Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

A density functional theory (DFT) study of some selected eco-friendly chitosan derivatives was performed, recently used as corrosion inhibitors for steel in 0.1M and 0.5M HCl. Correlation between observed and predicted inhibition efficiencies is based on QSAR by some statistical calculations.

We extracted the optimum molecular descriptors for the chitosan derivatives group under study and it was found that these descriptors have a proper effect on increasing the inhibition efficiency that was proved by applying the theoretical calculations (non-linear regression) on two models of chitosan derivatives (ChI and ChII). The quantum chemical descriptors most relevant to the corrosion inhibitors potential effect have been calculated in the aqueous phase. They include: E, E, dipole moment (D), molecular area (MA), molecular volume (MV), the charge on common oxygen (O Charge), the charge on common nitrogen (N Charge), nuclear repulsion energy (NRE), final single point energy (E) and total positive charge (TPC).

The optimum parameters resulted using multiple linear regression are E, CCO, CCN, and D. Using these optimum parameters, the models designed show good results in their inhibition effect on steel at the same environment of the chitosan derivatives group under study.

Experimental explanation showed good results from modelling prediction, where the corrosion rate decreases markedly with increasing the concentration of the designed inhibitors till the optimum concentration where the rate becomes constant. SEM on the optimum inhibitor concentration proved the high inhibition efficiency obtained.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001601999201006125255
2021-03-01
2024-11-22
Loading full text...

Full text loading...

References

  1. SheldonR.A. Metrics of green chemistry and sustainability: past, present, and future.Chem. Eng.2018613248
    [Google Scholar]
  2. NegmN.A. ZakiM.F. Salem. M.A.I., J. Synthesis and evaluation of 4‐diethyl amino benzaldehyde schiff base cationic amphiphiles as corrosion inhibitors for carbon steel in different acidic media.Surfact. Deterg.20091232132910.1007/s11743‑009‑1156‑0
    [Google Scholar]
  3. NegmN.A. MorsyS.M.I. SaidM.M. Corrosion inhibition of some novel hydrazone derivatives. Surfact.J. Deterg.20058959810.1007/s11743‑005‑0336‑4
    [Google Scholar]
  4. NegmN.A. Morsy, S.M.I, J. Corrosion inhibition of triethanolammonium bromide mono‐ and dibenzoate as cationic inhibitors in an acidic medium.Surfact. Deterg.2005828328710.1007/s11743‑005‑0359‑x
    [Google Scholar]
  5. NegmN.A. El FarargyA.F. Al SabaghA.M. AbdelrahmanN.R. New schiff base cationic surfactants: surface and thermodynamic properties and applicability in bacterial growth and metal corrosion prevention. Surfact.J. Deterg.20111450551410.1007/s11743‑011‑1258‑3
    [Google Scholar]
  6. SinkoJ.P. Challenges of chromate inhibitor pigments replacement in organic coatings.Org. Coat.20014226728210.1016/S0300‑9440(01)00202‑8
    [Google Scholar]
  7. HianoS. InuiH. KosakiH. UnoY. TodaT. Biotechnology and bioactive polymers.Springer1994
    [Google Scholar]
  8. SugamaT. CookM. Poly(itaconic acid)-modified chitosan coatings for mitigating corrosion of aluminum substrates.Prog. Org. Coat.2000382798710.1016/S0300‑9440(00)00077‑1
    [Google Scholar]
  9. KobayashiH. FukuokaA. Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass.Green Chem.2013151740176310.1039/c3gc00060e
    [Google Scholar]
  10. DaoutidisP. KellowayA. MarvinW.A. RangarajanS. TorresA.I. Process systems engineering for biorefineries: new research vistas.Curr. Opin. Chem. Eng.20132444244710.1016/j.coche.2013.09.006
    [Google Scholar]
  11. AbdallahM. AsgharB.H. ZaafaranyI. FoudaA.S. The inhibition of carbon steel corrosion in hydrochloric acid solution using some phenolic compounds.Int. J. Electrochem. Sci.201271282304
    [Google Scholar]
  12. KhaledM.I. Evaluation of cysteine as environmentally friendly corrosion inhibitor for copper in neutral and acidic chloride solutions.Electrochim. Acta2007527811781910.1016/j.electacta.2007.02.053
    [Google Scholar]
  13. AlsabaghA.M. ElsabeeM.Z. MoustafaY.M. ElfkyA. MorsR.E. Corrosion inhibition efficiency of some hydrophobically modified chitosan surfactants in relation to their surface active properties. Egyptian.J. Petrol.201423349359
    [Google Scholar]
  14. MenakaR. SubhashiniS. Chitosan Schiff base as effective corrosion inhibitor for mild steel in acid medium.Polym. Int.20176634935810.1002/pi.5245
    [Google Scholar]
  15. DarmokoesoemoH. SuyantoS. AnggaraL.S. AmenaghawonA.N. KusumaH.S. Application of carboxymethyl chitosan-benzaldehyde as anticorrosion agent on steel.Int. J. Chem. Eng.201829
    [Google Scholar]
  16. VermaC. KumarA.M. MazumderA.J. QuraishiM.A. Chitosan-Based Green and Sustainable Corrosion Inhibitors for Carbon Steel.Chitin-Chitosan - Myriad Functionalities in Science and Technology201810.5772/intechopen.74989
    [Google Scholar]
  17. HusseinM.H.M. El-HadyM.F. ShehataH.A.H. HegazyM.A. HefniH.H.H. Preparation of some eco-friendly corrosion inhibitors having antibacterial activity from sea food waste.J. Surfactants Deterg.201316223324223420292
    [Google Scholar]
  18. El-MahdyG.A. AttaA.M. Al-LohedanH.A. EzzatA.O. Synthesis of water soluble hyperbranched poly (amine-ester) as corrosion inhibitors for steel.Int. J. Electrochem. Sci.20151058125826
    [Google Scholar]
  19. ToyM. TanakH. TheoJ. DFT quantum chemical studies on 1-[n-(2-pyridyl) aminomethylidene]-2 (1h)-naphtalenone.Comput. Chem.201211745
    [Google Scholar]
  20. FrankN. The ORCA program system.Interdiscip. Rev. Comput. Mol. Sci.201287378
    [Google Scholar]
  21. BeckeA. Density-functional exchange-energy approximation with correct asymptotic behavior.Phys. Rev. A199838309810.1103/PhysRevA.38.3098
    [Google Scholar]
  22. BeckeA.D. Density‐functional thermochemistry. III. The role of exact exchange.J. Chem. Phys.199398564810.1063/1.464913
    [Google Scholar]
  23. LeeC. YangW. ParrR.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys. Rev. B Condens. Matter198837278578910.1103/PhysRevB.37.7859944570
    [Google Scholar]
  24. KrishnanR. BinkleyJ.S. SeegerR. PopleJ.A. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions.J. Chem. Phys.19807265010.1063/1.438955
    [Google Scholar]
  25. BlaudeauJ.P. McGrathM.P. CurtissL.A. RadomL. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca.J. Chem. Phys.1997107501610.1063/1.474865
    [Google Scholar]
  26. CurtissL.A. McGrathM.P. BlandeauJ.P. DavisN.E. BinningR.C. RadomL. J. Chem. Phys.1995, Extension of Gaussian 2 theory to molecules containing third row atoms Ga-Kr.1995103610410.1063/1.470438
    [Google Scholar]
  27. A) MillsN. ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA.J. Adm. Soc.2006128411364913650
    [Google Scholar]
  28. B) ZhurkoG.A. ZhurkoD.A. ChemCraft: Tool for Treatment of Chemical Data, Lite Version Build 08 (freeware)2005
    [Google Scholar]
  29. FujitaT. WinklerD.A. Understanding the roles of the “Two QSARs”.J. Chem. Inf. Model.201656226927410.1021/acs.jcim.5b0022926754147
    [Google Scholar]
  30. WinklerD.A. BurdenF.R. Robust QSAR models from novel descriptors and bayesian regularised neural networks.Mol. Simul.20002424325810.1080/08927020008022374
    [Google Scholar]
  31. LeT. EpaN.V. BurdenF.R. WinklerD.A. Quantitative structure property relationship modeling of diverse materials properties.Chem. Rev.201211228892919
    [Google Scholar]
  32. GuptaM.K. GuptaS. RawalR.K. Impact of artificial neural networks in qsar and computational modeling.M. Puri, Y Pathak, VK Sutariya, S Tipparaju and W Moreno. Eds. Artificial Neural Network for Drug Design, Delivery and Disposition. Eds.Elsevier (Academic Press)London UK2015153179
    [Google Scholar]
  33. Montañez-GodínezN. Martínez-OlguínA.C. DeebO. Garduño-JuárezR. Ramírez-GaliciaG. QSAR/QSPR as an application of artificial neural networks.Methods Mol. Biol.2015126031933310.1007/978‑1‑4939‑2239‑0_1925502390
    [Google Scholar]
  34. NormanH. DaleH. HullC.H. SPSS Statistical Package for the Social Sciences1970
    [Google Scholar]
  35. KhaledK.F. Babic-SamarzijaK. HackermanN. Theoretical study of the structural effects of polymethylene amines on corrosion inhibition of iron in acid solutions.Electrochim. Acta200552515252010.1016/j.electacta.2004.10.079
    [Google Scholar]
  36. KhalilN. Quantum chemical approach of corrosion inhibition.Electrochim. Acta20034818263510.1016/S0013‑4686(03)00307‑4
    [Google Scholar]
  37. LukovitsI. KalmanE. PalinkasG. Nonlinear group-contribution models of corrosion inhibition.Corrosion19955120110.5006/1.3294362
    [Google Scholar]
  38. LukovitsI. PalfiK. BakoI. KalmanE. LKP model of the inhibition mechanism of thiourea compounds.Corrosion1997531291591910.5006/1.3290275
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001601999201006125255
Loading
/content/journals/ccchem/10.2174/2666001601999201006125255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test