Skip to content
2000
image of A  Methodical  Review  of  Intranasal  Delivery  of Nanocarriers for the Treatment of Glioblastoma: An Emerging Therapeutic Option

Abstract

Glioblastoma multiforme (GBM) is responsible for about half of all primary malignant tumors in the central nervous system (CNS). Nanotechnology and nanocarrier-based drug delivery may prove to be an asset in the ongoing fight against the difficulties associated with treating GBM. Obstacles to effective drug delivery in GBM treatment include prolonged blood circulation, sufficient BBB transit, effective internalization, and controlled drug release within GBM cells. By virtue of the non-specific and non-targeted character of anti-tumor medicines, the efficiency of medication delivery to gliomas is still impoverished. Glioma diagnosis and therapy have undergone a paradigm change solely because of nanotechnology. The highly invasive nature of this malignant glioma makes surgical resection a challenging procedure, and the current approved standard of care—follow-up radiation therapy with concurrent temozolomide (TMZ)—will only prolong the lifespan of patients by a few months. Drug delivery nanosystems (DDNSs) have garnered attention in the treatment of cancer, particularly gastrointestinal cancer, according to recent studies. This is because DDNPs have proven to be effective substitutes for conventional formulations currently on the market, in addition to optimizing the delivery of drugs to neoplastic cells, ameliorating the profile of toxicity and unfavorable effects, and reducing the overall harmful effects of formulations that include antineoplastic agents. Specifically, nanocarriers have proven to have an exceptional ability to get over the difficulties to achieve drug accumulation in the brain without going through the system delivering by IN route. Pre-clinical research on polymeric nanocarriers for treating GBM is ongoing, with few drug delivery systems entering clinical trials. This study examines nanoparticle forms, and brain tumor statistics, and summaries the diagnosis and treatment of GBM utilizing nanotechnology.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855323933241031181603
2024-11-15
2024-12-27
Loading full text...

Full text loading...

References

  1. Carbone M. Arron S.T. Beutler B. Bononi A. Cavenee W. Cleaver J.E. Croce C.M. D’Andrea A. Foulkes W.D. Gaudino G. Groden J.L. Henske E.P. Hickson I.D. Hwang P.M. Kolodner R.D. Mak T.W. Malkin D. Monnat R.J. Novelli F. Pass H.I. Petrini J.H. Schmidt L.S. Yang H. Tumour predisposition and cancer syndromes as models to study gene-environment interactions. Nat. Rev. Cancer 2020 20 9 533 549 10.1038/s41568‑020‑0265‑y 32472073
    [Google Scholar]
  2. Mendelsohn J. Howley P.M. Israel M.A. Gray J.W. Thompson C.B. The Molecular Basis of Cancer 2014 4th ed Elsevier
    [Google Scholar]
  3. Kaur N. Popli P. Tiwary N. Swami R. Small molecules as cancer targeting ligands: Shifting the paradigm. J. Control. Release 2023 355 417 433 10.1016/j.jconrel.2023.01.032 36754149
    [Google Scholar]
  4. Torre L.A. Bray F. Siegel R.L. Ferlay J. Lortet-Tieulent J. Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015 65 2 87 108 10.3322/caac.21262 25651787
    [Google Scholar]
  5. Dai J. Ashrafizadeh M. Aref A.R. Sethi G. Ertas Y.N. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov. Today 2024 29 7 103981 10.1016/j.drudis.2024.103981 38614161
    [Google Scholar]
  6. Ashrafizadeh M. Dai J. Torabian P. Nabavi N. Aref A.R. Aljabali A.A.A. Tambuwala M. Zhu M. Circular RNAs in EMT-driven metastasis regulation: Modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell. Mol. Life Sci. 2024 81 1 214 10.1007/s00018‑024‑05236‑w 38733529
    [Google Scholar]
  7. Zhu M. Wang X. Zhou Y. Li M. Wang Y. Wang Y. Li T. Song S.Y. Zhang B. Hezam K. Zhang J. Breast tumor‐targeted drug delivery via polymer nanocarriers: Endogenous and exogenous strategies. J. Appl. Polym. Sci. 2023 140 31 e54227 10.1002/app.54227
    [Google Scholar]
  8. Sánchez-Dengra B. González-Álvarez I. Bermejo M. González-Álvarez M. Access to the CNS: Strategies to overcome the BBB. Int. J. Pharm. 2023 636 122759 10.1016/j.ijpharm.2023.122759 36801479
    [Google Scholar]
  9. Upadhyay R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int. 2014 2014 1 1 37 10.1155/2014/869269 25136634
    [Google Scholar]
  10. Kumar H. Mishra G. Sharma A.K. Gothwal A. Kesharwani P. Gupta U. Intranasal drug delivery: A non-invasive approach for the better delivery of neurotherapeutics. Pharm. Nanotechnol. 2017 5 3 203 214 28521670
    [Google Scholar]
  11. Miyake M.M. Bleier B.S. The blood-brain barrier and nasal drug delivery to the central nervous system. Am. J. Rhinol. Allergy 2015 29 2 124 127 10.2500/ajra.2015.29.4149 25785753
    [Google Scholar]
  12. Kumar R. Thakur A. Singh P.K. Biswal S.S. Kumar N. Jha C.B. Singh G. Kaur C. Wadhwa S. Drug delivery through nose: A noninvasive technique for brain targeting. J. Rep. Pharma. Sci. 2020 9 1 168 175 10.4103/jrptps.JRPTPS_59_19
    [Google Scholar]
  13. Formica M.L. Real D.A. Picchio M.L. Catlin E. Donnelly R.F. Paredes A.J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Appl. Mater. Today 2022 29 101631 10.1016/j.apmt.2022.101631
    [Google Scholar]
  14. Akel H. Development of lipid-and polymer-based nanocarriers for intranasal application Thesis, Szegedi Tudomanyegyetem (Hungary) 2022
    [Google Scholar]
  15. Badwar M.R. Bendale A.R. Pathan V. Naphade V.D. Borse S.L. Chikhale H. Borse L.B. Nanoencapsulation an approach for targeting nasal drug delivery. J. Pharm. Negat. Results 2022 13 5 2169 2178 10.47750/pnr.2022.13.S05.341
    [Google Scholar]
  16. Nehra G. Andrews S. Rettig J. Gould M.N. Haag J.D. Howard S.P. Thorne R.G. Intranasal administration of the chemotherapeutic perillyl alcohol results in selective delivery to the cerebrospinal fluid in rats. Sci. Rep. 2021 11 1 6351 10.1038/s41598‑021‑85293‑4 33737566
    [Google Scholar]
  17. Fortuna A. Alves G. Serralheiro A. Sousa J. Falcão A. Intranasal delivery of systemic-acting drugs: Small-molecules and biomacromolecules. Eur. J. Pharm. Biopharm. 2014 88 1 8 27 10.1016/j.ejpb.2014.03.004 24681294
    [Google Scholar]
  18. Crowe T.P. Hsu W.H. Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics 2022 14 3 629 10.3390/pharmaceutics14030629 35336004
    [Google Scholar]
  19. Otto-Meyer S. Lumibao J. Kim E. Ladomersky E. Zhai L. Lauing K.L. Scholtens D.M. Penedo F. Amidei C. Lukas R.V. Wainwright D.A. The interplay among psychological distress, the immune system, and brain tumor patient outcomes. Curr. Opin. Behav. Sci. 2019 28 44 50 10.1016/j.cobeha.2019.01.009 31049368
    [Google Scholar]
  20. Hecker M. Bühring J. Fitzner B. Rommer P.S. Zettl U.K. Genetic, environmental and lifestyle determinants of accelerated telomere attrition as contributors to risk and severity of multiple sclerosis. Biomolecules 2021 11 10 1510 10.3390/biom11101510 34680143
    [Google Scholar]
  21. Ostrom Q.T. Francis S.S. Barnholtz-Sloan J.S. Epidemiology of brain and other CNS tumors. Curr. Neurol. Neurosci. Rep. 2021 21 12 68 10.1007/s11910‑021‑01152‑9 34817716
    [Google Scholar]
  22. Kim H.D. Ansehl A. Lee Y.J. Murthy P. Warner S. Qiyam L. Carpenter M.L. Heck D.E. Improvement prediction process prevent chronic diseases from environmental threat: Integration omics to decision process in quality of health. Health Educ. Public Health 1 2 2018 10.31488/heph.109
    [Google Scholar]
  23. Sanai N. Berger M.S. Surgical oncology for gliomas: The state of the art. Nat. Rev. Clin. Oncol. 2018 15 2 112 125 10.1038/nrclinonc.2017.171 29158591
    [Google Scholar]
  24. Eriksson M. Kahari J. Vestman A. Hallmans M. Johansson M. Bergenheim A.T. Sandström M. Improved treatment of glioblastoma – Changes in survival over two decades at a single regional Centre. Acta Oncol. 2019 58 3 334 341 10.1080/0284186X.2019.1571278 30732527
    [Google Scholar]
  25. Morales D.E. Mousa S. Intranasal delivery in glioblastoma treatment: Prospective molecular treatment modalities. Heliyon 2022 8 5 e09517 10.1016/j.heliyon.2022.e09517 35647354
    [Google Scholar]
  26. Raghav M. Gupta V. Awasthi R. Singh A. Kulkarni G.T. Nose-to-brain drug delivery: Challenges and progress towards brain targeting in the treatment of neurological disorders. J. Drug Deliv. Sci. Technol. 2023 86 104756 10.1016/j.jddst.2023.104756
    [Google Scholar]
  27. Andersson G. Titov N. Dear B.F. Rozental A. Carlbring P. Internet‐delivered psychological treatments: From innovation to implementation. World Psychiatry 2019 18 1 20 28 10.1002/wps.20610 30600624
    [Google Scholar]
  28. Grewal S. Sharma T. Swami R. New era of nanoparticles facilitated co-delivery in cancer therapy: Two heads are better than one. J. Nanopart. Res. 2023 25 9 190 10.1007/s11051‑023‑05837‑9
    [Google Scholar]
  29. de Araújo J.T.C. Duarte J.L. Di Filippo L.D. Araújo V.H.S. Carvalho G.C. Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: A review. J. Drug Target. 2021 29 8 808 821 10.1080/1061186X.2021.1892121 33645369
    [Google Scholar]
  30. Tafreshi N.K. Doligalski M.L. Tichacek C.J. Pandya D.N. Budzevich M.M. El-Haddad G. Khushalani N.I. Moros E.G. McLaughlin M.L. Wadas T.J. Morse D.L. Development of targeted alpha particle therapy for solid tumors. Molecules 2019 24 23 4314 10.3390/molecules24234314 31779154
    [Google Scholar]
  31. Cano A. Espina M. García M.L. Recent advances on antitumor agents-loaded polymeric and lipid-based nanocarriers for the treatment of brain cancer. Curr. Pharm. Des. 2020 26 12 1316 1330 10.2174/1381612826666200116142922 31951159
    [Google Scholar]
  32. Hsu J.F. Chu S.M. Liao C.C. Wang C.J. Wang Y.S. Lai M.Y. Wang H.C. Huang H.R. Tsai M.H. Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update. Cancers (Basel) 2021 13 2 195 10.3390/cancers13020195 33430494
    [Google Scholar]
  33. Thwala L.N. Préat V. Csaba N.S. Emerging delivery platforms for mucosal administration of biopharmaceuticals: A critical update on nasal, pulmonary and oral routes. Expert Opin. Drug Deliv. 2017 14 1 23 36 10.1080/17425247.2016.1206074 27351299
    [Google Scholar]
  34. Dhuria S.V. Hanson L.R. Frey W.H. Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci. 2010 99 4 1654 1673 10.1002/jps.21924 19877171
    [Google Scholar]
  35. Lochhead J.J. Thorne R.G. Intranasal drug delivery to the brain. Drug Delivery to the Brain Springer New York Hammarlund-Udenaes M. de Lange E. Thorne R. 2013 401 431 10.1007/978‑1‑4614‑9105‑7_14
    [Google Scholar]
  36. Lane G. Zhou G. Noto T. Zelano C. Assessment of direct knowledge of the human olfactory system. Exp. Neurol. 2020 329 113304 10.1016/j.expneurol.2020.113304 32278646
    [Google Scholar]
  37. Sobiesk J.L. Munakomi S. Anatomy, Head and Neck, Nasal Cavity StatPearls Publishing Treasure Island (FL) 2019 31334952
    [Google Scholar]
  38. Van Essen D.C. Glasser M.F. Dierker D.L. Harwell J. Coalson T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 2012 22 10 2241 2262 10.1093/cercor/bhr291 22047963
    [Google Scholar]
  39. Shipley M.T. Ennis M. Puche A.C. The olfactory system. The Rat Nervous System Elsevier 2008 611 622 10.1007/978‑1‑60327‑455‑5_38
    [Google Scholar]
  40. Crowe T.P. Greenlee M.H.W. Kanthasamy A.G. Hsu W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018 195 44 52 10.1016/j.lfs.2017.12.025 29277310
    [Google Scholar]
  41. Erdő F. Bors L.A. Farkas D. Bajza Á. Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018 143 155 170 10.1016/j.brainresbull.2018.10.009 30449731
    [Google Scholar]
  42. Pardeshi C.V. Belgamwar V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert Opin. Drug Deliv. 2013 10 7 957 972 10.1517/17425247.2013.790887 23586809
    [Google Scholar]
  43. Pardridge W.M. CSF, blood-brain barrier, and brain drug delivery. Expert Opin. Drug Deliv. 2016 13 7 963 975 10.1517/17425247.2016.1171315 27020469
    [Google Scholar]
  44. Wu H. Hu K. Jiang X. From nose to brain: Understanding transport capacity and transport rate of drugs. Expert Opin. Drug Deliv. 2008 5 10 1159 1168 10.1517/17425247.5.10.1159 18817519
    [Google Scholar]
  45. Akel H. Ismail R. Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur. J. Pharm. Biopharm. 2020 148 38 53 10.1016/j.ejpb.2019.12.014 31926222
    [Google Scholar]
  46. Selvaraj K. Gowthamarajan K. Karri V.V.S.R. Nose to brain transport pathways an overview: Potential of nanostructured lipid carriers in nose to brain targeting. Artif. Cells Nanomed. Biotechnol. 2018 46 8 2088 2095 29282995
    [Google Scholar]
  47. Vani M. Ezhilarasi A. Saju S. Nose to brain targeted drug therapy: A Review. Saudi J. Med. Pharm. Sci. 2020 6 11 673 685 10.36348/sjmps.2020.v06i11.002
    [Google Scholar]
  48. Kashyap K. Shukla R. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges. Curr. Drug Deliv. 2019 16 10 887 901 10.2174/1567201816666191029122740 31660815
    [Google Scholar]
  49. Suer M. Anatomy of the trigeminal nerve. Trigeminal Nerve Pain Springer Cham Abd-Elsayed A. 5 16 2021 10.1007/978‑3‑030‑60687‑9_2
    [Google Scholar]
  50. Helwany M. Bordoni B. Neuroanatomy, Cranial Nerve 1 (Olfactory) StatPearls Publishing Treasure Island (FL) 2020 32310511
    [Google Scholar]
  51. McNeill K.A. Epidemiology of brain tumors. Neurol. Clin. 2016 34 4 981 998 10.1016/j.ncl.2016.06.014 27720005
    [Google Scholar]
  52. Ohgaki H. Epidemiology of brain tumors. Cancer Epidemiology Humana Press Verma M. 2009 323 342 10.1007/978‑1‑60327‑492‑0_14
    [Google Scholar]
  53. Paul D. The systemic hallmarks of cancer. J. Cancer Metastasis Treat. 2020 6 29 10.20517/2394‑4722.2020.63
    [Google Scholar]
  54. Bondy M.L. Scheurer M.E. Malmer B. Barnholtz-Sloan J.S. Davis F.G. Il’yasova D. Kruchko C. McCarthy B.J. Rajaraman P. Schwartzbaum J.A. Sadetzki S. Schlehofer B. Tihan T. Wiemels J.L. Wrensch M. Buffler P.A. Brain tumor epidemiology: Consensus from the brain tumor epidemiology consortium. Cancer 2008 113 Suppl 7 1953 1968 10.1002/cncr.23741 18798534
    [Google Scholar]
  55. Little M.P. Rajaraman P. Curtis R.E. Devesa S.S. Inskip P.D. Check D.P. Linet M.S. Mobile phone use and glioma risk: Comparison of epidemiological study results with incidence trends in the United States. BMJ 2012 344 mar08 1 e1147 10.1136/bmj.e1147 22403263
    [Google Scholar]
  56. Pojo M. Costa B.M. Molecular hallmarks of gliomas. Molecular Targets of CNS Tumors Croatia, Rijeka IntechOpen Garami M. 2011 177 200 10.5772/21352
    [Google Scholar]
  57. Perry A. Wesseling P. Histologic classification of gliomas. Handb. Clin. Neurol. 2016 134 71 95 10.1016/B978‑0‑12‑802997‑8.00005‑0 26948349
    [Google Scholar]
  58. Lukas R.V. Nicholas M.K. Update in the treatment of high-grade Gliomas. Neurol. Clin. 2013 31 3 847 867 10.1016/j.ncl.2013.03.005 23896509
    [Google Scholar]
  59. Bernstock J.D. Gary S.E. Klinger N. Valdes P.A. Ibn Essayed W. Olsen H.E. Chagoya G. Elsayed G. Yamashita D. Schuss P. Gessler F.A. Paolo Peruzzi P. Bag A.K. Friedman G.K. Standard clinical approaches and emerging modalities for glioblastoma imaging. Neurooncol. Adv. 2022 4 1 vdac080 10.1093/noajnl/vdac080 35821676
    [Google Scholar]
  60. Ellor S.V. Pagano-Young T.A. Avgeropoulos N.G. Glioblastoma: Background, standard treatment paradigms, and supportive care considerations. J. Law Med. Ethics 2014 42 2 171 182 10.1111/jlme.12133 25040381
    [Google Scholar]
  61. Lu V.M. Goyal A. Graffeo C.S. Perry A. Burns T.C. Parney I.F. Quinones-Hinojosa A. Chaichana K.L. Survival benefit of maximal resection for glioblastoma reoperation in the temozolomide era: A meta-analysis. World Neurosurg. 2019 127 31 37 10.1016/j.wneu.2019.03.250 30947000
    [Google Scholar]
  62. Brodbelt A. Greenberg D. Winters T. Williams M. Vernon S. Collins V.P. Glioblastoma in England: 2007–2011. Eur. J. Cancer 2015 51 4 533 542 10.1016/j.ejca.2014.12.014 25661102
    [Google Scholar]
  63. Fernandes C. Costa A. Osório L. Lago R.C. Linhares P. Carvalho B. Caeiro C. Current standards of care in glioblastoma therapy. Glioblastoma Exon Publications De Vleeschouwer S. 2017 10.15586/codon.glioblastoma.2017.ch11
    [Google Scholar]
  64. Everett E. Mathioudakis N. Update on management of diabetic foot ulcers. Ann. N. Y. Acad. Sci. 2018 1411 1 153 165 10.1111/nyas.13569 29377202
    [Google Scholar]
  65. Allen B.D. Limoli C.L. Breaking barriers: Neurodegenerative repercussions of radiotherapy induced damage on the blood-brain and blood-tumor barrier. Free Radic. Biol. Med. 2022 178 189 201 10.1016/j.freeradbiomed.2021.12.002 34875340
    [Google Scholar]
  66. Niyazi M. Siefert A. Schwarz S.B. Ganswindt U. Kreth F.W. Tonn J.C. Belka C. Therapeutic options for recurrent malignant glioma. Radiother. Oncol. 2011 98 1 1 14 10.1016/j.radonc.2010.11.006 21159396
    [Google Scholar]
  67. Balducci M. Fiorentino A. De Bonis P. Chiesa S. Mangiola A. Mattiucci G.C. D’Agostino G.R. Frascino V. Mantini G. Alitto A.R. Colosimo C. Anile C. Valentini V. Concurrent and adjuvant temozolomide-based chemoradiotherapy schedules for glioblastoma. Strahlenther. Onkol. 2013 189 11 926 931 10.1007/s00066‑013‑0410‑6 23974823
    [Google Scholar]
  68. Strobel H. Baisch T. Fitzel R. Schilberg K. Siegelin M.D. Karpel-Massler G. Debatin K.M. Westhoff M.A. Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines 2019 7 3 69 10.3390/biomedicines7030069 31505812
    [Google Scholar]
  69. Cook A.M. Mieure K.D. Owen R.D. Pesaturo A.B. Hatton J. Intracerebroventricular administration of drugs. Pharmacotherapy 2009 29 7 832 845 10.1592/phco.29.7.832 19558257
    [Google Scholar]
  70. Liu H. Tariq R. Liu G.L. Yan H. Kaye A.D. Inadvertent intrathecal injections and best practice management. Acta Anaesthesiol. Scand. 2017 61 1 11 22 10.1111/aas.12821 27766633
    [Google Scholar]
  71. Lochhead J.J. Wolak D.J. Pizzo M.E. Thorne R.G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J. Cereb. Blood Flow Metab. 2015 35 3 371 381 10.1038/jcbfm.2014.215 25492117
    [Google Scholar]
  72. Misra A. Jogani V. Jinturkar K. Vyas T. Recent patents review on intranasal administration for CNS drug delivery. Recent Pat. Drug Deliv. Formul. 2008 2 1 25 40 10.2174/187221108783331429 19075895
    [Google Scholar]
  73. Thorne R.G. Pronk G.J. Padmanabhan V. Frey W.H. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004 127 2 481 496 10.1016/j.neuroscience.2004.05.029 15262337
    [Google Scholar]
  74. Thorne R.G. Hanson L.R. Ross T.M. Tung D. Frey W.H. Delivery of interferon-β to the monkey nervous system following intranasal administration. Neuroscience 2008 152 3 785 797 10.1016/j.neuroscience.2008.01.013 18304744
    [Google Scholar]
  75. Wang D. Gao Y. Yun L. Study on brain targeting of raltitrexed following intranasal administration in rats. Cancer Chemother. Pharmacol. 2006 57 1 97 104 10.1007/s00280‑005‑0018‑3 16028105
    [Google Scholar]
  76. Shingaki T. Inoue D. Furubayashi T. Sakane T. Katsumi H. Yamamoto A. Yamashita S. Transnasal delivery of methotrexate to brain tumors in rats: A new strategy for brain tumor chemotherapy. Mol. Pharm. 2010 7 5 1561 1568 10.1021/mp900275s 20695463
    [Google Scholar]
  77. Beishenaliev A. Loke Y.L. Goh S.J. Geo H.N. Mugila M. Misran M. Chung L.Y. Kiew L.V. Roffler S. Teo Y.Y. Bispecific antibodies for targeted delivery of anti-cancer therapeutic agents: A review. J. Control. Release 2023 359 268 286 10.1016/j.jconrel.2023.05.032 37244297
    [Google Scholar]
  78. Patil S.B. Chapter 14 - Applications of direct nose-to-brain drug delivery in biomedicine, biotechnology, tissue engineering, and immunology. Direct Nose-to-Brain Drug Delivery Academic Press 2021 267 285 10.1016/B978‑0‑12‑822522‑6.00012‑6
    [Google Scholar]
  79. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci. 2000 11 1 1 18 10.1016/S0928‑0987(00)00087‑7 10913748
    [Google Scholar]
  80. Gänger S. Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018 10 3 116 10.3390/pharmaceutics10030116 30081536
    [Google Scholar]
  81. Prasetyo A. Sadhana U. Budiman J. Nasal mucociliary clearance in smokers: A systematic review. Int. Arch. Otorhinolaryngol. 2021 25 1 e160 e169 10.1055/s‑0040‑1702965 33542766
    [Google Scholar]
  82. Bannazadeh Baghi H. Effects of EHV-1 infection on the migration behavior of monocytic cells and on components of the basement membrane in the respiratory mucosa Thesis, Ghent University 2015
    [Google Scholar]
  83. Jankowski R. Nguyen D.T. Gallet P. Rumeau C. Olfactory cleft dilatation. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2018 135 6 437 441 10.1016/j.anorl.2018.05.008 29934261
    [Google Scholar]
  84. Dhas N. Yadav D. Singh A. Garkal A. Kudarha R. Bangar P. Savjani J. Pardeshi C.V. Garg N. Mehta T. Chapter 2 - Direct transport theory: From the nose to the brain. Direct Nose-to-Brain Drug Delivery Academic Press 15 37 2021 10.1016/B978‑0‑12‑822522‑6.00001‑1
    [Google Scholar]
  85. Mistry A. Stolnik S. Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm. 2009 379 1 146 157 10.1016/j.ijpharm.2009.06.019 19555750
    [Google Scholar]
  86. Serralheiro A. Alves G. Sousa J. Fortuna A. Falcão A. Nose as a route for drug delivery. Nasal Physiology and Pathophysiology of Nasal Disorders Springer Berlin, Heidelberg Önerci T. 2013 191 215 10.1007/978‑3‑642‑37250‑6_15
    [Google Scholar]
  87. Saalbach K.P. Chapter 23: Nasal and pulmonary routes of drug delivery. Novel Platforms for Drug Delivery Applications 2023 569 606 Woodhead Publishing 10.1016/B978‑0‑323‑91376‑8.00019‑7
    [Google Scholar]
  88. Fortuna A. Schindowski K. Sonvico F. Intranasal drug delivery: Challenges and opportunities. Front. Pharmacol. 2022 13 868986 10.3389/fphar.2022.868986 35308245
    [Google Scholar]
  89. Flamm J. Hartung S. Gänger S. Maigler F. Pitzer C. Schindowski K. Establishment of an olfactory region-specific intranasal delivery technique in mice to target the central nervous system. Front. Pharmacol. 2022 12 789780 10.3389/fphar.2021.789780 35082672
    [Google Scholar]
  90. Zheng X. Kendrick K.M. Neural and molecular contributions to pathological jealousy and a potential therapeutic role for intranasal oxytocin. Front. Pharmacol. 2021 12 652473 10.3389/fphar.2021.652473 33959017
    [Google Scholar]
  91. Bicker J. Fortuna A. Alves G. Falcão A. Nose-to-brain delivery of natural compounds for the treatment of central nervous system disorders. Curr. Pharm. Des. 2020 26 5 594 619 10.2174/1381612826666200115101544 31939728
    [Google Scholar]
  92. Bernocchi B. Carpentier R. Betbeder D. Nasal nanovaccines. Int. J. Pharm. (Cairo) 2017 530 1-2 128 138 10.1016/j.ijpharm.2017.07.012
    [Google Scholar]
  93. Pires P.C. Rodrigues M. Alves G. Santos A.O. Strategies to improve drug strength in nasal preparations for brain delivery of low aqueous solubility drugs. Pharmaceutics 2022 14 3 588 10.3390/pharmaceutics14030588 35335964
    [Google Scholar]
  94. Ali J. Ali M. Baboota S. Kaur Sahni J. Ramassamy C. Dao L. Bhavna Potential of nanoparticulate drug delivery systems by intranasal administration. Curr. Pharm. Des. 2010 16 14 1644 1653 10.2174/138161210791164108 20210751
    [Google Scholar]
  95. Dalvi A. Ravi P.R. Uppuluri C.T. Rufinamide-loaded chitosan nanoparticles in xyloglucan-based thermoresponsive in situ gel for direct nose to brain delivery. Front. Pharmacol. 2021 12 691936 10.3389/fphar.2021.691936 34234679
    [Google Scholar]
  96. Casettari L. Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J. Control. Release 2014 190 189 200 10.1016/j.jconrel.2014.05.003 24818769
    [Google Scholar]
  97. Silva S. Bicker J. Fonseca C. Ferreira N.R. Vitorino C. Alves G. Falcão A. Fortuna A. Encapsulated escitalopram and paroxetine intranasal co-administration: In vitro/in vivo evaluation. Front. Pharmacol. 2021 12 751321 10.3389/fphar.2021.751321 34925013
    [Google Scholar]
  98. Schwab D.E. Lepski G. Borchers C. Trautmann K. Paulsen F. Schittenhelm J. Immunohistochemical comparative analysis of GFAP, MAP – 2, NOGO – A, OLIG – 2 and WT – 1 expression in WHO 2016 classified neuroepithelial tumours and their prognostic value. Pathol. Res. Pract. 2018 214 1 15 24 10.1016/j.prp.2017.12.009 29258767
    [Google Scholar]
  99. Modha A. Gutin P.H. Diagnosis and treatment of atypical and anaplastic meningiomas: A review. Neurosurgery 2005 57 3 538 550 10.1227/01.NEU.0000170980.47582.A5 16145534
    [Google Scholar]
  100. Belakhoua S.M. Rodriguez F.J. Diagnostic pathology of tumors of peripheral nerve. Neurosurgery 2021 88 3 443 456 10.1093/neuros/nyab021 33588442
    [Google Scholar]
  101. Bruneau J. Molina T.J. WHO classification of tumors of hematopoietic and lymphoid tissues. Hematopathology Cham Springer Molina T.J. 2020 501 505 10.1007/978‑3‑319‑95309‑0_3817
    [Google Scholar]
  102. Cige F. Sahingoz O.K. Deep learning-based brain tumor detection and classification of MRI images. 14th International Conference on Computing Communication and Networking Technologies (ICCCNT) 1 6 10.1109/ICCCNT56998.2023.10308127 2023
    [Google Scholar]
  103. Ostrom Q.T. Cioffi G. Waite K. Kruchko C. Barnholtz-Sloan J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-oncol. 2021 23 Suppl 12 iii1 iii105 10.1093/neuonc/noab200 34608945
    [Google Scholar]
  104. Molinaro A.M. Taylor J.W. Wiencke J.K. Wrensch M.R. Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol. 2019 15 7 405 417 10.1038/s41582‑019‑0220‑2 31227792
    [Google Scholar]
  105. Delgado-López P.D. Corrales-García E.M. Survival in glioblastoma: A review on the impact of treatment modalities. Clin. Transl. Oncol. 2016 18 11 1062 1071 10.1007/s12094‑016‑1497‑x 26960561
    [Google Scholar]
  106. Achrol A.S. Rennert R.C. Anders C. Soffietti R. Ahluwalia M.S. Nayak L. Peters S. Arvold N.D. Harsh G.R. Steeg P.S. Chang S.D. Brain metastases. Nat. Rev. Dis. Primers 2019 5 1 5 10.1038/s41572‑018‑0055‑y 30655533
    [Google Scholar]
  107. Shah V. Kochar P. Brain cancer: Implication to disease, therapeutic strategies and tumor targeted drug delivery approaches. Recent Patents Anticancer Drug Discov. 2018 13 1 70 85 29189177
    [Google Scholar]
  108. Legler J.M. Ries L.A.G. Smith M.A. Warren J.L. Heineman E.F. Kaplan R.S. Linet M.S. Cancer surveillance series [corrected]: Brain and other central nervous system cancers: recent trends in incidence and mortality. J. Natl. Cancer Inst. 1999 91 16 1382 1390 10.1093/jnci/91.16.1382 10451443
    [Google Scholar]
  109. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  110. Fan Y. Zhang X. Gao C. Jiang S. Wu H. Liu Z. Dou T. Burden and trends of brain and central nervous system cancer from 1990 to 2019 at the global, regional, and country levels. Arch. Public Health 2022 80 1 209 10.1186/s13690‑022‑00965‑5 36115969
    [Google Scholar]
  111. Schulder M. Carmel P.W. Intraoperative magnetic resonance imaging: Impact on brain tumor surgery. Cancer Contr. 2003 10 2 115 124 10.1177/107327480301000203 12712006
    [Google Scholar]
  112. Dhermain F.G. Hau P. Lanfermann H. Jacobs A.H. van den Bent M.J. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol. 2010 9 9 906 920 10.1016/S1474‑4422(10)70181‑2 20705518
    [Google Scholar]
  113. Lawrence G.P. Tivas C. Wayte S. Multislice C.T. Imaging with x-ray, MRI and ultrasound. Walter and Miller's Textbook of Radiotherapy Elsevier 77 95 2012 7th ed
    [Google Scholar]
  114. Abd-Ellah M.K. Awad A.I. Khalaf A.A.M. Hamed H.F.A. A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magn. Reson. Imaging 2019 61 300 318 10.1016/j.mri.2019.05.028 31173851
    [Google Scholar]
  115. de Carvalho Rangel C. Hygino Cruz L.C. Takayassu T.C. Gasparetto E.L. Domingues R.C. Diffusion MR imaging in central nervous system. Magn. Reson. Imaging Clin. N. Am. 2011 19 1 23 53 10.1016/j.mric.2010.10.006 21129634
    [Google Scholar]
  116. Hussain M.R. Hussain M.E. A New Neuroinformatics Approach to Optimize Diagnosis Cost in Neurology: An Operational Research Tool. Int. J. Online and Biomed. Eng. 2019 15 6 31 52 10.3991/ijoe.v15i06.10141
    [Google Scholar]
  117. Vaidyanathan R. Soon R.H. Zhang P. Jiang K. Lim C.T. Cancer diagnosis: From tumor to liquid biopsy and beyond. Lab Chip 2018 19 1 11 34 10.1039/C8LC00684A 30480287
    [Google Scholar]
  118. Dubowitz V. Sewry C.A. Oldfors A. Muscle Biopsy: A Practical Approach Saunders Elsevier 2013
    [Google Scholar]
  119. Kickingereder P. Willeit P. Simon T. Ruge M.I. Diagnostic value and safety of stereotactic biopsy for brainstem tumors: A systematic review and meta-analysis of 1480 cases. Neurosurgery 2013 72 6 873 882 10.1227/NEU.0b013e31828bf445 23426149
    [Google Scholar]
  120. Wolbarst A.B. Looking Within: How X-Ray, CT, MRI, Ultrasound, and Other Medical Images Are Created, And How They Help Physicians Save Lives University of California Press 1999
    [Google Scholar]
  121. Downey D.B. Fenster A. Williams J.C. Clinical utility of three-dimensional US. Radiographics 2000 20 2 559 571 10.1148/radiographics.20.2.g00mc19559 10715350
    [Google Scholar]
  122. Lebby P.C. Brain Imaging: A Guide For Clinicians. New York, USA Oxford University Press 2013
    [Google Scholar]
  123. Mitsuya K. Nakasu Y. Horiguchi S. Harada H. Nishimura T. Yuen S. Asakura K. Endo M. Metastatic skull tumors: MRI features and a new conventional classification. J. Neurooncol. 2011 104 1 239 245 10.1007/s11060‑010‑0465‑5 21110218
    [Google Scholar]
  124. History and Development of PET. 2013 Available from: https://d1wqtxts1xzle7.cloudfront.net/55297107/historyofPET-libre.pdf?1513339199=&response-content-disposition=inline%3B+filename%3DHistory_and_Development_of_PET.pdf&Expires=1729151781&Signature=YKPC4VMqteRJNp-xHvHHVIqNVvROU63af9j-PwAOrpYYw9YEOdF1DDEdUgU4KFJ566dnJljy2HTJUaeTCBUeilF2xbef9qyEJLZ~LgG0xnB29HBlSHrSxvA0mlkGTH3krb5FiyMWeDyjZgF3rmnCrl9FJZ58TG5rijf9uuyiYY-hHUyJaBm1~Hjbxbe4HbrIHiAVTKPmu3fNO8xvFBvGD6scblDT1EsAVikS7Y~CqA3po5Ih-TW-VAVHYqg61W2GFwih6X3qFnL494sI0WW5EOkOr9ZA6vqE6w~pEZeBjLjP~qjAL1xsBWsoDDhJU6ZnsjIF3MoBL1HcImmWH6TW4A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
  125. Champion L. Brain E. Giraudet A.L. Le Stanc E. Wartski M. Edeline V. Madar O. Bellet D. Pecking A. Alberini J.L. Breast cancer recurrence diagnosis suspected on tumor marker rising. Cancer 2011 117 8 1621 1629 10.1002/cncr.25727 21472709
    [Google Scholar]
  126. Blodgett T.M. Meltzer C.C. Townsend D.W. PET/CT: Form and function. Radiology 2007 242 2 360 385 10.1148/radiol.2422051113 17255408
    [Google Scholar]
  127. Kamal H. Fine E.J. Shakibajahromi B. Mowla A. A history of the path towards imaging of the brain: From skull radiography through cerebral angiography. Curr. J. Neurol. 19 3 131 137 2020 10.18502/cjn.v19i3.5426 38011427
    [Google Scholar]
  128. Koç M.M. Aslan N. Kao A.P. Barber A.H. Evaluation of X‐ray tomography contrast agents: A review of production, protocols, and biological applications. Microsc. Res. Tech. 2019 82 6 812 848 10.1002/jemt.23225 30786098
    [Google Scholar]
  129. Hrishi A.P. Sethuraman M. Cerebrospinal fluid (CSF) analysis and interpretation in neurocritical care for acute neurological conditions. Indian J. Crit. Care Med. 2019 23 Suppl. 2 115 119 10.5005/jp‑journals‑10071‑23187 31485118
    [Google Scholar]
  130. Bauça J.M. Martínez-Morillo E. Diamandis E.P. Peptidomics of urine and other biofluids for cancer diagnostics. Clin. Chem. 2014 60 8 1052 1061 10.1373/clinchem.2013.211714 24212086
    [Google Scholar]
  131. Aabenhus R. Jensen J.U.S. Jørgensen K.J. Hróbjartsson A. Bjerrum L. Biomarkers as point‐of‐care tests to guide prescription of antibiotics in patients with acute respiratory infections in primary care. Cochrane Database Syst. Rev. 2014 11 CD010130 10.1002/14651858.CD010130.pub2
    [Google Scholar]
  132. Jeter C.B. Hergenroeder G.W. Hylin M.J. Redell J.B. Moore A.N. Dash P.K. Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J. Neurotrauma 2013 30 8 657 670 10.1089/neu.2012.2439 23062081
    [Google Scholar]
  133. Sonabend A.M. Lesniak M.S. Oligodendrogliomas: Clinical significance of 1p and 19q chromosomal deletions. Expert Rev. Neurother. 5 Suppl 1 25 32 2005 10.1586/14737175.5.6.S25
    [Google Scholar]
  134. McNamara M.G. Sahebjam S. Mason W.P. Anaplastic oligodendroglioma: Advances and treatment options. Curr. Treat. Options Neurol. 2013 15 3 289 301 10.1007/s11940‑013‑0218‑9 23344797
    [Google Scholar]
  135. Miller J.J. Shih H.A. Andronesi O.C. Cahill D.P. Isocitrate dehydrogenase‐mutant glioma: Evolving clinical and therapeutic implications. Cancer 2017 123 23 4535 4546 10.1002/cncr.31039 28980701
    [Google Scholar]
  136. Persico P. Lorenzi E. Losurdo A. Dipasquale A. Di Muzio A. Navarria P. Pessina F. Politi L.S. Lombardi G. Santoro A. Simonelli M. Precision oncology in lower-grade gliomas: Promises and pitfalls of therapeutic strategies targeting IDH-mutations. Cancers (Basel) 2022 14 5 1125 10.3390/cancers14051125 35267433
    [Google Scholar]
  137. Vang R. Shih I.M. Kurman R.J. Ovarian low-grade and high-grade serous carcinoma: Pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv. Anat. Pathol. 2009 16 5 267 282 10.1097/PAP.0b013e3181b4fffa 19700937
    [Google Scholar]
  138. Yu W. Zhang L. Wei Q. Shao A. O6-methylguanine-DNA methyltransferase (MGMT): Challenges and new opportunities in glioma chemotherapy. Front. Oncol. 2020 9 1547 10.3389/fonc.2019.01547 32010632
    [Google Scholar]
  139. Fox S.W. Mitchell S.A. Booth-Jones M. Cognitive impairment in patients with brain tumors: Assessment and intervention in the clinic setting. Clin. J. Oncol. Nurs. 2006 10 2 169 176 10.1188/06.CJON.169‑176 16708701
    [Google Scholar]
  140. Baron I.S. Neuropsychological Evaluation of the Child: Domains, Methods, & Case Studies Oxford University Press New York 2nd ed 2018
    [Google Scholar]
  141. Arora D. Bhatt S. Kumar M. Gautam R.K. Taneja Y. Chauhan M. Significance of intranasal drug delivery systems: Recent trends and clinical investigations in brain disorders. Recent Advances in Pharmaceutical Innovation and Research Springer Singapore Singh P.P. 447 477 2023 10.1007/978‑981‑99‑2302‑1_19
    [Google Scholar]
  142. Ding S. Khan A.I. Cai X. Song Y. Lyu Z. Du D. Dutta P. Lin Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020 37 112 125 10.1016/j.mattod.2020.02.001 33093794
    [Google Scholar]
  143. Rabiee N. Ahmadi S. Afshari R. Khalaji S. Rabiee M. Bagherzadeh M. Fatahi Y. Dinarvand R. Tahriri M. Tayebi L. Hamblin M.R. Webster T.J. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv. Ther. (Weinh.) 2021 4 3 2000076 10.1002/adtp.202000076
    [Google Scholar]
  144. Bors L.A. Erdő F. Overcoming the blood–brain barrier. Challenges and tricks for CNS drug delivery. Sci. Pharm. 2019 87 1 6 10.3390/scipharm87010006
    [Google Scholar]
  145. Wu D.D. Salah Y.A. Ngowi E.E. Zhang Y.X. Khattak S. Khan N.H. Wang Y. Li T. Guo Z.H. Wang Y.M. Ji X.Y. Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration. iScience 2023 26 8 107321 10.1016/j.isci.2023.107321 37554468
    [Google Scholar]
  146. Wang L. Shi Y. Jiang J. Li C. Zhang H. Zhang X. Jiang T. Wang L. Wang Y. Feng L. Micro‐nanocarriers based drug delivery technology for blood‐brain barrier crossing and brain tumor targeting therapy. Small 2022 18 45 2203678 10.1002/smll.202203678 36103614
    [Google Scholar]
  147. Gandhi J. Desai N. Golwala P. Shah P. Medication conveyance through nose: Factors affecting and novel applications. Drug Deliv. Lett. 2018 8 3 169 183 10.2174/2210303108666180423165814
    [Google Scholar]
  148. Tang W. Fan W. Lau J. Deng L. Shen Z. Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 2019 48 11 2967 3014 10.1039/C8CS00805A 31089607
    [Google Scholar]
  149. Sousa F. Dhaliwal H.K. Gattacceca F. Sarmento B. Amiji M.M. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J. Control. Release 2019 309 37 47 10.1016/j.jconrel.2019.07.033 31344424
    [Google Scholar]
  150. de Oliveira Junior E.R. Nascimento T.L. Salomão M.A. da Silva A.C.G. Valadares M.C. Lima E.M. Increased nose-to-brain delivery of melatonin mediated by polycaprolactone nanoparticles for the treatment of glioblastoma. Pharm. Res. 2019 36 9 131 10.1007/s11095‑019‑2662‑z 31263962
    [Google Scholar]
  151. Chu L. Wang A. Ni L. Yan X. Song Y. Zhao M. Sun K. Mu H. Liu S. Wu Z. Zhang C. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv. 2018 25 1 1634 1641 10.1080/10717544.2018.1494226 30176744
    [Google Scholar]
  152. Alex A.T. Joseph A. Shavi G. Rao J.V. Udupa N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv. 2016 23 7 2144 2153 10.3109/10717544.2014.948643 25544603
    [Google Scholar]
  153. Mangraviti A. Tzeng S.Y. Gullotti D. Kozielski K.L. Kim J.E. Seng M. Abbadi S. Schiapparelli P. Sarabia-Estrada R. Vescovi A. Brem H. Olivi A. Tyler B. Green J.J. Quinones-Hinojosa A. Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival. Biomaterials 2016 100 53 66 10.1016/j.biomaterials.2016.05.025 27240162
    [Google Scholar]
  154. Azambuja J.H. Schuh R.S. Michels L.R. Gelsleichter N.E. Beckenkamp L.R. Iser I.C. Lenz G.S. de Oliveira F.H. Venturin G. Greggio S. daCosta J.C. Wink M.R. Sevigny J. Stefani M.A. Battastini A.M.O. Teixeira H.F. Braganhol E. Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: A new therapeutical approach. Mol. Neurobiol. 2020 57 2 635 649 10.1007/s12035‑019‑01730‑6 31407144
    [Google Scholar]
  155. Colombo M. Figueiró F. de Fraga Dias A. Teixeira H.F. Battastini A.M.O. Koester L.S. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Int. J. Pharm. 2018 543 1-2 214 223 10.1016/j.ijpharm.2018.03.055 29605695
    [Google Scholar]
  156. Gadhave D. Gorain B. Tagalpallewar A. Kokare C. Intranasal teriflunomide microemulsion: An improved chemotherapeutic approach in glioblastoma. J. Drug Deliv. Sci. Technol. 2019 51 276 289 10.1016/j.jddst.2019.02.013
    [Google Scholar]
  157. Madane R.G. Mahajan H.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: Design, characterization, and in vivo study. Drug Deliv. 2016 23 4 1326 1334 10.3109/10717544.2014.975382 25367836
    [Google Scholar]
  158. Sekerdag E. Lüle S. Bozdağ Pehlivan S. Öztürk N. Kara A. Kaffashi A. Vural I. Işıkay I. Yavuz B. Oguz K.K. Söylemezoğlu F. Gürsoy-Özdemir Y. Mut M. A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles. J. Control. Release 2017 261 187 198 10.1016/j.jconrel.2017.06.032 28684169
    [Google Scholar]
  159. Van Woensel M. Wauthoz N. Rosière R. Mathieu V. Kiss R. Lefranc F. Steelant B. Dilissen E. Van Gool S.W. Mathivet T. Gerhardt H. Amighi K. De Vleeschouwer S. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release 2016 227 71 81 10.1016/j.jconrel.2016.02.032 26902800
    [Google Scholar]
  160. Van Woensel M. Mathivet T. Wauthoz N. Rosière R. Garg A.D. Agostinis P. Mathieu V. Kiss R. Lefranc F. Boon L. Belmans J. Van Gool S.W. Gerhardt H. Amighi K. De Vleeschouwer S. Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci. Rep. 2017 7 1 1217 10.1038/s41598‑017‑01279‑1 28450700
    [Google Scholar]
  161. Luciani-Giacobbe L.C. Sanchez M.F. Olivera M.E. Nasal route of drug delivery. The ADME Encyclopedia Cham Springer Talevi A. 660 670 2022 10.1007/978‑3‑030‑84860‑6_102
    [Google Scholar]
  162. Banik B.L. Fattahi P. Brown J.L. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016 8 2 271 299 10.1002/wnan.1364 26314803
    [Google Scholar]
  163. Bruinsmann F.A. Richter Vaz G. de Cristo Soares Alves A. Aguirre T. Raffin Pohlmann A. Stanisçuaski Guterres S. Sonvico F. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: preclinical and clinical trials. Molecules 2019 24 23 4312 10.3390/molecules24234312 31779126
    [Google Scholar]
  164. Chen W. He D. Li Z. Zhang X. Pan D. Chen G. Overexpression of vascular endothelial growth factor indicates poor outcomes of glioma: A systematic review and meta-analysis. Int. J. Clin. Exp. Med. 2015 8 6 8709 8719 26309522
    [Google Scholar]
  165. Ferrara N. Adamis A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 2016 15 6 385 403 10.1038/nrd.2015.17 26775688
    [Google Scholar]
  166. Chamberlain M.C. Bevacizumab for the treatment of recurrent glioblastoma. Clin. Med. Insights Oncol. 5 2011 117 129 10.4137/CMO.S7232 21603247
    [Google Scholar]
  167. McKelvey K.J. Hudson A.L. Prasanna Kumar R. Wilmott J.S. Attrill G.H. Long G.V. Scolyer R.A. Clarke S.J. Wheeler H.R. Diakos C.I. Howell V.M. Temporal and spatial modulation of the tumor and systemic immune response in the murine Gl261 glioma model. PLoS One 2020 15 4 e0226444 10.1371/journal.pone.0226444 32240177
    [Google Scholar]
  168. Wu M. Zhong C. Zhang Q. Wang L. Wang L. Liu Y. Zhang X. Zhao X. pH-responsive delivery vehicle based on RGD-modified polydopamine-paclitaxel-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for targeted therapy in hepatocellular carcinoma. J. Nanobiotechnology 2021 19 1 39 10.1186/s12951‑021‑00783‑x 33549107
    [Google Scholar]
  169. Sukumar U.K. Bose R.J.C. Malhotra M. Babikir H.A. Afjei R. Robinson E. Zeng Y. Chang E. Habte F. Sinclair R. Gambhir S.S. Massoud T.F. Paulmurugan R. Intranasal delivery of targeted polyfunctional gold–iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials 2019 218 119342 10.1016/j.biomaterials.2019.119342 31326657
    [Google Scholar]
  170. Yin P. Li H. Ke C. Cao G. Xin X. Hu J. Cai X. Li L. Liu X. Du B. Intranasal delivery of immunotherapeutic nanoformulations for treatment of glioma through in situ activation of immune response. Int. J. Nanomedicine 2020 15 1499 1515 10.2147/IJN.S240551 32189965
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855323933241031181603
Loading
/content/journals/cdth/10.2174/0115748855323933241031181603
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Nanoparticles ; glioblastoma multiforme ; intranasal ; drug delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test