Skip to content
2000
image of Plant-Derived Antidiabetic Agent: A Green Prevention Strategy

Abstract

One component of metabolic syndrome is diabetes mellitus. In recent years, the prevalence of diabetes has increased. Drugs produced chemically are used to reduce the negative effects of diabetes mellitus and its repercussions, which include weight gain, gastrointestinal problems, and heart failure. However, medicinal plants may provide an accurate source of drugs that combat diabetes. This paper aims to identify the potential advantages of any plant matrix. Because they are less costly and have minimal or no side effects, restricting one's diet, exercising, and using plant-based antidiabetic substances are all recommended as effective ways to cure diabetes. This review centers on the bioactive components of antidiabetic plants, their chemical Characterization, and plant-based diets to manage diabetes. Much scientific information has been discovered regarding the plant-based product's mode of action. This article's objective is to highlight anti-diabetic plants and bioactive compounds produced from plants that offer anti-diabetic properties. Additionally, it gives researchers information that could be used to develop new tactics, such as locating effective bioactive compounds to facilitate the control of diabetes.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855316757241031143556
2024-11-15
2024-12-27
Loading full text...

Full text loading...

References

  1. Patel D.K. Kumar R. Prasad S.K. Sairam K. Hemalatha S. Antidiabetic and in vitro antioxidant potential of Hybanthusenneaspermus (Linn) F. Muell in streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Biomed. 2011 1 4 316 322 10.1016/S2221‑1691(11)60051‑8 23569783
    [Google Scholar]
  2. Kharroubi A.T. Darwish H.M. Diabetes mellitus: The epidemic of the century. World J. Diabetes 2015 6 6 850 867 10.4239/wjd.v6.i6.850 26131326
    [Google Scholar]
  3. Ponnusamy S. Ravindran R. Zinjarde S. Bhargava S. Ravi Kumar A. Evaluation of traditional Indian antidiabetic medicinal plants for human pancreatic amylase inhibitory effect in vitro. Evid. Based Complement. Alternat. Med. 2011 2011 1 515647 10.1155/2011/515647 20953430
    [Google Scholar]
  4. Patel D.K. Kumar R. Laloo D. Hemalatha S. Evaluation of phytochemical and antioxidant activities of the different fractions of Hybanthus enneaspermus (Linn.) F. Muell. (Violaceae). Asian Pac. J. Trop. Med. 2011 4 5 391 396 10.1016/S1995‑7645(11)60110‑7 21771683
    [Google Scholar]
  5. Lee H.S. Rat lens aldose reductase inhibitory activities of Coptis japonica root-derived isoquinoline alkaloids. J. Agric. Food Chem. 2002 50 24 7013 7016 10.1021/jf020674o 12428952
    [Google Scholar]
  6. Jung M. Park M. Lee H. Kang Y.H. Kang E. Kim S. Antidiabetic agents from medicinal plants. Curr. Med. Chem. 2006 13 10 1203 1218 10.2174/092986706776360860 16719780
    [Google Scholar]
  7. Malviya N. Jain S. Malviya S. Antidiabetic potential of medicinal plants. Acta Pol. Pharm. 2010 67 2 113 118 20369787
    [Google Scholar]
  8. Knowler W.C. Barrett-Connor E. Fowler S.E. Hamman R.F. Lachin J.M. Walker E.A. Nathan D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002 346 6 393 403 10.1056/NEJMoa012512 11832527
    [Google Scholar]
  9. Tao Z. Shi A. Zhao J. Epidemiological perspectives of diabetes. Cell Biochem. Biophys. 2015 73 1 181 185 10.1007/s12013‑015‑0598‑4 25711186
    [Google Scholar]
  10. Chentli F. Azzoug S. Mahgoun S. Diabetes mellitus in elderly. Indian J. Endocrinol. Metab. 2015 19 6 744 752 10.4103/2230‑8210.167553 26693423
    [Google Scholar]
  11. Ahmed A. Rauf A. Hemeg H.A. Qureshi M.N. Sharma R. Aljohani A.S.M. Alhumaydhi F.A. Khan I. Alam A. Rahman M.M. Green synthesis of gold and silver nanoparticles using Opuntia dillenii aqueous extracts: Characterization and their antimicrobial assessment. J. Nanomater. 2022 2022 1 4804116 10.1155/2022/4804116
    [Google Scholar]
  12. Chinsembu K.C. Diabetes mellitus and nature’s pharmacy of putative antidiabetic plants. J. Herb. Med. 2019 15 100230 10.1016/j.hermed.2018.09.001
    [Google Scholar]
  13. Ghosh Tarafdar R. Nath S. Das Talukdar A. Dutta Choudhury M. Antidiabetic plants used among the ethnic communities of Unakoti district of Tripura, India. J. Ethnopharmacol. 2015 160 219 226 10.1016/j.jep.2014.11.019 25457986
    [Google Scholar]
  14. Salehi B. Ata A. V Anil Kumar N. Sharopov F. Ramírez-Alarcón K. Ruiz-Ortega A. Abdulmajid Ayatollahi S. Tsouh Fokou P.V. Kobarfard F. Amiruddin Zakaria Z. Iriti M. Taheri Y. Martorell M. Sureda A. Setzer W.N. Durazzo A. Lucarini M. Santini A. Capasso R. Ostrander E.A. Choudhary M.I. Cho W.C. Sharifi-Rad J. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019 9 10 551 10.3390/biom9100551 31575072
    [Google Scholar]
  15. Naidoo C.M. Naidoo Y. Dewir Y.H. Murthy H.N. El-Hendawy S. Al-Suhaibani N. Major bioactive alkaloids and biological activities of Tabernaemontana species (Apocynaceae). Plants 2021 10 2 313 10.3390/plants10020313 33562893
    [Google Scholar]
  16. Zhang H. Ben Y. Han Y. Zhang Y. Li Y. Chen X. Phthalate exposure and risk of diabetes mellitus: Implications from a systematic review and meta-analysis. Environ. Res. 2022 204 Pt B 112109 10.1016/j.envres.2021.112109 34562484
    [Google Scholar]
  17. Sekhon-Loodu S. Rupasinghe H.P.V. Evaluation of antioxidant, antidiabetic and antiobesity potential of selected traditional medicinal plants. Front. Nutr. 2019 6 53 10.3389/fnut.2019.00053 31106207
    [Google Scholar]
  18. Najmi A. Javed S.A. Al Bratty M. Alhazmi H.A. Najmi A. Javed S.A. Al Bratty M. Alhazmi H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022 27 2 349 10.3390/molecules27020349 35056662
    [Google Scholar]
  19. Kato-Schwartz C.G. Corrêa R.C.G. de Souza Lima D. de Sá-Nakanishi A.B. de Almeida Gonçalves G. Seixas F.A.V. Haminiuk C.W.I. Barros L. Ferreira I.C.F.R. Bracht A. Peralta R.M. Potential anti-diabetic properties of Merlot grape pomace extract: An in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition. Food Res. Int. 2020 137 109462 10.1016/j.foodres.2020.109462 33233136
    [Google Scholar]
  20. Dehghan H. Sarrafi Y. Salehi P. Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran. Yao Wu Shi Pin Fen Xi 2016 24 1 179 188 28911402
    [Google Scholar]
  21. Sarian M.N. Ahmed Q.U. Mat So’ad S.Z. Alhassan A.M. Murugesu S. Perumal V. Syed Mohamad S.N.A. Khatib A. Latip J. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Res. Int. 2017 2017 1 14 10.1155/2017/8386065 29318154
    [Google Scholar]
  22. Rafieian-kopaei M. Nasri H. Shirzad H. Baradaran A. Antioxidant plants and diabetes mellitus. J. Res. Med. Sci. 2015 20 5 491 502 10.4103/1735‑1995.163977 26487879
    [Google Scholar]
  23. Zhao C. Yang C. Wai S.T.C. Zhang Y. P Portillo M. Paoli P. Wu Y. San Cheang W. Liu B. Carpéné C. Xiao J. Cao H. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2019 59 6 830 847 10.1080/10408398.2018.1501658 30501400
    [Google Scholar]
  24. Lin D. Xiao M. Zhao J. Li Z. Xing B. Li X. Kong M. Li L. Zhang Q. Liu Y. Chen H. Qin W. Wu H. Chen S. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016 21 10 1374 10.3390/molecules21101374 27754463
    [Google Scholar]
  25. Ardalani H. Hejazi Amiri F. Hadipanah A. Kongstad K.T. Potential antidiabetic phytochemicals in plant roots: A review of in vivo studies. J. Diabetes Metab. Disord. 2021 20 2 1837 1854 10.1007/s40200‑021‑00853‑9 34900828
    [Google Scholar]
  26. Tran N. Pham B. Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel) 2020 9 9 252 10.3390/biology9090252 32872226
    [Google Scholar]
  27. Wasana K.G.P. Attanayake A.P. Jayatilaka K.A.P.W. Weerarathna T.P. Antidiabetic activity of widely used medicinal plants in the Sri Lankan traditional healthcare system: New insight to medicinal flora in Sri Lanka. Evid. Based Complement. Alternat. Med. 2021 2021 6644004 33628307 10.1155/2021/6644004
    [Google Scholar]
  28. Jain P. Joshi A.M. Mohanty S. Everything you wanted to know about noninvasive glucose measurement and control. IEEE Consum. Electron. Mag. 2021 10 6 61 66 10.1109/MCE.2021.3073498
    [Google Scholar]
  29. Pelicano H. Martin D.S. Xu R-H. Huang P. Glycolysis inhibition for anticancer treatment. Oncogene 2006 25 34 4633 4646 10.1038/sj.onc.1209597 16892078
    [Google Scholar]
  30. Kruger N.J. von Schaewen A. The oxidative pentose phosphate pathway: Structure and organisation. Curr. Opin. Plant Biol. 2003 6 3 236 246 10.1016/S1369‑5266(03)00039‑6 12753973
    [Google Scholar]
  31. Allard M.F. Schönekess B.O. Henning S.L. English D.R. Lopaschuk G.D. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am. J. Physiol. 1994 267 2 Pt 2 H742 H750 8067430
    [Google Scholar]
  32. Carracedo A. Cantley L.C. Pandolfi P.P. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 2013 13 4 227 232 10.1038/nrc3483 23446547
    [Google Scholar]
  33. Nishikawa T. Edelstein D. Du X.L. Yamagishi S. Matsumura T. Kaneda Y. Yorek M.A. Beebe D. Oates P.J. Hammes H.P. Giardino I. Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000 404 6779 787 790 10.1038/35008121 10783895
    [Google Scholar]
  34. Robertson R.P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 2004 279 41 42351 42354 10.1074/jbc.R400019200 15258147
    [Google Scholar]
  35. Styskal J. Van Remmen H. Richardson A. Salmon A.B. Oxidative stress and diabetes: What can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic. Biol. Med. 2012 52 1 46 58 10.1016/j.freeradbiomed.2011.10.441 22056908
    [Google Scholar]
  36. Giacco F. Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010 107 9 1058 1070 10.1161/CIRCRESAHA.110.223545 21030723
    [Google Scholar]
  37. Du X. Matsumura T Edelstein D. Inhibition of GAPDH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Invest. 2003 112 7 1049 1957 10.1172/JCI18127 14523042
    [Google Scholar]
  38. Easterday A. Keil N. Subramaniam R. Mechanism of inhibition of glyceraldehyde3-phosphate dehydrogenase activity by glucose. FASEB J. 2007 21 6 A1015
    [Google Scholar]
  39. Rolo A.P. Palmeira C.M. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 2006 212 2 167 178 10.1016/j.taap.2006.01.003 16490224
    [Google Scholar]
  40. Chung S.S.M. Ho E.C.M. Lam K.S.L. Chung S.K. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol. 2003 14 8 Suppl. 3 S233 S236 10.1097/01.ASN.0000077408.15865.06 12874437
    [Google Scholar]
  41. Camacho-Ruiz M. Esteban-Méndex Diabetes and free radicals. Diabetes UAEH: Autonomous University of the State of Hidalgo Pachuca, México MoralesGonzález J.A. Madrigal-Santillan E.O. Nava-Chapa G. Durante-Montiel I. Jongitud-Falcón A. Esquivel-Soto J. 2003
    [Google Scholar]
  42. Cho S.J. Roman G. Yeboah F. Konishi Y. The road to advanced glycation end products: A mechanistic perspective. Curr. Med. Chem. 2007 14 15 1653 1671 10.2174/092986707780830989 17584071
    [Google Scholar]
  43. IDF diabetes atlas. 2009 Available from: https://diabetesatlas.org/idfawp/resource-files/2006/07/IDF_diabetes_atlas_fourth_edition.pdf
    [Google Scholar]
  44. Lindström J. Ilanne-Parikka P. Peltonen M. Aunola S. Eriksson J.G. Hemiö K. Hämäläinen H. Härkönen P. Keinänen-Kiukaanniemi S. Laakso M. Louheranta A. Mannelin M. Paturi M. Sundvall J. Valle T.T. Uusitupa M. Tuomilehto J. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: Follow-up of the finnish diabetes prevention study. Lancet 2006 368 9548 1673 1679 10.1016/S0140‑6736(06)69701‑8 17098085
    [Google Scholar]
  45. Li G. Zhang P. Wang J. An Y. Gong Q. Gregg E.W. Yang W. Zhang B. Shuai Y. Hong J. Engelgau M.M. Li H. Roglic G. Hu Y. Bennett P.H. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: A 23-year follow-up study. Lancet Diabetes Endocrinol. 2014 2 6 474 480 10.1016/S2213‑8587(14)70057‑9 24731674
    [Google Scholar]
  46. Nathan D.M. Bennett P.H. Crandall J.P. Edelstein S.L. Goldberg R.B. Kahn S.E. Knowler W.C. Mather K.J. Mudaliar S. Orchard T.J. Temprosa M. White N.H. Does diabetes prevention translate into reduced long-term vascular complications of diabetes? Diabetologia 2019 62 8 1319 1328 10.1007/s00125‑019‑4928‑8 31270584
    [Google Scholar]
  47. Gong Q. Zhang P. Wang J. Ma J. An Y. Chen Y. Zhang B. Feng X. Li H. Chen X. Cheng Y.J. Gregg E.W. Hu Y. Bennett P.H. Li G. Qian X. Zhang L. Hui Y. He S. Wang X. Thompson T.J. Gerzoff R.B. Liu P. Jiang Y. Hu Z. Wang J. Jiang X. Zhang J. Xi R. Pang C. Li C. Hu X. Yang W. An Z. Sun X. Chen C. Gang Y. Liu J. Xiao J. Cao H. Zheng H. Zhang H. Li H. Hong J. Liu X. Zhao F. Wang W. Chen B. Howard B.V. Engelgau M.M. Roglic G. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019 7 6 452 461 10.1016/S2213‑8587(19)30093‑2 31036503
    [Google Scholar]
  48. Knowler W.C. Fowler S.E. Hamman R.F. Christophi C.A. Hoffman H.J. Brenneman A.T. Brown-Friday J.O. Goldberg R. Venditti E. Nathan D.M. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009 374 9702 1677 1686 10.1016/S0140‑6736(09)61457‑4 19878986
    [Google Scholar]
  49. Diabetes Prevention Program Research Group Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications: the DPP Outcomes Study. Lancet Diabetes Endocrinol. 2015 3 866 875 10.1016/S2213‑8587(15)00291‑0 26377054
    [Google Scholar]
  50. Diabetes Prevention Program (DPP) Research Group The Diabetes Prevention Program (DPP): Description of lifestyle intervention. Diabetes Care 2002 25 12 2165 2171 10.2337/diacare.25.12.2165 12453955
    [Google Scholar]
  51. Evert A.B. Dennison M. Gardner C.D. Garvey W.T. Lau K.H.K. MacLeod J. Mitri J. Pereira R.F. Rawlings K. Robinson S. Saslow L. Uelmen S. Urbanski P.B. Yancy W.S. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care 2019 42 5 731 754 10.2337/dci19‑0014 31000505
    [Google Scholar]
  52. Dietary guidelines for Americans, 2020-2025 and online materials. Available from: https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials
  53. Bloomfield H.E. Koeller E. Greer N. MacDonald R. Kane R. Wilt T.J. Effects on health outcomes of a Mediterranean diet with no restriction on fat intake: A systematic review and meta-analysis. Ann. Intern. Med. 2016 165 7 491 500 10.7326/M16‑0361 27428849
    [Google Scholar]
  54. Estruch R. Ros E. Salas-Salvadó J. Covas M.I. Corella D. Arós F. Gómez-Gracia E. Ruiz-Gutiérrez V. Fiol M. Lapetra J. Lamuela-Raventos R.M. Serra-Majem L. Pintó X. Basora J. Muñoz M.A. Sorlí J.V. Martínez J.A. Fitó M. Gea A. Hernán M.A. Martínez-González M.A. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extravirgin olive oil or nuts. N. Engl. J. Med. 2018 378 25 e34 10.1056/NEJMoa1800389 29897866
    [Google Scholar]
  55. Salas-Salvadó J. Guasch-Ferré M. Lee C.H. Estruch R. Clish C.B. Ros E. Protective effects of the Mediterranean diet on type 2 diabetes and metabolic syndrome. J. Nutr. 2016 146 4 920S 927S 10.3945/jn.115.218487 26962178
    [Google Scholar]
  56. Stentz F.B. Brewer A. Wan J. Garber C. Daniels B. Sands C. Kitabchi A.E. Remission of pre-diabetes to normal glucose tolerance in obese adults with high protein versus high carbohydrate diet: Randomized control trial. BMJ Open Diabetes Res. Care 2016 4 1 e000258 10.1136/bmjdrc‑2016‑000258 27843552
    [Google Scholar]
  57. Lee Y. Park K. Adherence to a vegetarian diet and diabetes risk: A systematic review and metaanalysis of observational studies. Nutrients 2017 9 6 603 10.3390/nu9060603 28613258
    [Google Scholar]
  58. Chiu T.H.T. Pan W.H. Lin M.N. Lin C.L. Vegetarian diet, change in dietary patterns, and diabetes risk: A prospective study. Nutr. Diabetes 2018 8 1 12 10.1038/s41387‑018‑0022‑4 29549240
    [Google Scholar]
  59. Ley S.H. Hamdy O. Mohan V. Hu F.B. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 2014 383 9933 1999 2007 10.1016/S0140‑6736(14)60613‑9 24910231
    [Google Scholar]
  60. Jacobs S. Harmon B.E. Boushey C.J. Morimoto Y. Wilkens L.R. Le Marchand L. Kröger J. Schulze M.B. Kolonel L.N. Maskarinec G. A priori-defined diet quality indexes and risk of type 2 diabetes: the Multiethnic Cohort. Diabetologia 2015 58 1 98 112 10.1007/s00125‑014‑3404‑8 25319012
    [Google Scholar]
  61. Chiuve S.E. Fung T.T. Rimm E.B. Hu F.B. McCullough M.L. Wang M. Stampfer M.J. Willett W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012 142 6 1009 1018 10.3945/jn.111.157222 22513989
    [Google Scholar]
  62. Parker A.R. Byham-Gray L. Denmark R. Winkle P.J. The effect of medical nutrition therapy by a registered dietitian nutritionist in patients with prediabetes participating in a randomized controlled clinical research trial. J. Acad. Nutr. Diet. 2014 114 11 1739 1748 10.1016/j.jand.2014.07.020 25218597
    [Google Scholar]
  63. Fedewa M.V. Gist N.H. Evans E.M. Dishman R.K. Exercise and insulin resistance in youth: A meta-analysis. Pediatrics 2014 133 1 e163 e174 10.1542/peds.2013‑2718 24298011
    [Google Scholar]
  64. Davis C.L. Pollock N.K. Waller J.L. Allison J.D. Dennis B.A. Bassali R. Meléndez A. Boyle C.A. Gower B.A. Exercise dose and diabetes risk in overweight and obese children: A randomized controlled trial. JAMA 2012 308 11 1103 1112 10.1001/2012.jama.10762 22990269
    [Google Scholar]
  65. Thorp A.A. Kingwell B.A. Sethi P. Hammond L. Owen N. Dunstan D.W. Alternating bouts of sitting and standing attenuate postprandial glucose responses. Med. Sci. Sports Exerc. 2014 46 11 2053 2061 10.1249/MSS.0000000000000337 24637345
    [Google Scholar]
  66. Sigal R.J. Alberga A.S. Goldfield G.S. Prud’homme D. Hadjiyannakis S. Gougeon R. Phillips P. Tulloch H. Malcolm J. Doucette S. Wells G.A. Ma J. Kenny G.P. Effects of aerobic training, resistance training, or both on percentage body fat and cardiometabolic risk markers in obese adolescents: the healthy eating aerobic and resistance training in youth randomized clinical trial. JAMA Pediatr. 2014 168 11 1006 1014 10.1001/jamapediatrics.2014.1392 25243536
    [Google Scholar]
  67. Dai X. Zhai L. Chen Q. Miller J.D. Lu L. Hsue C. Liu L. Yuan X. Wei W. Ma X. Fang Z. Zhao W. Liu Y. Huang F. Lou Q. Two‐year‐supervised resistance training prevented diabetes incidence in people with prediabetes: A randomised control trial. Diabetes Metab. Res. Rev. 2019 35 5 e3143 10.1002/dmrr.3143 30768758
    [Google Scholar]
  68. Healy G.N. Dunstan D.W. Salmon J. Cerin E. Shaw J.E. Zimmet P.Z. Owen N. Breaks in sedentary time: Beneficial associations with metabolic risk. Diabetes Care 2008 31 4 661 666 10.2337/dc07‑2046 18252901
    [Google Scholar]
  69. Russo L.M. Nobles C. Ertel K.A. Chasan-Taber L. Whitcomb B.W. Physical activity interventions in pregnancy and risk of gestational diabetes mellitus: A systematic review and meta-analysis. Obstet. Gynecol. 2015 125 3 576 582 10.1097/AOG.0000000000000691 25730218
    [Google Scholar]
  70. Ahuja K.D.K. Robertson I.K. Geraghty D.P. Ball M.J. Effects of chili consumption on postprandial glucose, insulin, and energy metabolism. Am. J. Clin. Nutr. 2006 84 1 63 69 10.1093/ajcn/84.1.63
    [Google Scholar]
  71. Asekunowo A.K. Ashafa A.O.T. Okoh O. Asekun O.T. Familoni O.B. Polyphenolic constituents, antioxidant and hypoglycaemic potential of leaf extracts of Acalypha godseffiana from Eastern Nigeria: In vitro study. J. Med. Plants Econ. Dev. 2019 3 1 10.4102/jomped.v3i1.36
    [Google Scholar]
  72. Hosseini A. Hosseinzadeh H. A review on the effects of Allium sativum (Garlic) in metabolic syndrome. J. Endocrinol. Invest. 2015 38 11 1147 1157 10.1007/s40618‑015‑0313‑8 26036599
    [Google Scholar]
  73. Muñiz-Ramirez A. Perez R.M. Garcia E. Garcia F.E. Antidiabetic activity of aloe vera leaves. Evid. Based Complement. Alternat. Med. 2020 2020 1 6371201 10.1155/2020/6371201 32565868
    [Google Scholar]
  74. Balasubramanian T. Karthikeyan M. Muhammed Anees K.P. Kadeeja C.P. Jaseela K. Antidiabetic and antioxidant potentials of Amaranthus hybridus in streptozotocin-induced diabetic rats. J. Diet. Suppl. 2017 14 4 395 410 10.1080/19390211.2016.1265037 28129002
    [Google Scholar]
  75. Jung H-J. Lamichhane R. Pandeya P.R. Lee K-H. Kim S-G. Kandel D.R. Angiopteris helferiana, a fern with great potential medicinal value: Antiadipogenic, anti-inflammatory, and anti-diabetic activity. Pharmacogn. Mag. 2019 15 63 423 10.4103/pm.pm_430_18
    [Google Scholar]
  76. Musdja M.Y. Nurdin A. Musir A. Antidiabetic effect and glucose tolerance of areca nut (Areca catechu) seed ethanol extract on alloxan-induced diabetic male rats. IOP Conf. Ser. Earth Environ. Sci. 2020 462 1 012036 10.1088/1755‑1315/462/1/012036
    [Google Scholar]
  77. Wm A. Dw N. Ds A. Mp N. Enm N. In vivo antidiabetic effect of aqueous leaf extract of Azardirachta indica, A. juss in alloxan induced diabetic mice. J. Diabetes Complications Med. 1 2 2016 10.4172/jdcm.1000.106
    [Google Scholar]
  78. Dheer R. Bhatnagar P. A study of the antidiabetic activity of Barleria prionitis Linn. Indian J. Pharmacol. 2010 42 2 70 73 10.4103/0253‑7613.64493 20711368
    [Google Scholar]
  79. Hanahan D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985 315 6015 115 122 10.1038/315115a0 2986015
    [Google Scholar]
  80. Pinheiro M.S. Rodrigues L.S. S L. Moraes-Souza R.Q. Soares T.S. Américo M.F. Campos K.E. Damasceno D.C. Volpato G.T. Effect of Bauhinia holophylla treatment in Streptozotocin-induced diabetic rats. An. Acad. Bras. Cienc. 2017 89 1 263 272 10.1590/0001‑3765201720160050 28225851
    [Google Scholar]
  81. Islam M.T. Quispe C. El-Kersh D.M. Shill M.C. Bhardwaj K. Bhardwaj P. Sharifi-Rad J. Martorell M. Hossain R. Al-Harrasi A. Al-Rawahi A. Butnariu M. Rotariu L.S. Suleria H.A.R. Taheri Y. Docea A.O. Calina D. Cho W.C. Literature-Based A. Update on Benincasa hispida (Thunb.) Cogn.: Traditional uses, nutraceutical, and phytopharmacological profiles. Oxid. Med. Cell. Longev. 2021 2021 1 6349041 10.1155/2021/6349041 34925698
    [Google Scholar]
  82. Airaodion E.O.A. Antidiabetic effect of ethanolic extract of Carica papaya leaves in alloxan-induced diabetic rats. J. Biomed. Sci. Res. 5 3 2019 10.34297/AJBSR.2019.05.000917
    [Google Scholar]
  83. Qazi N. Khan R.A. Rizwani G.H. Feroz Z. Effect of Carthamus tinctorius (Safflower) on fasting blood glucose and insulin levels in alloxan induced diabetic rabbits. Pak. J. Pharm. Sci. 2014 27 2 377 380 24577929
    [Google Scholar]
  84. Islam Z. Tahsin M.R. Faisal A.U. Tithi T.I. Nova T.T. Nila T.S. Gorapi M.Z.H. Nadvi F.A. Mridula T.N. Choudhury A.A. Chowdhury J.A. Kabir S. Amran M.S. In vivo assessment of antidiabetic potential and mapping of pharmacological properties of ethanolic extract of leaves of Coccinia grandis on alloxan-induced diabetic rats. 2019 7 2 1 9 10.9734/ajarr/2019/v7i230169
    [Google Scholar]
  85. Prachayasittikul V. Prachayasittikul S. Ruchirawat S. Prachayasittikul V. Coriander (Coriandrum sativum): A promising functional food toward the well-being Food Res. Int. 105 305 323 2018 10.1016/j.foodres.2017.11.019
    [Google Scholar]
  86. Mohamed D.A. Hamed I.M. Fouda K.A. Antioxidant and anti-diabetic effects of cumin seeds crude ethanol extract. J. Biol. Sci. 2018 18 5 251 259 10.3923/jbs.2018.251.259
    [Google Scholar]
  87. Papitha R. Renu K. Immanuel Selvaraj C. Abilash V.G. Anti-diabetic effect of fruits on different animal model system. Bioorganic Phase in Natural Food: An Overview Springer Cham Roopan S. Madhumitha G. 2018 157 185 10.1007/978‑3‑319‑74210‑6_9
    [Google Scholar]
  88. Bualee C. Ounaroon A. Jeenapongsa R. Antidiabetic and long-term effects of Elaeocarpus grandiflorus. Naresuan Univ. J.: Sci. Technol. 2013
    [Google Scholar]
  89. Fatima N. Hafizur R.M. Hameed A. Ahmed S. Nisar M. Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur. J. Nutr. 2017 56 2 591 601 10.1007/s00394‑015‑1103‑y 26593435
    [Google Scholar]
  90. Rajesh Bhaskar N. Rajesh N.B. Ganesh M.S. Balaji W.S. Modulation of diabetes and associated complications using ethanolic extract of green fruit of Ficus racemosa Linn. in alloxan induced rats. Int. J. Bio Pharma Res. 2019 8 2587 2592 10.21746/ijbpr.2019.8.5.6
    [Google Scholar]
  91. AbouZid S.F. Ahmed O.M. Ahmed R.R. Mahmoud A. Abdella E. Ashour M.B. Antihyperglycemic effect of crude extracts of some Egyptian plants and algae. J. Med. Food 2014 17 3 400 406 10.1089/jmf.2013.0068 24404976
    [Google Scholar]
  92. Hassan Z. Yam M.F. Ahmad M. Yusof A.P.M. Antidiabetic properties and mechanism of action of Gynura procumbens water extract in streptozotocin-induced diabetic rats. Molecules 2010 15 12 9008 9023 10.3390/molecules15129008 21150821
    [Google Scholar]
  93. Rosemary R. Rosidah R. Haro G. Antidiabetic effect of roselle calyces extract (Hibiscus sabdariffa L.) in streptozotocin induced mice. Int. J. Pharmtech Res. 6 5 1703 1711 2014
    [Google Scholar]
  94. de Lima M.E. Colpo A.Z.C. Rosa H. Salgueiro A.C.F. da Silva M.P. Noronha D.S. Santamaría A. Folmer V. Ilex paraguariensis extracts reduce blood glucose, peripheral neuropathy and oxidative damage in male mice exposed to streptozotocin. J. Funct. Foods 44 9 16 2018 10.1016/j.jff.2018.02.024
    [Google Scholar]
  95. Asuk A.A. n-Hexane leaf fraction of Jatropha curcas mitigates hyperglycaemia and hepatic nitric oxide levels in diabetic rats. IAA J. Org. 2021 7 111 118
    [Google Scholar]
  96. Sebai H. Selmi S. Rtibi K. Souli A. Gharbi N. Sakly M. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids Health Dis. 2013 12 1 189 10.1186/1476‑511X‑12‑189 24373672
    [Google Scholar]
  97. Rao B.G. Asha A. Sai N. Ramadevi D. Pharmacognostic and in vitro anti diabetic activity on Aerial Parts of Leucas aspera (Willd). Int. J. Pharmacogn. Phytochem. Res. 2018 10 334 340 10.25258/phyto.10.10.3
    [Google Scholar]
  98. Ngo D.H. Ngo D.N. Vo T.T.N. Vo T.S. Mechanism of action of Mangifera indica leaves for anti-diabetic activity. Sci. Pharm. 2019 87 2 13 10.3390/scipharm87020013
    [Google Scholar]
  99. Ja Chung M. Cho S-Y. Javidul Haque Bhuiyan M. Heon Kim K. Lee S-J. 2022 Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice. Br. J. Nutr. 104 2 180 188 10.1017/S0007114510001765
    [Google Scholar]
  100. Mahendran G. Rahman L.U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint ( Mentha × piperita L.)—A review. Phytother. Res. 2020 34 9 2088 2139 10.1002/ptr.6664 32173933
    [Google Scholar]
  101. Wang W. Xu H. Chen H. Tai K. Liu F. Gao Y. In vitro antioxidant, anti-diabetic and antilipemic potentials of quercetagetin extracted from marigold (Tagetes erecta L.) inflorescence residues. J. Food Sci. Technol. 2016 53 6 2614 2624 10.1007/s13197‑016‑2228‑6 27478217
    [Google Scholar]
  102. Glauber H. Brown J. Impact of cardiovascular disease on health care utilization in a defined diabetic population. J. Clin. Epidemiol. 1994 47 10 1133 1142 10.1016/0895‑4356(94)90100‑7 7722547
    [Google Scholar]
  103. Zhou B. Lu Y. Hajifathalian K. Bentham J. Di Cesare M. Danaei G. Bixby H. Cowan M.J. Ali M.K. Taddei C. Lo W.C. Reis-Santos B. Stevens G.A. Riley L.M. Miranda J.J. Bjerregaard P. Rivera J.A. Fouad H.M. Ma G. Mbanya J.C. McGarvey S.T. Mohan V. Onat A. Pilav A. Ramachandran A. Romdhane H.B. Paciorek C.J. Bennett J.E. Ezzati M. Abdeen Z.A. Abdul Kadir K. Abu-Rmeileh N.M. Acosta-Cazares B. Adams R. Aekplakorn W. Aguilar-Salinas C.A. Agyemang C. Ahmadvand A. Al-Othman A.R. Alkerwi A. Amouyel P. Amuzu A. Andersen L.B. Anderssen S.A. Anjana R.M. Aounallah-Skhiri H. Aris T. Arlappa N. Arveiler D. Assah F.K. Avdicová M. Azizi F. Balakrishna N. Bandosz P. Barbagallo C.M. Barceló A. Batieha A.M. Baur L.A. Romdhane H.B. Benet M. Bernabe-Ortiz A. Bharadwaj S. Bhargava S.K. Bi Y. Bjerregaard P. Bjertness E. Bjertness M.B. Björkelund C. Blokstra A. Bo S. Boehm B.O. Boissonnet C.P. Bovet P. Brajkovich I. Breckenkamp J. Brenner H. Brewster L.M. Brian G.R. Bruno G. Bugge A. Cabrera de León A. Can G. Cândido A.P. Capuano V. Carlsson A.C. Carvalho M.J. Casanueva F.F. Casas J.P. Caserta C.A. Castetbon K. Chamukuttan S. Chaturvedi N. Chen C.J. Chen F. Chen S. Cheng C.Y. Chetrit A. Chiou S.T. Cho Y. Chudek J. Cifkova R. Claessens F. Concin H. Cooper C. Cooper R. Costanzo S. Cottel D. Cowell C. Crujeiras A.B. D’Arrigo G. Dallongeville J. Dankner R. Dauchet L. de Gaetano G. De Henauw S. Deepa M. Dehghan A. Deschamps V. Dhana K. Di Castelnuovo A.F. Djalalinia S. Doua K. Drygas W. Du Y. Dzerve V. Egbagbe E.E. Eggertsen R. El Ati J. Elosua R. Erasmus R.T. Erem C. Ergor G. Eriksen L. Escobedo-de la Peña J. Fall C.H. Farzadfar F. Felix-Redondo F.J. Ferguson T.S. Fernández-Bergés D. Ferrari M. Ferreccio C. Feskens E.J. Finn J.D. Föger B. Foo L.H. Forslund A.S. Fouad H.M. Francis D.K. Franco Mdo C. Franco O.H. Frontera G. Furusawa T. Gaciong Z. Garnett S.P. Gaspoz J.M. Gasull M. Gates L. Geleijnse J.M. Ghasemian A. Ghimire A. Giampaoli S. Gianfagna F. Giovannelli J. Giwercman A. Gross M.G. González Rivas J.P. Gorbea M.B. Gottrand F. Grafnetter D. Grodzicki T. Grøntved A. Gruden G. Gu D. Guan O.P. Guerrero R. Guessous I. Guimaraes A.L. Gutierrez L. Hambleton I.R. Hardy R. Hari Kumar R. Hata J. He J. Heidemann C. Herrala S. Hihtaniemi I.T. Ho S.Y. Ho S.C. Hofman A. Hormiga C.M. Horta B.L. Houti L. Howitt C. Htay T.T. Htet A.S. Htike M.M. Hu Y. Hussieni A.S. Huybrechts I. Hwalla N. Iacoviello L. Iannone A.G. Ibrahim M.M. Ikeda N. Ikram M.A. Irazola V.E. Islam M. Iwasaki M. Jacobs J.M. Jafar T. Jamil K.M. Jasienska G. Jiang C.Q. Jonas J.B. Joshi P. Kafatos A. Kalter-Leibovici O. Kasaeian A. Katz J. Kaur P. Kavousi M. Keinänen-Kiukaanniemi S. Kelishadi R. Kengne A.P. Kersting M. Khader Y.S. Khalili D. Khang Y.H. Kiechl S. Kim J. Kolsteren P. Korrovits P. Kratzer W. Kromhout D. Kujala U.M. Kula K. Kyobutungi C. Laatikainen T. Lachat C. Laid Y. Lam T.H. Landrove O. Lanska V. Lappas G. Laxmaiah A. Leclercq C. Lee J. Lee J. Lehtimäki T. Lekhraj R. León-Muñoz L.M. Li Y. Lim W.Y. Lima-Costa M.F. Lin H.H. Lin X. Lissner L. Lorbeer R. Lozano J.E. Luksiene D. Lundqvist A. Lytsy P. Ma G. Machado-Coelho G.L. Machi S. Maggi S. Magliano D.J. Makdisse M. Mallikharjuna Rao K. Manios Y. Manzato E. Margozzini P. Marques-Vidal P. Martorell R. Masoodi S.R. Mathiesen E.B. Matsha T.E. Mbanya J.C. McFarlane S.R. McGarvey S.T. McLachlan S. McNulty B.A. Mediene-Benchekor S. Meirhaeghe A. Menezes A.M. Merat S. Meshram I.I. Mi J. Miquel J.F. Miranda J.J. Mohamed M.K. Mohammad K. Mohammadifard N. Mohan V. Mohd Yusoff M.F. Møller N.C. Molnár D. Mondo C.K. Morejon A. Moreno L.A. Morgan K. Moschonis G. Mossakowska M. Mostafa A. Mota J. Motta J. Mu T.T. Muiesan M.L. Müller-Nurasyid M. Mursu J. Nagel G. Námešná J. Nang E.E. NangThetia V.B. Navarrete-Muñoz E.M. Ndiaye N.C. Nenko I. Nervi F. Nguyen N.D. Nguyen Q.N. Nieto-Martínez R.E. Ning G. Ninomiya T. Noale M. Noto D. Nsour M.A. Ochoa-Avilés A.M. Oh K. Onat A. Ordunez P. Osmond C. Otero J.A. Owusu-Dabo E. Pahomova E. Palmieri L. Panda-Jonas S. Panza F. Parsaeian M. Peixoto S.V. Pelletier C. Peltonen M. Peters A. Peykari N. Pham S.T. Pilav A. Pitakaka F. Piwonska A. Piwonski J. Plans-Rubió P. Porta M. Portegies M.L. Poustchi H. Pradeepa R. Price J.F. Punab M. Qasrawi R.F. Qorbani M. Radisauskas R. Rahman M. Raitakari O. Rao S.R. Ramachandran A. Ramke J. Ramos R. Rampal S. Rathmann W. Redon J. Reganit P.F. Rigo F. Robinson S.M. Robitaille C. Rodríguez-Artalejo F. Rodriguez-Perez Mdel C. Rodríguez-Villamizar L.A. Rojas-Martinez R. Ronkainen K. Rosengren A. Rubinstein A. Rui O. Ruiz-Betancourt B.S. Russo Horimoto R.V. Rutkowski M. Sabanayagam C. Sachdev H.S. Saidi O. Sakarya S. Salanave B. Salonen J.T. Salvetti M. Sánchez-Abanto J. Santos D. dos Santos R.N. Santos R. Saramies J.L. Sardinha L.B. Sarrafzadegan N. Saum K.U. Scazufca M. Schargrodsky H. Scheidt-Nave C. Sein A.A. Sharma S.K. Shaw J.E. Shibuya K. Shin Y. Shiri R. Siantar R. Sibai A.M. Simon M. Simons J. Simons L.A. Sjostrom M. Slowikowska-Hilczer J. Slusarczyk P. Smeeth L. Snijder M.B. So H.K. Sobngwi E. Söderberg S. Solfrizzi V. Sonestedt E. Soumare A. Staessen J.A. Stathopoulou M.G. Steene-Johannessen J. Stehle P. Stein A.D. Stessman J. Stöckl D. Stokwiszewski J. Stronks K. Strufaldi M.W. Sun C.A. Sundström J. Sung Y.T. Suriyawongpaisal P. Sy R.G. Tai E.S. Tamosiunas A. Tang L. Tarawneh M. Tarqui-Mamani C.B. Taylor A. Theobald H. Thijs L. Thuesen B.H. Tolonen H.K. Tolstrup J.S. Topbas M. Torrent M. Traissac P. Trinh O.T. Tulloch-Reid M.K. Tuomainen T.P. Turley M.L. Tzourio C. Ueda P. Ukoli F.A. Ulmer H. Uusitalo H.M. Valdivia G. Valvi D. van Rossem L. van Valkengoed I.G. Vanderschueren D. Vanuzzo D. Vega T. Velasquez-Melendez G. Veronesi G. Verschuren W.M. Verstraeten R. Viet L. Vioque J. Virtanen J.K. Visvikis-Siest S. Viswanathan B. Vollenweider P. Voutilainen S. Vrijheid M. Wade A.N. Wagner A. Walton J. Wan Mohamud W.N. Wang F. Wang M.D. Wang Q. Wang Y.X. Wannamethee S.G. Weerasekera D. Whincup P.H. Widhalm K. Wiecek A. Wijga A.H. Wilks R.J. Willeit J. Wilsgaard T. Wojtyniak B. Wong T.Y. Woo J. Woodward M. Wu F.C. Wu S.L. Xu H. Yan W. Yang X. Ye X. Yoshihara A. Younger-Coleman N.O. Zambon S. Zargar A.H. Zdrojewski T. Zhao W. Zheng Y. Zuñiga Cisneros J. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 2016 387 10027 1513 1530 10.1016/S0140‑6736(16)00618‑8 27061677
    [Google Scholar]
  104. IDF diabetes atlas. Available from: https://diabetesatlas.org/(Accessed on: 18 November 2019)
  105. IDF diabetes atlas. 2019 197–198betesatlas.org/en/
  106. Boerma T. Victora C. Abouzahr C. Monitoring country progress and achievements by making global predictions: Is the tail wagging the dog? Lancet 2018 392 10147 607 609 10.1016/S0140‑6736(18)30586‑5 29661480
    [Google Scholar]
  107. Hosseinpoor A.R. Bergen N. Mendis S. Harper S. Verdes E. Kunst A. Chatterji S. Socioeconomic inequality in the prevalence of noncommunicable diseases in low- and middle-income countries: Results from the World Health Survey. BMC Public Health 2012 12 1 474 10.1186/1471‑2458‑12‑474 22726343
    [Google Scholar]
  108. Dalsgaard E.M. Skriver M.V. Sandbaek A. Vestergaard M. Socioeconomic position, type 2 diabetes and long-term risk of death. PLoS One 2015 10 5 e0124829 10.1371/journal.pone.0124829 25942435
    [Google Scholar]
  109. Sacerdote C. Ricceri F. Rolandsson O. Baldi I. Chirlaque M.D. Feskens E. Bendinelli B. Ardanaz E. Arriola L. Balkau B. Bergmann M. Beulens J.W. Boeing H. Clavel-Chapelon F. Crowe F. de Lauzon-Guillain B. Forouhi N. Franks P.W. Gallo V. Gonzalez C. Halkjaer J. Illner A.K. Kaaks R. Key T. Khaw K.T. Navarro C. Nilsson P.M. Dal ton S.O. Overvad K. Pala V. Palli D. Panico S. Polidoro S. Quirós J.R. Romieu I. Sánchez M.J. Slimani N. Sluijs I. Spijkerman A. Teucher B. Tjønneland A. Tumino R. van der A D. Vergnaud A.C. Wennberg P. Sharp S. Langenberg C. Riboli E. Vineis P. Wareham N. Lower educational level is a predictor of incident type 2 diabetes in European countries: The EPIC-InterAct study. Int. J. Epidemiol. 2012 41 4 1162 1173 10.1093/ije/dys091 22736421
    [Google Scholar]
  110. Brown A.F. Ettner S.L. Piette J. Weinberger M. Gregg E. Shapiro M.F. Karter A.J. Safford M. Waitzfelder B. Prata P.A. Beckles G.L. Socioeconomic position and health among persons with diabetes mellitus: a conceptual framework and review of the literature. Epidemiol. Rev. 2004 26 1 63 77 10.1093/epirev/mxh002 15234948
    [Google Scholar]
  111. Maty S.C. Everson-Rose S.A. Haan M.N. Raghunathan T.E. Kaplan G.A. Education, income, occupation, and the 34-year incidence (1965–99) of Type 2 diabetes in the Alameda County Study. Int. J. Epidemiol. 2005 34 6 1274 1281 10.1093/ije/dyi167 16120636
    [Google Scholar]
  112. Espelt A. Borrell C. Roskam A.J. Rodríguez-Sanz M. Stirbu I. Dalmau-Bueno A. Regidor E. Bopp M. Martikainen P. Leinsalu M. Artnik B. Rychtarikova J. Kalediene R. Dzurova D. Mackenbach J. Kunst A.E. Socioeconomic inequalities in diabetes mellitus across Europe at the beginning of the 21st century. Diabetologia 2008 51 11 1971 1979 10.1007/s00125‑008‑1146‑1 18779946
    [Google Scholar]
  113. Wild S. Roglic G. Green A. Sicree R. King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004 27 5 1047 1053 10.2337/diacare.27.5.1047 15111519
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855316757241031143556
Loading
/content/journals/cdth/10.2174/0115748855316757241031143556
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: plants ; antidiabetics ; syndrome ; Diabetes mellitus ; gastrointestinal ; insulin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test