    [Google Scholar]
  74. PekalaR.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde.J. Mater. Sci.19892493221322710.1007/BF01139044
    [Google Scholar]
  75. GashA.E. TillotsonT.M. SatcherJ.H.Jr PocoJ.F. HrubeshL.W. SimpsonR.L. Use of epoxides in the sol− gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts.Chem. Mater.2001133999100710.1021/cm0007611
    [Google Scholar]
  76. GashA.E. TillotsonT.M. SatcherJ.H.Jr HrubeshL.W. SimpsonR.L. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors.J. Non-Cryst. Solids20012851-3222810.1016/S0022‑3093(01)00427‑6
    [Google Scholar]
  77. MohananJ.L. BrockS.L. A new addition to the aerogel community: Unsupported CdS aerogels with tunable optical properties.J. Non-Cryst. Solids20043501810.1016/j.jnoncrysol.2004.05.020
    [Google Scholar]
  78. AlievA.E. OhJ. KozlovM.E. KuznetsovA.A. FangS. FonsecaA.F. OvalleR. LimaM.D. HaqueM.H. GartsteinY.N. ZhangM. ZakhidovA.A. BaughmanR.H. Giant-stroke, superelastic carbon nanotube aerogel muscles.Science200932359211575157810.1126/science.116831219299612
    [Google Scholar]
  79. WorsleyM.A. PauzauskieP.J. OlsonT.Y. BienerJ. SatcherJ.H.Jr BaumannT.F. Synthesis of graphene aerogel with high electrical conductivity.J. Am. Chem. Soc.201013240140671406910.1021/ja107229920860374
    [Google Scholar]
  80. LeventisN. SadekarA. ChandrasekaranN. Sotiriou-LeventisC. Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks.Chem. Mater.20102292790280310.1021/cm903662a
    [Google Scholar]
  81. YangM. YuanY. LiY. SunX. WangS. LiangL. NingY. LiJ. YinW. LiY. Anisotropic electromagnetic absorption of aligned Ti3C2T x MXene/gelatin nanocomposite aerogels.ACS Appl. Mater. Interfaces20201229331283313810.1021/acsami.0c0972632597165
    [Google Scholar]
  82. NešićA. GordićM. DavidovićS. RadovanovićŽ. NedeljkovićJ. SmirnovaI. GurikovP. Pectin-based nanocomposite aerogels for potential insulated food packaging application.Carbohydr. Polym.201819512813510.1016/j.carbpol.2018.04.07629804960
    [Google Scholar]
  83. GuH. GaoC. ZhouX. DuA. NaikN. GuoZ. Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption.Adv. Compos. Hybrid Mater.20214345946810.1007/s42114‑021‑00289‑y
    [Google Scholar]
  84. ZengG. ShiN. HessM. ChenX. ChengW. FanT. NiederbergerM. A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries.ACS Nano2015944227423510.1021/acsnano.5b0057625783818
    [Google Scholar]
  85. JayaseelanS.S. RadhakrishnanS. SaravanakumarB. SeoM.K. KhilM.S. KimH.Y. KimB.S. Mesoporous 3D Ni-Co2O4/MWCNT nanocomposite aerogels prepared by a supercritical CO2 drying method for high performance hybrid supercapacitor electrodes.Colloids Surf. A Physicochem. Eng. Asp.201853845145910.1016/j.colsurfa.2017.11.037
    [Google Scholar]
  86. JiaoY. WanC. BaoW. GaoH. LiangD. LiJ. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B.Carbohydr. Polym.201818937137810.1016/j.carbpol.2018.02.02829580421
    [Google Scholar]
  87. HosseiniH. ZirakjouA. McClementsD.J. GoodarziV. ChenW.H. Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: Carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide.J. Hazard. Mater.202242112675210.1016/j.jhazmat.2021.12675234352524
    [Google Scholar]
  88. WangC. GaoF. KoS. LiuH. YiH. TangX. Structural control for inhibiting SO2 adsorption in porous MnCe nanowire aerogel catalysts for low-temperature NH3-SCR.Chem. Eng. J.202243413472910.1016/j.cej.2022.134729
    [Google Scholar]
  89. ZhiM. TangH. WuM. OuyangC. HongZ. WuN. Synthesis and photocatalysis of metal oxide aerogels: A review.Energy Fuels20223619113591137910.1021/acs.energyfuels.2c01049
    [Google Scholar]
  90. WuY. WangX. ShenJ. Metal oxide aerogels for high-temperature applications.J. Sol-Gel Sci. Technol.2023106236080
    [Google Scholar]
  91. El-NaggarM.E. OthmanS.I. AllamA.A. MorsyO.M. Synthesis, drying process and medical application of polysaccharide-based aerogels.Int. J. Biol. Macromol.20201451115112810.1016/j.ijbiomac.2019.10.03731678101
    [Google Scholar]
  92. WilliamsJ.C. MeadorM.A.B. McCorkleL. MuellerC. WilmothN. Synthesis and properties of step-growth polyamide aerogels cross-linked with triacid chlorides.Chem. Mater.201426144163417110.1021/cm5012313
    [Google Scholar]
  93. GuZ.Y. GaoX.D. LiX.M. JiangZ.W. HuangY.D. Nanoporous TiO2 aerogel blocking layer with enhanced efficiency for dyesensitized solar cells.J. Alloys Compd.2014590334010.1016/j.jallcom.2013.12.097
    [Google Scholar]
  94. ZhuL. ZongL. WuX. LiM. WangH. YouJ. LiC. Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption.ACS Nano20181254462446810.1021/acsnano.8b0056629741869
    [Google Scholar]
  95. ZhaoY. ZhongK. LiuW. CuiS. ZhongY. JiangS. Preparation and oil adsorption properties of hydrophobic microcrystalline cellulose aerogel.Cellulose202027137663767510.1007/s10570‑020‑03309‑0
    [Google Scholar]
  96. ZubizarretaL. ArenillasA. MenéndezJ.A. PisJ.J. PirardJ.P. JobN. Microwave drying as an effective method to obtain porous carbon xerogels.J. Non-Cryst. Solids2008354334024402610.1016/j.jnoncrysol.2008.06.003
    [Google Scholar]
  97. YangJ. LiS. YanL. LiuJ. WangF. Compressive behaviors and morphological changes of resorcinol-formaldehyde aerogel at high strain rates.Microporous Mesoporous Mater.20101331-313414010.1016/j.micromeso.2010.04.025
    [Google Scholar]
  98. ChenD. DongK. GaoH. ZhuangT. HuangX. WangG. Vacuum-dried flexible hydrophobic aerogels using bridged methylsiloxane as reinforcement: Performance regulation with alkylorthosilicate or alkyltrimethoxysilane co-precursors.New J. Chem.20194352204221210.1039/C8NJ04038A
    [Google Scholar]
  99. BheekhunN. TalibA. RahimA. HassanM.R. Aerogels in aerospace: An overview.Adv. Mater. Sci. Eng.20132013
    [Google Scholar]
  100. García-GonzálezC.A. SosnikA. KalmárJ. De MarcoI. ErkeyC. ConcheiroA. Alvarez-LorenzoC. Aerogels in drug delivery: From design to application.J. Control. Release2021332406310.1016/j.jconrel.2021.02.01233600880
    [Google Scholar]
  101. DuR. ZhengZ. MaoN. ZhangN. HuW. ZhangJ. Fluorosurfactants-directed preparation of homogeneous and hierarchical-porosity CMP aerogels for gas sorption and oil cleanup.Adv. Sci. (Weinh.)201521-2140000610.1002/advs.20140000627980898
    [Google Scholar]
  102. YuH. OhS. HanY. LeeS. JeongH.S. HongH.J. Modified cellulose nanofibril aerogel: Tunable catalyst support for treatment of 4-Nitrophenol from wastewater.Chemosphere202128513144810.1016/j.chemosphere.2021.13144834329132
    [Google Scholar]
  103. AdetunjiL.R. AdekunleA. OrsatV. RaghavanV. Advances in the pectin production process using novel extraction techniques: A review.Food Hydrocoll.20176223925010.1016/j.foodhyd.2016.08.015
    [Google Scholar]
  104. HeZ. LiangX. XiangW. High-efficiency Ca2+ doping all-inorganic nanocrystals (CsPbBr3 and CsPbBr1I2) encapsulated in a superhydrophobic aerogel inorganic matrix for white light-emitting diodes.Chem. Eng. J.202242713096410.1016/j.cej.2021.130964
    [Google Scholar]
  105. ChengY. LiL. LiuZ. YanS. ChengF. YueY. JiaS. WangJ. GaoY LiL. 3D porous MXene aerogel through gas foaming for multifunctional pressure sensor.Research.20222022984326810.34133/2022/9843268
    [Google Scholar]
  106. ZhangX. ChengX. SiY. YuJ. DingB. Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation.Chem. Eng. J.202243313362810.1016/j.cej.2021.133628
    [Google Scholar]
  107. NieZ.J. WangJ.X. HuangC.Y. FengJ.F. FanS.T. TanM. YangC. LiB.J. ZhangS. Hierarchically and wood-like cyclodextrin aerogels with enhanced thermal insulation and wide spectrum acoustic absorption.Chem. Eng. J.202244613728010.1016/j.cej.2022.137280
    [Google Scholar]
  108. SunJ. ZhangJ. ShangM. ZhangM. ZhaoX. LiuS. LiuX. LiuS. YiX. N, O co-doped carbon aerogel derived from sodium alginate/melamine composite for all-solid-state supercapacitor.Appl. Surf. Sci.202360815510910.1016/j.apsusc.2022.155109
    [Google Scholar]
  109. XiaoP. CaoL. WangH. YanG. ChenQ. Rational design of three-dimensional metal-organic framework-derived active material/graphene aerogel composite electrodes for alkaline battery-supercapacitor hybrid device.Surf. Interfaces20223310226610.1016/j.surfin.2022.102266
    [Google Scholar]
  110. LeeJ.H. ParkS.J. Recent advances in preparations and applications of carbon aerogels: A review.Carbon202016311810.1016/j.carbon.2020.02.073
    [Google Scholar]
  111. HuL. HeR. LeiH. FangD. Carbon aerogel for insulation applications: A review.Int. J. Thermophys.20194043910.1007/s10765‑019‑2505‑5
    [Google Scholar]
  112. MengY. LiuT. YuS. ChengY. LuJ. WangH. A lignin-based carbon aerogel enhanced by graphene oxide and application in oil/water separation.Fuel202027811837610.1016/j.fuel.2020.118376
    [Google Scholar]
  113. GanG. LiX. FanS. WangL. QinM. YinZ. ChenG. Carbon aerogels for environmental clean‐up.Eur. J. Inorg. Chem.20192019273126314110.1002/ejic.201801512
    [Google Scholar]
  114. GengS. MaennleinA. YuL. HedlundJ. OksmanK. Monolithic carbon aerogels from bioresources and their application for CO2 adsorption.Microporous Mesoporous Mater.202132311123610.1016/j.micromeso.2021.111236
    [Google Scholar]
  115. GuravJ.L. JungI-K. ParkH-H. KangE.S. NadargiD.Y. Silica aerogel: Synthesis and applications.J. Nanomater.20101
    [Google Scholar]
  116. LinharesT. Pessoa de AmorimM.T. DurãesL. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications.J. Mater. Chem. A Mater. Energy Sustain.2019740227682280210.1039/C9TA04811A
    [Google Scholar]
  117. GibiatV. LefeuvreO. WoignierT. PelousJ. PhalippouJ. Acoustic properties and potential applications of silica aerogels.J. Non-Cryst. Solids199518624425510.1016/0022‑3093(95)00049‑6
    [Google Scholar]
  118. Venkateswara RaoA. BhagatS.D. HirashimaH. PajonkG.M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor.J. Colloid Interface Sci.2006300127928510.1016/j.jcis.2006.03.04416707131
    [Google Scholar]
  119. TangR. HongW. SrinivasakannanC. LiuX. WangX. DuanX. A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green.Separ. Purif. Tech.202228111995010.1016/j.seppur.2021.119950
    [Google Scholar]
  120. Mazrouei-SebdaniZ. SalimianS. KhoddamiA. Shams-GhahfarokhiF. Sodium silicate based aerogel for absorbing oil from water: The impact of surface energy on the oil/water separation.Mater. Res. Express20196808505910.1088/2053‑1591/ab1eed
    [Google Scholar]
  121. SaadN. ChaabanM. PatraD. GhanemA. El-RassyH. Molecularly imprinted phenyl-functionalized silica aerogels: Selective adsorbents for methylxanthines and PAHs.Microporous Mesoporous Mater.202029210975910.1016/j.micromeso.2019.109759
    [Google Scholar]
  122. ArdaniM. ImaniM. TadjarodiA. Core shell Fe3O4@TiO2/silica aerogel nanocomposite; synthesis and study of structural, magnetic and photocatalytic properties.Microporous Mesoporous Mater.202233811175710.1016/j.micromeso.2022.111757
    [Google Scholar]
  123. Lamy-MendesA. MalfaitW.J. SadeghpourA. GirãoA.V. SilvaR.F. DurãesL. Influence of 1D and 2D carbon nanostructures in silica-based aerogels.Carbon202118014616210.1016/j.carbon.2021.05.004
    [Google Scholar]
  124. YaoY. ZhangX. GuoZ. LiuW. HuC. RuY. ZhangL. JiangC. QiaoJ. Preparation and application of recyclable polymer aerogels from styrene-maleic anhydride alternating copolymers.Chem. Eng. J.202345514036310.1016/j.cej.2022.140363
    [Google Scholar]
  125. WangT. LongM.C. ZhaoH.B. LiuB.W. ShiH.G. AnW.L. LiS.L. XuS.M. WangY.Z. An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions.J. Mater. Chem. A Mater. Energy Sustain.2020836186981870610.1039/D0TA05542E
    [Google Scholar]
  126. LuJ. LiY. SongW. LosegoM.D. MonikandanR. JacobK.I. XiaoR. Atomic layer deposition onto thermoplastic polymeric nanofibrous aerogel templates for tailored surface properties.ACS Nano20201477999801110.1021/acsnano.9b0949732644796
    [Google Scholar]
  127. LangX.H. ZhuT.Y. ZouL. PrakashanK. ZhangZ.X. Fabrication and characterization of polypropylene aerogel material and aerogel coated hybrid materials for oil-water separation applications.Prog. Org. Coat.201913710537010.1016/j.porgcoat.2019.105370
    [Google Scholar]
  128. ZhangX. LiW. SongP. YouB. SunG. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel.Chem. Eng. J.202038112278410.1016/j.cej.2019.122784
    [Google Scholar]
  129. MerillasB. VillafañeF. Rodríguez-PérezM.Á. Super-insulating transparent polyisocyanurate-polyurethane aerogels: Analysis of thermal conductivity and mechanical properties.Nanomaterials (Basel)20221214240910.3390/nano1214240935889633
    [Google Scholar]
  130. PierreA.C. Introduction to sol-gel processing.LondonSpringer Nature202010.1007/978‑3‑030‑38144‑8
    [Google Scholar]
  131. LinC. RitterJ.A. Effect of synthesis pH on the structure of carbon xerogels.Carbon19973591271127810.1016/S0008‑6223(97)00069‑9
    [Google Scholar]
  132. ZubizarretaL. ArenillasA. PirardJ.P. PisJ.J. JobN. Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH.Microporous Mesoporous Mater.2008115348049010.1016/j.micromeso.2008.02.023
    [Google Scholar]
  133. FidalgoA. RosaM.E. IlharcoL.M. Chemical control of highly porous silica xerogels: Physical properties and morphology.Chem. Mater.200315112186219210.1021/cm031013p
    [Google Scholar]
  134. SakumaW. YamasakiS. FujisawaS. KodamaT. ShiomiJ. KanamoriK. SaitoT. Mechanically strong, scalable, mesoporous xerogels of nanocellulose featuring light permeability, Thermal insulation, and flame self-extinction.ACS Nano20211511436144410.1021/acsnano.0c0876933405895
    [Google Scholar]
  135. KalapathyU. ProctorA. ShultzJ. Silica xerogels from rice hull ash: Structure, density and mechanical strength as affected by gelation pH and silica concentration.J. Chem. Technol. Biotechnol.200075646446810.1002/1097‑4660(200006)75:6<464::AID‑JCTB235>3.0.CO;2‑C
    [Google Scholar]
  136. LashkovskayaE.I. GaponenkoN.V. StepikhovaM.V. YablonskiyA.N. AndreevB.A. ZhivulkoV.D. MudryiA.V. MartynovI.L. ChistyakovA.A. KarginN.I. LabunovV.A. RaichenokT.F. TikhomirovS.A. TimoshenkoV.Y. Optical properties and upconversion luminescence of BaTiO3 xerogel structures doped with erbium and ytterbium.Gels20228634710.3390/gels806034735735691
    [Google Scholar]
  137. YamasakiS. SakumaW. YasuiH. DaichoK. SaitoT. FujisawaS. IsogaiA. KanamoriK. Nanocellulose xerogels with high porosities and large specific surface areas.Front Chem.2019731610.3389/fchem.2019.0031631134187
    [Google Scholar]
  138. HuT.T. LiuF. DouS. ZhongL.B. ChengX. ShaoZ.D. ZhengY.M. Selective adsorption of trace gaseous ammonia from air by a sulfonic acid-modified silica xerogel: Preparation, characterization and performance.Chem. Eng. J.202244313635710.1016/j.cej.2022.136357
    [Google Scholar]
  139. ChenL. DengJ. YuanY. HongS. YanB. HeS. LianH. Hierarchical porous graphitized carbon xerogel for high performance supercapacitor.Diamond Related Materials202212110878110.1016/j.diamond.2021.108781
    [Google Scholar]
  140. AbelK.L. BegerT. PoppitzD. ZimmermannR.T. KuschelO. SundmacherK. GläserR. Monolithic Al2O3 Xerogels with Hierarchical Meso‐/Macropore System as Catalyst Supports for Methanation of CO2.ChemCatChem20221415e20220028810.1002/cctc.202200288
    [Google Scholar]
  141. Álvarez ManuelL. Alegre GresaC. NapalP. Sebastián del RíoD. Lázaro ElorriM.J. Effect of nitrogen doping method on the activity of Fe-NC catalysts based on carbon xerogels for fuel cells.2022Available From: https://digital.csic.es/handle/10261/275652
  142. DahliyantiA. YunitamaD.A. RofiqohI.M. MustaphaM. Synthesis and characterization of silica xerogel from corn husk waste as cationic dyes adsorbent.F1000 Res.20221130510.12688/f1000research.75979.136016989
    [Google Scholar]
  143. WidiyandariH. PardoyoP. SartikaJ. PutraO. PurwantoA. ErnawatiL. Synthesis of mesoporous silica xerogel from geothermal sludge using sulfuric acid as gelation agent.Int. J. Eng.20213415691575
    [Google Scholar]
  144. VolfkovichY.M. RychagovA.Y. SosenkinV.E. Effect of the porous structure on the electrochemical characteristics of supercapacitor with nanocomposite electrodes based on carbon nanotubes and resorcinol-formaldehyde xerogel.Russ. J. Electrochem.202258973074010.1134/S1023193522090142
    [Google Scholar]
  145. IvanovP. BogdanovB. HristovY. Synthesis of hydrophilic and hydrophobic xerogel.J. of Chem. Tech. and Metalurgy201752457462
    [Google Scholar]
  146. RajalekshmyG.P. RekhaM.R. Wound healing effects of glucose oxidase - peroxidase incorporated alginate diamine PEG-g-poly (PEGMA) xerogels under high glucose conditions: An in vitro evaluation.Materialia (Oxf.)20222310146410.1016/j.mtla.2022.101464
    [Google Scholar]
  147. RbihiS. LaallamL. SajieddineM. JouaitiA. Characterization and thermal conductivity of cellulose based composite xerogels.Heliyon201955e0170410.1016/j.heliyon.2019.e0170431193198
    [Google Scholar]
  148. Medellin-CastilloN.A. Isaacs-PáezE.D. Giraldo-GutierrezL. Moreno-PirajánJ.C. Rodríguez-MéndezI. Reyes-LópezS.Y. Reyes-HernándezJ. Segovia-SandovalS.J. Data for the synthesis, characterization, and use of xerogels as adsorbents for the removal of fluoride and bromide in aqueous phase.Data Brief20224210813810.1016/j.dib.2022.10813835496485
    [Google Scholar]
  149. BerestokT. GuardiaP. EstradéS. LlorcaJ. PeiróF. CabotA. BrockS. CuGaS2 and CuGaS2-ZnS porous layers from solution-processed nanocrystals.Nanomaterials (Basel)20188422010.3390/nano804022029621198
    [Google Scholar]
  150. LiuH. ShaW. CooperA.T. FanM. Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds.Colloids Surf. A Physicochem. Eng. Asp.20093471-3384410.1016/j.colsurfa.2008.11.033
    [Google Scholar]
  151. Pietras-OżgaD. Piątkowska-SawczukK. DuroG. PawlakB. StolyarchukN. TominaV. MelnykI. GiannakoudakisD.A. BarczakM. Sol-gel-derived silica xerogels: Synthesis, properties, and their applicability for removal of hazardous pollutants. Advanced Materials for Sustainable Environmental Remediation.AmsterdamElsevier2022261277
    [Google Scholar]
  152. DabrowskiA. BarczakM. Bridged polysilsesquioxanes as a promising class of adsorbents. A concise review.Croat. Chem. Acta200780367380
    [Google Scholar]
  153. CongH.P. RenX.C. WangP. YuS.H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process.ACS Nano2012632693270310.1021/nn300082k22303866
    [Google Scholar]
  154. WeiT.Y. ChenC.H. ChangK.H. LuS.Y. HuC.C. Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route.Chem. Mater.200921143228323310.1021/cm9007365
    [Google Scholar]
  155. CasulaM.F. CorriasA. PaschinaG. Preparation of Aerogel and Xerogel Nanocomposite Materials.1999Available From: https://www.cambridge.org/core/journals/mrs-online-proceedings-library-archive/article/abs/preparation-of-aerogel-and-xerogel-nanocomposite-materials/1E894376DF57F2E9128FCBC1487BB7D9
  156. BakierskaM. ChojnackaA. ŚwiętosławskiM. NatkańskiP. GajewskaM. RutkowskaM. MolendaM. Multifunctional carbon aerogels derived by sol-gel process of natural polysaccharides of different botanical origin.Materials (Basel)20171011133610.3390/ma1011133629160847
    [Google Scholar]
  157. PekalaR.W. AlvisoC.T. Carbon aerogels and xerogels.Proc. MRS199227031410.1557/PROC‑270‑3
    [Google Scholar]
  158. AlwinS. SahayaS.X. Aerogels: Promising nanostructured materials for energy conversion and storage applications.Mater. Renew. Sustain. Energy202092710.1007/s40243‑020‑00168‑4
    [Google Scholar]
  159. BhagatS.D. RaoA.V. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process.Appl. Surf. Sci.2006252124289429710.1016/j.apsusc.2005.07.006
    [Google Scholar]
  160. LiZ. ChengX. HeS. ShiX. YangH. ZhangH. Tailoring thermal properties of ambient pressure dried MTMS/TEOS co-precursor aerogels.Mater. Lett.2016171919410.1016/j.matlet.2016.02.025
    [Google Scholar]
  161. PanY. HeS. GongL. ChengX. LiC. LiZ. LiuZ. ZhangH. Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying.Mater. Des.201711324625310.1016/j.matdes.2016.09.083
    [Google Scholar]
  162. Segovia-SandovalS.J. Pastrana-MartínezL.M. Ocampo-PérezR. Morales-TorresS. Berber-MendozaM.S. Carrasco-MarínF. Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal: Effect of operating parameters.Separ. Purif. Tech.202023711634110.1016/j.seppur.2019.116341
    [Google Scholar]
  163. do Carmo BatistaW.V.F. da CunhaR. dos SantosA.C. dos ReisP.M. FurtadoC.A. SilvaM.C. de Fátima GorgulhoH. Synthesis of a reusable magnetic photocatalyst based on carbon xerogel/TiO2 composites and its application on acetaminophen degradation.Ceram. Int.20224823343953440410.1016/j.ceramint.2022.08.018
    [Google Scholar]
  164. PierreA.C. PajonkG.M. Chemistry of aerogels and their applications.Chem. Rev.2002102114243426610.1021/cr010130612428989
    [Google Scholar]
  165. MalekiH. DurãesL. PortugalA. An overview on silica aerogels synthesis and different mechanical reinforcing strategies.J. Non-Cryst. Solids2014385557410.1016/j.jnoncrysol.2013.10.017
    [Google Scholar]
  166. MalekiH. HüsingN. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects.Appl. Catal. B201822153055510.1016/j.apcatb.2017.08.012
    [Google Scholar]
  167. AegerterM.A. LeventisN. KoebelM. Advances in sol-gel derived materials and technologies.Aerogels Handbook.New York, NY, USASpringer2011
    [Google Scholar]
  168. Lamy-MendesA. SilvaR.F. DurãesL. Advances in carbon nanostructure-silica aerogel composites: A review.J. Mater. Chem. A Mater. Energy Sustain.2018641340136910.1039/C7TA08959G
    [Google Scholar]
  169. EstellaJ. EcheverríaJ.C. LagunaM. GarridoJ.J. Effects of aging and drying conditions on the structural and textural properties of silica gels.Microporous Mesoporous Mater.20071021-327428210.1016/j.micromeso.2007.01.007
    [Google Scholar]
  170. BarımŞ.B. BayrakçekenA. BozbağS.E. ZhangL. KızılelR. AindowM. ErkeyC. Control of average particle size of carbon aerogel supported platinum nanoparticles by supercritical deposition.Microporous Mesoporous Mater.20172459410310.1016/j.micromeso.2017.01.037
    [Google Scholar]
  171. GirgisB.S. AttiaA.A. FathyN.A. Potential of nano-carbon xerogels in the remediation of dye-contaminated water discharges.Desalination20112651-316917610.1016/j.desal.2010.07.048
    [Google Scholar]
  172. ManzoccoL. PlazzottaS. PowellJ. de VriesA. RousseauD. CalligarisS. Structural characterisation and sorption capability of whey protein aerogels obtained by freeze-drying or supercritical drying.Food Hydrocoll.202212210711710.1016/j.foodhyd.2021.107117
    [Google Scholar]
  173. WangZ. LiuF. WeiW. DongC. LiZ. LiuZ. Influence of supercritical fluid parameters on the polyimide aerogels in a high-efficiency supercritical drying process.Polymer (Guildf.)202326812571310.1016/j.polymer.2023.125713
    [Google Scholar]
  174. PlacinF. DesvergneJ.P. CansellF. Organic low molecular weight aerogel formed in supercritical fluids.J. Mater. Chem.20001092147214910.1039/b001714k
    [Google Scholar]
  175. AbdullahY. Recent advances in self-assembly behaviors of prolamins and their applications as functional delivery vehicles.Crit. Rev. Food Sci. Nutr.2022202212310.1080/10408398.2022.211303136004584
    [Google Scholar]
  176. MahinpeyN. KaramiD. The preparation of zirconia-stabilized calcium oxide nanoparticles using supercritical drying technique for calcium looping process.Catal. Today202240423724310.1016/j.cattod.2022.03.020
    [Google Scholar]
  177. StraumalE.A. GozhikovaI.O. KottsovS.Y. LermontovS.A. Effect of sol concentration on properties of alumina aerogels.Russ. J. Inorg. Chem.202267101646165110.1134/S003602362260071X
    [Google Scholar]
  178. Ul HaqE. ZaidiS.F.A. ZubairM. Abdul KarimM.R. PadmanabhanS.K. LicciulliA. Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor.Energy Build.201715149450010.1016/j.enbuild.2017.07.003
    [Google Scholar]
  179. TamonH. IshizakaH. YamamotoT. SuzukiT. Freeze drying for preparation of aerogel-like carbon.Dry. Technol.200119231332410.1081/DRT‑100102906
    [Google Scholar]
  180. MiH.Y. JingX. PolitowiczA.L. ChenE. HuangH.X. TurngL.S. Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption.Carbon201813219920910.1016/j.carbon.2018.02.033
    [Google Scholar]
  181. BrinkerC.J. SchererG.W. Sol-gel science: The physics and chemistry of sol-gel processing.Cambridge, MassachusettsAcademic press2013
    [Google Scholar]
  182. MalekiH. HüsingN. Aerogels as promising materials for environmental remediation—A broad insight into the environmental pollutants removal through adsorption and (photo)catalytic processes. New polymer nanocomposites for environmental remediation.AmsterdamElsevier2018389436
    [Google Scholar]
  183. GuoX. ShanJ. LeiW. DingR. ZhangY. YangH. Facile synthesis of methylsilsesquioxane aerogels with uniform mesopores by microwave drying.Polymers (Basel)201911237510.3390/polym1102037530960359
    [Google Scholar]
  184. ZhangX. ChenZ. ZhangJ. YeX. CuiS. Hydrophobic silica aerogels prepared by microwave irradiation.Chem. Phys. Lett.202176213812710.1016/j.cplett.2020.138127
    [Google Scholar]
  185. VartanyanM. VoytovichI. GorbunovaI. MakarovN. Preparation and structural characterization of complex oxide eutectic precursors from polymer-salt xerogels Obtained by microwave-assisted drying.Materials (Basel)2020138180810.3390/ma1308180832290452
    [Google Scholar]
  186. ChenD. GaoH. JinZ. WangJ. DongW. HuangX. WangG. Vacuum-dried synthesis of low-density hydrophobic monolithic bridged silsesquioxane aerogels for oil/water separation: Effects of acid catalyst and its excellent flexibility.ACS Appl. Nano Mater.20181293393910.1021/acsanm.7b00328
    [Google Scholar]
  187. FanJ. LiH. TangS. LiB. XinY. HsiehY.L. ZhouJ. Compensation strategy for constructing high-performance aerogels using acrylamide-assisted vacuum drying and their use as water-induced electrical generators.Chem. Eng. J.202345213968510.1016/j.cej.2022.139685
    [Google Scholar]
  188. SmirnovaI. GurikovP. Aerogels in chemical engineering: Strategies toward tailor-made aerogels.Annu. Rev. Chem. Biomol. Eng.20178130733410.1146/annurev‑chembioeng‑060816‑10145828375771
    [Google Scholar]
  189. CiftciD. UbeyitogullariA. HuertaR.R. CiftciO.N. FloresR.A. SaldañaM.D.A. Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying.J. Supercrit. Fluids201712713714510.1016/j.supflu.2017.04.002
    [Google Scholar]
  190. Şahinİ. ÖzbakırY. İnönüZ. UlkerZ. ErkeyC. Kinetics of supercritical drying of gels.Gels201741310.3390/gels401000330674780
    [Google Scholar]
  191. MalekiH. Recent advances in aerogels for environmental remediation applications: A review.Chem. Eng. J.20163009811810.1016/j.cej.2016.04.098
    [Google Scholar]
  192. SaravananK. TyagiB. BajajH.C. Nano-crystalline, mesoporous aerogel sulfated zirconia as an efficient catalyst for esterification of stearic acid with methanol.Appl. Catal. B201619216117010.1016/j.apcatb.2016.03.037
    [Google Scholar]
  193. NamvarM. MahinroostaM. AllahverdiA. MohammadzadehK. Preparation of monolithic amorphous silica aerogel through promising valorization of silicomanganese slag.J. Non-Cryst. Solids202258612156110.1016/j.jnoncrysol.2022.121561
    [Google Scholar]
  194. García-GonzálezC.A. Camino-ReyM.C. AlnaiefM. ZetzlC. SmirnovaI. Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties.J. Supercrit. Fluids20126629730610.1016/j.supflu.2012.02.026
    [Google Scholar]
  195. GanesanK. BudtovaT. RatkeL. GurikovP. BaudronV. PreibischI. NiemeyerP. SmirnovaI. MilowB. Review on the production of polysaccharide aerogel particles.Materials (Basel)20181111214410.3390/ma1111214430384442
    [Google Scholar]
  196. ThomasS. PothanL.A. Mavelil-SamR. Biobased aerogels: Polysaccharide and protein-based materials.Biobased AerogelsRoyal Society of ChemistryPiccadilly, London201810.1039/9781782629979
    [Google Scholar]
  197. Rey-RaapN. ArenillasA. MenéndezJ. Carbon gels and their applications: A review of patents. Submicron Porous Materials.ChamSpringer2017
    [Google Scholar]
  198. JiangH. ZhangM. MujumdarA.S. LimR.X. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.J. Sci. Food Agric.20149491827183410.1002/jsfa.650124526431
    [Google Scholar]
  199. ChengX. ZhangY. Preparation of silica aerogels via ambient pressure drying.Huaxue Jinzhan2010221892
    [Google Scholar]
  200. ZuoL. ZhangY. ZhangL. MiaoY.E. FanW. LiuT. Polymer/carbon-based hybrid aerogels: Preparation, properties and applications.Materials (Basel)20158106806684810.3390/ma810534328793602
    [Google Scholar]
  201. SchwanM. RatkeL. Flexibilisation of resorcinol-formaldehyde aerogels.J. Mater. Chem. A Mater. Energy Sustain.2013143134621346810.1039/c3ta13172f
    [Google Scholar]
  202. WuD. FuR. ZhangS. DresselhausM.S. DresselhausG. Preparation of low-density carbon aerogels by ambient pressure drying.Carbon200442102033203910.1016/j.carbon.2004.04.003
    [Google Scholar]
  203. NorooziM. Panahi-SarmadM. AbrishamM. AmirkiaiA. AsghariN. Golbaten-MofradH. Karimpour-MotlaghN. GoodarziV. BahramianA.R. ZahiriB. Nanostructure of aerogels and their applications in thermal energy insulation.ACS Appl. Energy Mater.2019285319534910.1021/acsaem.9b01157
    [Google Scholar]
  204. KimH.W. KohY.H. LiL.H. LeeS. KimH.E. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method.Biomaterials200425132533253810.1016/j.biomaterials.2003.09.04114751738
    [Google Scholar]
  205. KoçF. ÇokS.S. GizliN. KocF. Sert CokS. GizliN. Tuning the properties of silica aerogels through pH controlled sol-gel processes.Res. Eng. Struc. Mater.20206257269
    [Google Scholar]
  206. Soleimani DorchehA. AbbasiM.H. Silica aerogel; synthesis, properties and characterization.J. Mater. Process. Technol.20081991-3102610.1016/j.jmatprotec.2007.10.060
    [Google Scholar]
  207. ÖgmundarsonÓ. HerrgårdM.J. ForsterJ. HauschildM.Z. FantkeP. Addressing environmental sustainability of biochemicals.Nat. Sustain.20203316717410.1038/s41893‑019‑0442‑8
    [Google Scholar]
  208. AnastasP. EghbaliN. Green chemistry: Principles and practice.Chem. Soc. Rev.201039130131210.1039/B918763B20023854
    [Google Scholar]
  209. RahardjaM.R. KurniawanD. ChiangW.H. Microplasma-enabled sustainable synthesis of nitrogen-doped graphene quantum dots for sensitive detection of 4-nitrophenol.Chemosensors (Basel)202311739010.3390/chemosensors11070390
    [Google Scholar]
  210. UbeyitogullariA. CiftciO.N. Formation of nanoporous aerogels from wheat starch.Carbohydr. Polym.201614712513210.1016/j.carbpol.2016.03.08627178916
    [Google Scholar]
  211. GaoG.M. LiuD.R. ZouH.F. ZouL.C. GanS.C. Preparation of silica aerogel from oil shale ash by fluidized bed drying.Powder Technol.2010197328328710.1016/j.powtec.2009.10.005
    [Google Scholar]
  212. HuW. LiM. ChenW. ZhangN. LiB. WangM. ZhaoZ. Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure.Colloids Surf. A Physicochem. Eng. Asp.2016501839110.1016/j.colsurfa.2016.04.059
    [Google Scholar]
  213. ShiF. LiuJ.X. SongK. WangZ.Y. Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying.J. Non-Cryst. Solids2010356432241224610.1016/j.jnoncrysol.2010.08.005
    [Google Scholar]
  214. Karamahmut MermerN. Sari YilmazM. Dere OzdemirO. PiskinM.B. The synthesis of silica-based aerogel from gold mine waste for thermal insulation.J. Therm. Anal. Calorim.201712931807181210.1007/s10973‑017‑6371‑8
    [Google Scholar]
  215. SudianaI. MitsudoS. NishiwakiT. SusilowatiP. LestariL. FirihuM. AripinH. Synthesis and characterization of microwave sintered silica xerogel produced from rice husk ash.J. Phys.: Conf. Ser.20167391012059
    [Google Scholar]
  216. El HamzaouiH. CourthéouxL. NguyenV.N. BerrierE. FavreA. BigotL. BouazaouiM. CapoenB. From porous silica xerogels to bulk optical glasses: The control of densification.Mater. Chem. Phys.20101211-2838810.1016/j.matchemphys.2009.12.043
    [Google Scholar]
  217. AripinH. MitsudoS. SudianaI.N. TaniS. SakoK. FujiiY. SaitoT. IdeharaT. SabchevskiS. Rapid sintering of silica xerogel ceramic derived from sago waste ash using sub-millimeter wave heating with a 300 GHz CW gyrotron.J. Infrared Millim. Terahertz Waves201132686787610.1007/s10762‑011‑9797‑2
    [Google Scholar]
  218. Guzel KG. YilmazE. DeveciH. Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: Enhanced thermal and acoustic insulation performance.Compos., Part B Eng.20181501610.1016/j.compositesb.2018.05.039
    [Google Scholar]
  219. Guzel KayaG. YilmazE. DeveciH. A novel silica xerogel synthesized from volcanic tuff as an adsorbent for high‐efficient removal of methylene blue: Parameter optimization using Taguchi experimental design.J. Chem. Technol. Biotechnol.20199482729273710.1002/jctb.6089
    [Google Scholar]
  220. ZanottiK. IgalK. Colombo MiglioreroM.B. Gomes ZuinV. VázquezP.G. Synthesis of silica-based materials using bioresidues through the sol-gel technique.Sustainable Chemistry20212467068510.3390/suschem2040037
    [Google Scholar]
  221. ArabkhaniP. AsfaramA. The potential application of bio-based ceramic/organic xerogel derived from the plant sources: A new green adsorbent for removal of antibiotics from pharmaceutical wastewater.J. Hazard. Mater.202242912828910.1016/j.jhazmat.2022.12828935121292
    [Google Scholar]
  222. SanchezC. JuliánB. BellevilleP. PopallM. Applications of hybrid organic-inorganic nanocomposites.J. Mater. Chem.20051535-363559359210.1039/b509097k
    [Google Scholar]
  223. ShchipunovY.A. BurtsevaY.V. KarpenkoT.Y. ShevchenkoN.M. ZvyagintsevaT.N. Highly efficient immobilization of endo-1,3-β-d-glucanases (laminarinases) from marine mollusks in novel hybrid polysaccharide-silica nanocomposites with regulated composition.J. Mol. Catal., B Enzym.2006401-2162310.1016/j.molcatb.2006.02.002
    [Google Scholar]
  224. SequeiraS. EvtuguinD.V. PortugalI. EsculcasA.P. Synthesis and characterisation of cellulose/silica hybrids obtained by heteropoly acid catalysed sol-gel process.Mater. Sci. Eng. C200727117217910.1016/j.msec.2006.04.007
    [Google Scholar]
  225. CoradinT. LivageJ. Synthesis and characterization of alginate/silica biocomposites.J. Sol-Gel Sci. Technol.2003261/31165116810.1023/A:1020787514512
    [Google Scholar]
  226. YehJ.T. ChenC.L. HuangK.S. Synthesis and properties of chitosan/SiO2 hybrid materials.Mater. Lett.20076161292129510.1016/j.matlet.2006.07.016
    [Google Scholar]
  227. SinghV. SinghS.K. Synthesis and characterization of gum acacia inspired silica hybrid xerogels for mercury(II) adsorption.Int. J. Biol. Macromol.201148344545110.1016/j.ijbiomac.2011.01.00121238481
    [Google Scholar]
  228. FengZ. ShaoZ. YaoJ. HuangY. ChenX. Protein adsorption and separation with chitosan-based amphoteric membranes.Polymer (Guildf.)20095051257126310.1016/j.polymer.2008.12.046
    [Google Scholar]
  229. ZengB. WangX. ByrneN. Development of cellulose based aerogel utilizing waste denim—A Morphology study.Carbohydr. Polym.20192051710.1016/j.carbpol.2018.09.07030446084
    [Google Scholar]
  230. HorvatG. FajfarT. Perva UzunalićA. KnezŽ. NovakZ. Thermal properties of polysaccharide aerogels.J. Therm. Anal. Calorim.2017127136337010.1007/s10973‑016‑5814‑y
    [Google Scholar]
  231. LiX.L. ChenM.J. ChenH.B. Facile fabrication of mechanically-strong and flame retardant alginate/clay aerogels.Compos., Part B Eng.2019164182510.1016/j.compositesb.2018.11.055
    [Google Scholar]
  232. El-NaggarM.E. AbdelgawadA.M. SalasC. RojasO.J. Curdlan in fibers as carriers of tetracycline hydrochloride: Controlled release and antibacterial activity.Carbohydr. Polym.201615419420310.1016/j.carbpol.2016.08.04227577910
    [Google Scholar]
  233. AlnaiefM. ObaidatR. MashaqbehH. Effect of processing parameters on preparation of carrageenan aerogel microparticles.Carbohydr. Polym.201818026427510.1016/j.carbpol.2017.10.03829103505
    [Google Scholar]
  234. ChangX. ChenD. JiaoX. Starch-derived carbon aerogels with high-performance for sorption of cationic dyes.Polymer (Guildf.)201051163801380710.1016/j.polymer.2010.06.018
    [Google Scholar]
  235. BakierskaM. MolendaM. MajdaD. DziembajR. Functional starch based carbon aerogels for energy applications.Procedia Eng.201498141910.1016/j.proeng.2014.12.481
    [Google Scholar]
  236. BilanovicD. StarosvetskyJ. ArmonR.H. Preparation of biodegradable xanthan-glycerol hydrogel, foam, film, aerogel and xerogel at room temperature.Carbohydr. Polym.201614824325010.1016/j.carbpol.2016.04.05827185137
    [Google Scholar]
  237. Amaral-LabatG. GrishechkoL.I. FierroV. KuznetsovB.N. PizziA. CelzardA. Tannin-based xerogels with distinctive porous structures.Biomass Bioenergy20135643744510.1016/j.biombioe.2013.06.001
    [Google Scholar]
  238. Amaral-LabatG. MunhozM.G.C. FonsecaB.C.S. BossA.F.N. de Almeida-MattosP. BraghiroliF.L. BouafifH. KoubaaA. Lenz e SilvaG.F.B. BaldanM.R. Xerogel-like materials from sustainable sources: Properties and electrochemical performances.Energies20211423797710.3390/en14237977
    [Google Scholar]
  239. YucelT. LovettM.L. KaplanD.L. Silk-based biomaterials for sustained drug delivery.J. Control. Release201419038139710.1016/j.jconrel.2014.05.05924910193
    [Google Scholar]
  240. KrižmanK. NovakS. KristlJ. MajdičG. DrnovšekN. Long-acting silk fibroin xerogel delivery systems for controlled release of estradiol.J. Drug Deliv. Sci. Technol.20216510270110.1016/j.jddst.2021.102701
    [Google Scholar]
  241. El-NaggarM.E. RadwanE.K. El-WakeelS.T. KafafyH. Gad-AllahT.A. El-KallinyA.S. ShaheenT.I. Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal.Int. J. Biol. Macromol.201811324825810.1016/j.ijbiomac.2018.02.12629476854
    [Google Scholar]
  242. WangY. SuY. WangW. FangY. RiffatS.B. JiangF. The advances of polysaccharide-based aerogels: Preparation and potential application.Carbohydr. Polym.201922611524210.1016/j.carbpol.2019.11524231582065
    [Google Scholar]
  243. MikkonenK.S. ParikkaK. GhafarA. TenkanenM. Prospects of polysaccharide aerogels as modern advanced food materials.Trends Food Sci. Technol.201334212413610.1016/j.tifs.2013.10.003
    [Google Scholar]
  244. VaredaJ.P. García-GonzálezC.A. ValenteA.J. Simón-VázquezR. StipeticM. DurãesL. Insights on toxicity, safe handling and disposal of silica aerogels and amorphous nanoparticles,Environmental Science. Nano2021811771195
    [Google Scholar]
  245. FuY. GuoZ. Natural polysaccharide-based aerogels and their applications in oil-water separations: A review.J. Mater. Chem. A Mater. Energy Sustain.202210158129815810.1039/D2TA00708H
    [Google Scholar]
  246. LiuY. LiuJ. SongP. Recent advances in polysaccharide-based carbon aerogels for environmental remediation and sustainable energy.Sustain. Mater. Technol.202127e0024010.1016/j.susmat.2020.e00240
    [Google Scholar]
  247. SayaL. GautamD. MalikV. SinghW.R. HoodaS. Natural polysaccharide based graphene oxide nanocomposites for removal of dyes from wastewater: A review.J. Chem. Eng. Data2021661113710.1021/acs.jced.0c00743
    [Google Scholar]
  248. JamesA. YadavD. Bioaerogels, the emerging technology for wastewater treatment: A comprehensive review on synthesis, properties and applications.Environ. Res.2022212Pt A11322210.1016/j.envres.2022.11322235398081
    [Google Scholar]
  249. NguyenH.S.H. HuynhH.K.P. NguyenS.T. NguyenV.T.T. NguyenT.A. PhanA.N. Insights into sustainable aerogels from lignocellulosic materials.J. Mater. Chem. A Mater. Energy Sustain.20221044234672348210.1039/D2TA04994E
    [Google Scholar]
  250. RaseeA.I. AwualE. RehanA.I. HossainM.S. WaliullahR.M. KubraK.T. SheikhM.C. SalmanM.S. HasanM.N. HasanM.M. MarwaniH.M. IslamA. KhalequeM.A. AwualM.R. Efficient separation, adsorption, and recovery of Samarium(III) ions using novel ligand-based composite adsorbent.Surf. Interfaces20234110327610.1016/j.surfin.2023.103276
    [Google Scholar]
  251. HasanpourM. HatamiM. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study.Adv. Colloid Interface Sci.202028410224710.1016/j.cis.2020.10224732916456
    [Google Scholar]
  252. RajasulochanaP. PreethyV. Comparison on efficiency of various techniques in treatment of waste and sewage water - A comprehensive review.Resource-Efficient Technologies20162417518410.1016/j.reffit.2016.09.004
    [Google Scholar]
  253. LakherwalD. Adsorption of heavy metals: A review.Int. J. Environ. Res. Dev.201444148
    [Google Scholar]
  254. AyaweiN. EbelegiA.N. WankasiD. Modelling and interpretation of adsorption isotherms.J. Chem.20172017
    [Google Scholar]
  255. FooK.Y. HameedB.H. Insights into the modeling of adsorption isotherm systems.Chem. Eng. J.2010156121010.1016/j.cej.2009.09.013
    [Google Scholar]
  256. LiJ. WangQ. ZhengL. LiuH. A novel graphene aerogel synthesized from cellulose with high performance for removing MB in water.J. Mater. Sci. Technol.202041687510.1016/j.jmst.2019.09.019
    [Google Scholar]
  257. LiZ. JiaZ. NiT. LiS. Adsorption of methylene blue on natural cotton based flexible carbon fiber aerogels activated by novel air-limited carbonization method.J. Mol. Liq.201724274775610.1016/j.molliq.2017.07.062
    [Google Scholar]
  258. Sánchez-PoloM. Rivera-UtrillaJ. SalhiE. von GuntenU. Ag-doped carbon aerogels for removing halide ions in water treatment.Water Res.20074151031103710.1016/j.watres.2006.07.00916970974
    [Google Scholar]
  259. WangL. ChengJ. KangQ. WangR. RuanJ. LiL. WuL. LiZ. AiN. Cobalt-containing nanoparticles embedded in flexible carbon aerogel for spilled oil cleanup and oxygen reduction reaction.Compos., Part B Eng.201917410703910.1016/j.compositesb.2019.107039
    [Google Scholar]
  260. XiaoJ. LvW. SongY. ZhengQ. Graphene/nanofiber aerogels: Performance regulation towards multiple applications in dye adsorption and oil/water separation.Chem. Eng. J.201833820221010.1016/j.cej.2017.12.156
    [Google Scholar]
  261. SongY. LiH. GaoY. YueQ. GaoB. KongW. ZangY. JiangW. Grass-modified graphene aerogel for effective oil-water separation.Process Saf. Environ. Prot.201912911912910.1016/j.psep.2019.06.018
    [Google Scholar]
  262. WeiX. HuangT. YangJ. ZhangN. WangY. ZhouZ. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents.J. Hazard. Mater.2017335283810.1016/j.jhazmat.2017.04.03028414946
    [Google Scholar]
  263. DaiJ. HuangT. TianS. XiaoY. YangJ. ZhangN. WangY. ZhouZ. High structure stability and outstanding adsorption performance of graphene oxide aerogel supported by polyvinyl alcohol for waste water treatment.Mater. Des.201610718719710.1016/j.matdes.2016.06.039
    [Google Scholar]
  264. RenH. ShiX. ZhuJ. ZhangY. BiY. ZhangL. Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption.J. Mater. Sci.201651136419642710.1007/s10853‑016‑9939‑y
    [Google Scholar]
  265. XiaoJ. ZhangJ. LvW. SongY. ZhengQ. Multifunctional graphene/poly(vinyl alcohol) aerogels: In situ hydrothermal preparation and applications in broad-spectrum adsorption for dyes and oils.Carbon201712335436310.1016/j.carbon.2017.07.049
    [Google Scholar]
  266. ZhangY. LiK. LiaoJ. Facile synthesis of reduced-grapheneoxide/rare-earth-metal-oxide aerogels as a highly efficient adsorbent for Rhodamine-B.Appl. Surf. Sci.202050414437710.1016/j.apsusc.2019.144377
    [Google Scholar]
  267. LiK. ZhouM. LiangL. JiangL. WangW. Ultrahigh-surface-area activated carbon aerogels derived from glucose for high-performance organic pollutants adsorption.J. Colloid Interface Sci.201954633334310.1016/j.jcis.2019.03.07630927597
    [Google Scholar]
  268. SunX. JiS. WangM. DouJ. YangZ. QiuH. KouS. JiY. WangH. Fabrication of porous TiO2-RGO hybrid aerogel for high-efficiency, visible-light photodegradation of dyes.J. Alloys Compd.202081915303310.1016/j.jallcom.2019.153033
    [Google Scholar]
  269. HuangJ. LiuH. ChenS. DingC. Hierarchical porous MWCNTs-silica aerogel synthesis for high-efficiency oily water treatment.J. Environ. Chem. Eng.2016433274328210.1016/j.jece.2016.06.039
    [Google Scholar]
  270. ThakkarS.V. PinnaA. CarbonaroC.M. MalfattiL. GuardiaP. CabotA. CasulaM.F. Performance of oil sorbents based on reduced graphene oxide-silica composite aerogels.J. Environ. Chem. Eng.20208110363210.1016/j.jece.2019.103632
    [Google Scholar]
  271. LiuQ. LiS. YuH. ZengF. LiX. SuZ. Covalently crosslinked zirconium-based metal-organic framework aerogel monolith with ultralow-density and highly efficient Pb(II) removal.J. Colloid Interface Sci.202056121121910.1016/j.jcis.2019.11.07431816466
    [Google Scholar]
  272. LiD. TianX. WangZ. GuanZ. LiX. QiaoH. KeH. LuoL. WeiQ. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant.Chem. Eng. J.202038312312710.1016/j.cej.2019.123127
    [Google Scholar]
  273. LiuH. LiP. ZhangT. ZhuY. QiuF. Fabrication of recyclable magnetic double-base aerogel with waste bioresource bagasse as the source of fiber for the enhanced removal of chromium ions from aqueous solution.Food Bioprod. Process.202011925726710.1016/j.fbp.2019.11.010
    [Google Scholar]
  274. DaiJ. TianQ. SunQ. WeiW. ZhuangJ. LiuM. CaoZ. XieW. FanM. TiO2-alginate composite aerogels as novel oil/water separation and wastewater remediation filters.Compos., Part B Eng.201916048048710.1016/j.compositesb.2018.12.097
    [Google Scholar]
  275. WangZ. WuS. ZhangY. MiaoL. ZhangY. WuA. Preparation of modified sodium alginate aerogel and its application in removing lead and cadmium ions in wastewater.Int. J. Biol. Macromol.202015768769410.1016/j.ijbiomac.2019.11.22831790735
    [Google Scholar]
  276. ChengH. GuB. PennefatherM.P. NguyenT.X. Phan-ThienN. DuongH.M. Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup.Mater. Des.201713045245810.1016/j.matdes.2017.05.082
    [Google Scholar]
  277. WangS. MaX. ZhengP. Sulfo-functional 3D porous cellulose/graphene oxide composites for highly efficient removal of methylene blue and tetracycline from water.Int. J. Biol. Macromol.201914011912810.1016/j.ijbiomac.2019.08.11131419562
    [Google Scholar]
  278. JiangJ. ZhuJ. ZhangQ. ZhanX. ChenF. A shape recovery zwitterionic bacterial cellulose aerogel with superior performances for water remediation.Langmuir20193537119591196710.1021/acs.langmuir.8b0418030912432
    [Google Scholar]
  279. GuH. ZhouX. LyuS. PanD. DongM. WuS. DingT. WeiX. SeokI. WeiS. GuoZ. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption.J. Colloid Interface Sci.202056084985610.1016/j.jcis.2019.10.08431708258
    [Google Scholar]
  280. ChhajedM. YadavC. AgrawalA.K. MajiP.K. Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment.Carbohydr. Polym.201922611528610.1016/j.carbpol.2019.11528631582050
    [Google Scholar]
  281. JiangF. HsiehY.L. Amphiphilic superabsorbent cellulose nanofibril aerogels.J. Mater. Chem. A Mater. Energy Sustain.20142186337634210.1039/C4TA00743C
    [Google Scholar]
  282. LiuH. WeiY. LuoJ. LiT. WangD. LuoS. CrittendenJ.C. 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water.Chem. Eng. J.201936863964810.1016/j.cej.2019.03.007
    [Google Scholar]
  283. LiY. GuoC. ShiR. ZhangH. GongL. DaiL. Chitosan/nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb (II) ions from aqueous solution.Carbohydr. Polym.201922311504810.1016/j.carbpol.2019.11504831426974
    [Google Scholar]
  284. YiL. YangJ. FangX. XiaY. ZhaoL. WuH. GuoS. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from Water.J. Hazard. Mater.202038512150710.1016/j.jhazmat.2019.12150731690505
    [Google Scholar]
  285. WangX.L. GuoD.M. AnQ.D. XiaoZ.Y. ZhaiS.R. High-efficacy adsorption of Cr(VI) and anionic dyes onto β-cyclodextrin/chitosan/hexamethylenetetramine aerogel beads with task-specific, integrated components.Int. J. Biol. Macromol.201912826827810.1016/j.ijbiomac.2019.01.13930695726
    [Google Scholar]
  286. LaiK.C. HiewB.Y.Z. LeeL.Y. GanS. Thangalazhy-GopakumarS. ChiuW.S. KhiewP.S. Ice-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye.Bioresour. Technol.201927413414410.1016/j.biortech.2018.11.04830502604
    [Google Scholar]
  287. JiangJ. ZhangQ. ZhanX. ChenF. A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties.Chem. Eng. J.20193581539155110.1016/j.cej.2018.10.144
    [Google Scholar]
  288. TianX. LiuJ. WangY. ShiF. ShanZ. ZhouJ. LiuJ. Adsorption of antibiotics from aqueous solution by different aerogels.J. Non-Cryst. Solids2019505727810.1016/j.jnoncrysol.2018.10.033
    [Google Scholar]
  289. PrasannaV.L. MamaneH. VadivelV.K. AvisarD. Ethanol-activated granular aerogel as efficient adsorbent for persistent organic pollutants from real leachate and hospital wastewater.J. Hazard. Mater.202038412139610.1016/j.jhazmat.2019.12139631610343
    [Google Scholar]
  290. KaratumO. SteinerS.A.III GriffinJ.S. ShiW. PlataD.L. Flexible, mechanically durable aerogel composites for oil capture and recovery.ACS Appl. Mater. Interfaces20168121522410.1021/acsami.5b0843926701744
    [Google Scholar]
  291. WangJ. WangH. Ultra-hydrophobic and mesoporous silica aerogel membranes for efficient separation of surfactant-stabilized water-in-oil emulsion separation.Separ. Purif. Tech.201921259760410.1016/j.seppur.2018.11.078
    [Google Scholar]
  292. ParaleV.G. KimT. LeeK.Y. PhadtareV.D. DhavaleR.P. JungH-N-R. ParkH-H. Hydrophobic TiO2-SiO2 composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity.Ceram. Int.20204644939494610.1016/j.ceramint.2019.10.231
    [Google Scholar]
  293. WangK. LiuX. TanY. ZhangW. ZhangS. LiJ. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation.Chem. Eng. J.201937176978010.1016/j.cej.2019.04.108
    [Google Scholar]
  294. ZhangS. LiuG. GaoY. YueQ. GaoB. XuX. KongW. LiN. JiangW. A facile approach to ultralight and recyclable 3D self-assembled copolymer/graphene aerogels for efficient oil/water separation.Sci. Total Environ.201969413367110.1016/j.scitotenv.2019.13367131401508
    [Google Scholar]
  295. ZhangR. WanW. QiuL. WangY. ZhouY. Preparation of hydrophobic polyvinyl alcohol aerogel via the surface modification of boron nitride for environmental remediation.Appl. Surf. Sci.201741934234710.1016/j.apsusc.2017.05.044
    [Google Scholar]
  296. CaoN. LyuQ. LiJ. WangY. YangB. SzuneritsS. BoukherroubR. Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation.Chem. Eng. J.2017326172810.1016/j.cej.2017.05.117
    [Google Scholar]
  297. WangX. WangL. MaS. TongS. Ultrathin WS2 nanobowls-based hybrid aerogels for selective trapping of precious metals from electronic wastes and elimination of organic dyes.Chem. Eng. J.202345113853910.1016/j.cej.2022.138539
    [Google Scholar]
  298. Guzel KayaG. AznarE. DeveciH. Martínez-MáñezR. Low-cost silica xerogels as potential adsorbents for ciprofloxacin removal.Sustain. Chem. Pharm.20212210048310.1016/j.scp.2021.100483
    [Google Scholar]
  299. SriramG. UthappaU.T. KiggaM. JungH.Y. AltalhiT. BrahmkhatriV. KurkuriM.D. Xerogel activated diatoms as an effective hybrid adsorbent for the efficient removal of malachite green.New J. Chem.20194393810382010.1039/C9NJ00015A
    [Google Scholar]
  300. TascaA.L. FletcherA.J. GhajeriF. AlejandroF.M. PalominoG.T. Organics adsorption on novel amorphous silica and silica xerogels: Microcolumn rapid breakthrough test coupled with sequential injection analysis.J. Porous Media20192281001101410.1615/JPorMedia.2019024612
    [Google Scholar]
  301. YuJ. ZhangX. JinB. ChenJ. HuangY. WangZ. Silica aluminum xerogel-based sorbent for removal of volatilized PbCl2 during the incineration: Improvement on mass-transfer limitations via high porosity.Sci. Total Environ.202178214692510.1016/j.scitotenv.2021.146925
    [Google Scholar]
  302. Lamy-MendesA. TorresR.B. VaredaJ.P. LopesD. FerreiraM. ValenteV. GiraoA.V. ValenteA.J.M. DuraesL. Amine modification of silica aerogels/xerogels for removal of relevant environmental pollutants.Molecules201924203701
    [Google Scholar]
  303. KundariN. PermadiM. MegasariK. NurliatiG. Adsorption of Cobalt-60 (II) on silica xerogel from rice huskJ. Phys.: Conf. Ser.20191295012038
    [Google Scholar]
  304. LiuY. YangJ. Hydrophobic modification of ZrO2-SiO2 xerogel and its adsorption properties to rhodamine B.Gels202281067510.3390/gels810067536286176
    [Google Scholar]
  305. ErdooK.R. TyokerK.D. DavidO.A. ThaddeusL.T. IshwahB. AjegiO.J. Adsorption studies of silica adsorbent using rice husk as a base material for metal ions removal from aqueous solution.American J. Chem. Eng.202082485310.11648/j.ajche.20200802.12
    [Google Scholar]
  306. RibeiroR.S. FathyN.A. AttiaA.A. SilvaA.M.T. FariaJ.L. GomesH.T. Activated carbon xerogels for the removal of the anionic azo dyes Orange II and Chromotrope 2R by adsorption and catalytic wet peroxide oxidation.Chem. Eng. J.2012195-19611212110.1016/j.cej.2012.04.065
    [Google Scholar]
  307. Moral-RodriguezA.I. Leyva-RamosR. Carrasco-MarínF. Bautista-ToledoM.I. Pérez-CadenasA.F. Adsorption of diclofenac from aqueous solution onto carbon xerogels: Effect of synthesis conditions and presence of bacteria.Water Air Soil Pollut.202023111710.1007/s11270‑019‑4385‑5
    [Google Scholar]
  308. ShoumanM.A. FathyN.A. Microporous nanohybrids of carbon xerogels and multi-walled carbon nanotubes for removal of rhodamine B dye.J. Water Process Eng.20182316517310.1016/j.jwpe.2018.03.014
    [Google Scholar]
  309. El-ShafeyO. El-ShafeyS. FathyN. Mesoporous carbon xerogels adsorbents for adsorption of cadmium and p-nitrophenol pollutants: Kinetic and equilibrium studies.Egypt. J. Chem.202265487497
    [Google Scholar]
  310. SriramG. BhatM.P. KiggaM. UthappaU.T. JungH.Y. KumeriaT. KurkuriM.D. Amine activated diatom xerogel hybrid material for efficient removal of hazardous dye.Mater. Chem. Phys.201923512173810.1016/j.matchemphys.2019.121738
    [Google Scholar]
  311. Hernández-CamposM. PoloA.M.S. Sánchez-PoloM. Rivera-UtrillaJ. Berber-MendozaM.S. Andrade-EspinosaG. López-RamónM.V. Lanthanum-doped silica xerogels for the removal of fluorides from waters.J. Environ. Manage.201821354955410.1016/j.jenvman.2018.02.01629472036
    [Google Scholar]
  312. BenallyC. MesseleS.A. Gamal El-DinM. Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel.Water Res.201915440241110.1016/j.watres.2019.01.05330822600
    [Google Scholar]
  313. VeseláP. SlovákV. ZelenkaT. KoštejnM. MuchaM. The influence of pyrolytic temperature on sorption ability of carbon xerogel based on 3-aminophenol-formaldehyde polymer for Cu(II) ions and phenol.J. Anal. Appl. Pyrolysis2016121294010.1016/j.jaap.2016.06.016
    [Google Scholar]
  314. FawzyM.A. GomaaM. Use of algal biorefinery waste and waste office paper in the development of xerogels: A low cost and eco-friendly biosorbent for the effective removal of congo red and Fe (II) from aqueous solutions.J. Environ. Manage.202026211038010.1016/j.jenvman.2020.11038032250831
    [Google Scholar]
  315. de MoraesN.P. BoldrinF.H.C. CamposT.M.B. ThimG.P. LianqingY. de Vasconcelos LanzaM.R. RodriguesL.A. Black-wattle tannin/kraft lignin H3PO4-activated carbon xerogels as excellent and sustainable adsorbents.Int. J. Biol. Macromol.2023227587010.1016/j.ijbiomac.2022.12.12536529224
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461273226231208060050
Loading
/content/journals/cgc/10.2174/0122133461273226231208060050
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Aerogels; eco-friendly synthesis; pollutants; polymers; waste water treatment; xerogels
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test