Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

Hyperglycemia is a metabolic illness characterized by diabetes mellitus. Chronic hyperglycemia can lead to infection, production of more reactive oxygen species, chronic inflammation, and impaired angiogenesis, thus increasing the wound’s healing time. As the diabetic wound healing process is a more complex pathology, the demand to develop a topical application has emerged. This review focuses on the diabetic wound, wound healing, and the factors that influence diabetic wound healing. It also highlights the impact of combination delivery of antibiotics and antioxidants loaded with multifunctional hydrogel on diabetic wound healing. Due to the immense financial strain caused by this pathology, there is a need for other effective novel methods for wound healing. Therefore, multifunctional hydrogels, which are effective and have been used mainly as a carrier system for diabetic wound treatment, have been studied. Hence, the application of antibiotics and antioxidants loaded with multifunctional hydrogel in treating diabetic wounds is reviewed. Hydrogels present a significant theoretical reference for diabetic wound healing.

Loading

Article metrics loading...

/content/journals/cam/10.2174/2666731202666230720142646
2023-09-04
2024-11-26
Loading full text...

Full text loading...

References

  1. SpampinatoS.F. CarusoG.I. De PasqualeR. SortinoM.A. MerloS. The treatment of impaired wound healing in diabetes: Looking among old drugs.Pharmaceut.20201346010.3390/ph1304006032244718
    [Google Scholar]
  2. GloverK. MathewE. PitzantiG. MageeE. LamprouD.A. 3D bioprinted scaffolds for diabetic wound-healing applications.Drug Deliv. Transl. Res.20221410.1007/s13346‑022‑01115‑835018558
    [Google Scholar]
  3. RamadanN. TahaM. La RosaA.D. ElsabbaghA. Towards selection charts for epoxy resin, unsaturated polyester resin and their fibre-fabric composites with flame retardants.Materials2021145118110.3390/ma1405118133802309
    [Google Scholar]
  4. HanG. CeilleyR. Chronic wound healing: A review of current management and treatments.Adv. Ther.201734359961010.1007/s12325‑017‑0478‑y28108895
    [Google Scholar]
  5. AndrewsK.L. HoudekM.T. KiemeleL.J. Wound management of chronic diabetic foot ulcers.Prosthet. Orthot. Int.2015391293910.1177/030936461453429625614499
    [Google Scholar]
  6. Frykberg RobertG. BanksJ. Challenges in the treatment of chronic wounds.Adv. Wound Care20154956058210.1089/wound.2015.0635
    [Google Scholar]
  7. Demidova-RiceT.N. HamblinM.R. HermanI.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: Biology, causes, and approaches to care.Adv. Skin Wound Care201225730431410.1097/01.ASW.0000416006.55218.d022713781
    [Google Scholar]
  8. SchultzG.S. DavidsonJ.M. KirsnerR.S. BornsteinP. HermanI.M. Dynamic reciprocity in the wound microenvironment.Wound Repair Regen.201119213414810.1111/j.1524‑475X.2011.00673.x21362080
    [Google Scholar]
  9. MandelJ. CasariM. StepanyanM. MartyanovA. DeppermannC. Beyond hemostasis: Platelet innate immune interactions and thromboinflammation.Int. J. Mol. Sci.2022237386810.3390/ijms2307386835409226
    [Google Scholar]
  10. AmadioE.M. MarcosR.L. SerraA.J. dos SantosS.A. CairesJ.R. FernandesG.H.C. Leal-JuniorE.C. FerrariJ.C.C. de Tarso Camillo de CarvalhoP. Effect of photobiomodulation therapy on the proliferation phase and wound healing in rats fed with an experimental hypoproteic diet.Lasers Med. Sci.20213671427143510.1007/s10103‑020‑03181‑133156476
    [Google Scholar]
  11. LuoR. DaiJ. ZhangJ. LiZ. Accelerated skin wound healing by electrical stimulation.Adv. Healthc. Mater.20211016210055710.1002/adhm.20210055733945225
    [Google Scholar]
  12. PotekaevN.N. BorzykhO.B. MedvedevG.V. PushkinD.V. PetrovaM.M. PetrovA.V. DmitrenkoD.V. KarpovaE.I. DeminaO.M. ShnayderN.A. The role of extracellular matrix in skin wound healing.J. Clin. Med.20211024594710.3390/jcm1024594734945243
    [Google Scholar]
  13. GulerZ. RooversJ.P. Role of fibroblasts and myofibroblasts on the pathogenesis and treatment of pelvic organ prolapse.Biomolecules20221219410.3390/biom1201009435053242
    [Google Scholar]
  14. ShahS.A. SohailM. KhanS. MinhasM.U. de MatasM. SikstoneV. HussainZ. AbbasiM. KousarM. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review.Int. J. Biol. Macromol.201913997599310.1016/j.ijbiomac.2019.08.00731386871
    [Google Scholar]
  15. SirelkhatimA. MahmudS. SeeniA. KausN.H.M. AnnL.C. BakhoriS.K.M. HasanH. MohamadD. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism.Nano-Micro Lett.20157321924210.1007/s40820‑015‑0040‑x30464967
    [Google Scholar]
  16. XuF.W. LvY.L. ZhongY.F. XueY.N. WangY. ZhangL.Y. HuX. TanW.Q. Beneficial effects of green tea EGCG on skin wound healing: A comprehensive review.Molecules20212620612310.3390/molecules2620612334684703
    [Google Scholar]
  17. BurnG.L. FotiA. MarsmanG. PatelD.F. ZychlinskyA. The Neutrophil.Immunity20215471377139110.1016/j.immuni.2021.06.00634260886
    [Google Scholar]
  18. BIO Habana.MEDICC Review.202224144182
    [Google Scholar]
  19. KeeL.T. NgC.Y. Al-MasawaM.E. FooJ.B. HowC.W. NgM.H. LawJ.X. Extracellular vesicles in facial aesthetics: A review.Int. J. Mol. Sci.20222312674210.3390/ijms23126742
    [Google Scholar]
  20. LeungS. SumW. ShiY. The glycolytic process in endothelial cells and its implications.Acta Pharmacologica. Sinica202243225125910.3390/ijms23126742
    [Google Scholar]
  21. BacciS. Cellular mechanisms and therapies in wound healing: Looking toward the Future.Biomedicines2021911161110.3390/biomedicines911161134829840
    [Google Scholar]
  22. AnY. LinS. TanX. ZhuS. NieF. ZhenY. GuL. ZhangC. WangB. WeiW. LiD. WuJ. Exosomes from adipose‐derived stem cells and application to skin wound healing.Cell Prolif.2021543e1299310.1111/cpr.1299333458899
    [Google Scholar]
  23. ChengY.S. YenH.H. ChangC.Y. LienW.C. HuangS.H. LeeS.S. WangL. WangH.M.D. Adipose-derived stem cell-incubated HA-rich sponge matrix implant modulates oxidative stress to enhance VEGF and TGF-β secretions for extracellular matrix reconstruction in vivo.Oxid. Med. Cell. Longev.20222022935569210.1155/2022/935569235082971
    [Google Scholar]
  24. FengJ. WangJ. WangY. HuangX. ShaoT. DengX. CaoY. ZhouM. ZhaoC. Oxidative stress and lipid peroxidation: Prospective associations between ferroptosis and delayed wound healing in diabetic ulcers.Front. Cell Dev. Biol.20221089865710.3389/fcell.2022.89865735874833
    [Google Scholar]
  25. XuZ. HanS. GuZ. WuJ. Advances and impact of antioxidant hydrogel in chronic wound healing.Adv. Healthc. Mater.202095190150210.1002/adhm.20190150231977162
    [Google Scholar]
  26. MirM. AliM.N. BarakullahA. GulzarA. ArshadM. FatimaS. AsadM. Synthetic polymeric biomaterials for wound healing: A review.Prog. Biomater.20187112110.1007/s40204‑018‑0083‑429446015
    [Google Scholar]
  27. BoatengJ. CatanzanoO. Advanced therapeutic dressings for effective wound healing-A review.J. Pharm. Sci.2015104113653368010.1002/jps.2461026308473
    [Google Scholar]
  28. RegeaG. Review on antibiotics resistance and its economic impacts. J. Pharmacol. Clinic.Res.2018555567510.19080/JPCR.2018.05.555675
    [Google Scholar]
  29. El-ElaF.I.A. FarghaliA.A. MahmoudR.K. MohamedN.A. MoatyS.A.A. New approach in ulcer prevention and wound healing treatment using doxycycline and amoxicillin/LDH Nanocomposites.Sci. Rep.201991641810.1038/s41598‑019‑42842‑231015527
    [Google Scholar]
  30. SonamuthuJ. CaiY. LiuH. KasimM.S.M. VasanthakumarV.R. PandiB. WangH. YaoJ. MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound.Int. J. Biol. Macromol.20201531058106910.1016/j.ijbiomac.2019.10.23631756486
    [Google Scholar]
  31. AltoéL.S. AlvesR.S. MirandaL.L. SarandyM.M. BastosD.S.S. Gonçalves-SantosE. NovaesR.D. GonçalvesR.V. Doxycycline hyclate modulates antioxidant defenses, matrix metalloproteinases, and cox-2 activity accelerating skin wound healing by secondary intention in rats.Oxid. Med. Cell. Longev.20212021468104110.1155/2021/468104133959214
    [Google Scholar]
  32. StechmillerJ. CowanL. SchultzG. The role of doxycycline as a matrix metalloproteinase inhibitor for the treatment of chronic wounds.Biol. Res. Nurs.201011433634410.1177/109980040934633320031955
    [Google Scholar]
  33. MooreA.L. desJardins-ParkH.E. DuotoB.A. MascharakS. MurphyM.P. IrizarryD.M. FosterD.S. JonesR.E. BarnesL.A. MarshallC.D. RansomR.C. WernigG. LongakerM.T. Doxycycline reduces scar thickness and improves collagen architecture.Ann. Surg.2020272118319310.1097/SLA.000000000000317230585822
    [Google Scholar]
  34. FarhadS.Z. DehdashtizadehA. EsnaashariN. EjeianF. AminiS. The effect of laser irradiation and doxycycline application on the production of matrix metalloproteinase-8 and collagen I from cultured human periodontal ligament cells.Dent. Res. J.202017321321810.4103/1735‑3327.28473232774799
    [Google Scholar]
  35. AlamoudiA.A. AlharbiA.S. Abdel-NaimA.B. Badr-EldinS.M. AwanZ.A. OkbazghiS.Z. AhmedO.A.A. AlhakamyN.A. FahmyU.A. EsmatA. Novel nanoconjugate of apamin and ceftriaxone for management of diabetic wounds.Life2022127109610.3390/life1207109635888184
    [Google Scholar]
  36. HaiderF. KhanB.A. KhanM.K. Formulation and evaluation of topical linezolid nanoemulsion for open incision wound in diabetic animal model.AAPS Pharm. Sci. Tech.202223512910.1208/s12249‑022‑02288‑835484340
    [Google Scholar]
  37. VillaC.C. SánchezL.T. ValenciaG.A. AhmedS. GutiérrezT.J. Molecularly imprinted polymers for food applications: A review.Trends Food Sci. Technol.202111164266910.1016/j.tifs.2021.03.003
    [Google Scholar]
  38. KalitaS. KandimallaR. BhowalA.C. KotokyJ. KunduS. Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening.Sci. Rep.201881577810.1038/s41598‑018‑22736‑529636496
    [Google Scholar]
  39. Thattaruparam bil Raveendran, N.; Mohandas, A.; Ramachandran, M.R.; Somasekharan, M.A.; Biswas, R.; Jayakumar, R. Ciprofloxacin-and fluconazole-containing fibrin-nanoparticle-incorporated chitosan bandages for the treatment of polymicrobial wound infections.ACS Appl. Bio Mater.20182124325410.1021/acsabm.8b00585
    [Google Scholar]
  40. RazzaqA. KhanZ.U. SaeedA. ShahK.A. KhanN.U. MenaaB. IqbalH. MenaaF. Development of cephradine-loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: In vitro and in vivo assessments.Pharmaceutics202113334910.3390/pharmaceutics1303034933799983
    [Google Scholar]
  41. DavaniF. AlishahiM. SabziM. KhorramM. ArastehfarA. ZomorodianK. Dual drug delivery of vancomycin and imipenem/cilastatin by coaxial nanofibers for treatment of diabetic foot ulcer infections.Mater. Sci. Eng. C202112311197510.1016/j.msec.2021.11197533812603
    [Google Scholar]
  42. VarricaC. CarvalheiroM. Faria-SilvaC. EleutérioC. SandriG. SimõesS. Topical allopurinol-loaded nanostructured lipid carriers: A novel approach for wound healing management.Bioengineering202181219210.3390/bioengineering812019234940345
    [Google Scholar]
  43. SutthammikornN. SupajaturaV. YueH. TakahashiM. ChansakaowS. NakanoN. SongP. OgawaT. IkedaS. OkumuraK. OgawaH. NiyonsabaF. Topical Gynura procumbens as a novel therapeutic improves wound healing in diabetic mice.Plants2021106112210.3390/plants1006112234205899
    [Google Scholar]
  44. LiouY.C. LinY.A. WangK. YangJ.C. JangY.J. LinW. WuY.C. Synthesis of novel spiro-tetrahydroquinoline derivatives and evaluation of their pharmacological effects on wound healing.Int. J. Mol. Sci.20212212625110.3390/ijms2212625134200731
    [Google Scholar]
  45. PatelK.K. SurekhaD.B. TripathiM. AnjumM.M. MuthuM.S. TilakR. AgrawalA.K. SinghS. Antibiofilm potential of silver sulfadiazine-loaded nanoparticle formulations: A study on the effect of D Nase-I on microbial biofilm and wound healing activity.Mol. Pharm.20191693916392510.1021/acs.molpharmaceut.9b0052731318574
    [Google Scholar]
  46. ZadehB.S. ZaminB.K. The effect of chitosan coating on mafenide acetate-loaded liposome characterization and delivery through burned rat skiN.Asian J. Pharm. Clin. Res.201912721221710.22159/ajpcr.2019.v12i7.32338
    [Google Scholar]
  47. ShahA. Ali BuabeidM. ArafaE.S.A. HussainI. LiL. MurtazaG. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin.Int. J. Pharm.2019564223810.1016/j.ijpharm.2019.04.04631002933
    [Google Scholar]
  48. ZhangX. ParekhG. GuoB. HuangX. DongY. HanW. ChenX. XiaoG. Polyphenol and self-assembly: Metal polyphenol nanonetwork for drug delivery and pharmaceutical applications.Future Drug Discov.201911FDD710.4155/fdd‑2019‑0001
    [Google Scholar]
  49. Al-AroujM. Assaad-KhalilS. BuseJ. FahdilI. FahmyM. HafezS. HassaneinM. IbrahimM.A. KendallD. KishawiS. Al-MadaniA. NakhiA.B. TayebK. ThomasA. Recommendations for management of diabetes during Ramadan: Update 2010.Diabetes Care20103381895190210.2337/dc10‑089620668157
    [Google Scholar]
  50. Gulcin, İ. Antioxidants and antioxidant methods: An updated overview.Arch. Toxicol.202094365171510.1007/s00204‑020‑02689‑332180036
    [Google Scholar]
  51. ChandraP. AroraD.S. PalM. SharmaR.K. Antioxidant potential and extracellular auxin production by white rot fungi.Appl. Biochem. Biotechnol.2019187253153910.1007/s12010‑018‑2842‑z29992489
    [Google Scholar]
  52. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.20104811812610.4103/0973‑7847.7090222228951
    [Google Scholar]
  53. SaravananR. RamamurthyJ. Evaluation of antioxidant activity of ocimum sanctum-an in vitro study.Int. J. Dent. Oral Sci.202181150015005
    [Google Scholar]
  54. SreelathaS. DineshE. UmaC. Antioxidant properties of Rajgira (Amaranthus paniculatus) leaves and potential synergy in chemoprevention.Asian Pac. J. Cancer Prev.20121362775278010.7314/APJCP.2012.13.6.277522938458
    [Google Scholar]
  55. DasA.K. NandaP.K. MadaneP. BiswasS. DasA. ZhangW. LorenzoJ.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods.Trends Food Sci. Technol.20209932333610.1016/j.tifs.2020.03.010
    [Google Scholar]
  56. VijayaL. AnitaP. JossyV. NareshC. In vitro antioxidant activity of moringapterigosperma (Gaertn) leaves.Pharmacogn. J.200913190197
    [Google Scholar]
  57. Al-GhanayemA.A. AlhussainiM.S. AsadM. JosephB. Effect of Moringa oleifera leaf extract on excision wound infections in rats: Antioxidant, antimicrobial, and gene expression analysis.Molecules20222714448110.3390/molecules2714448135889362
    [Google Scholar]
  58. GulM. LiuZ.W. Iahtisham-Ul-Haq RabailR. FaheemF. WalayatN. NawazA. ShabbirM.A. MunekataP.E.S. LorenzoJ.M.. AadilR.M.. Functional and nutraceutical significance of amla (Phyllanthus emblica L.): A review.Antioxidants202211581610.3390/antiox1105081635624683
    [Google Scholar]
  59. AdnanM. OhK.K. AzadM.O.K. ShinM.H. WangM.H. ChoD.H. Kenaf (Hibiscus cannabinus L.) leaves and seed as a potential source of the bioactive compounds: Effects of various extraction solvents on biological properties.Life2020101022310.3390/life1010022332998223
    [Google Scholar]
  60. PatelM. VermaR. SrivastavP. Antioxidant activity of eclipta alba extract.J. Med. Plants Stud.201649298
    [Google Scholar]
  61. XuD. HuM.J. WangY.Q. CuiY.L. Antioxidant activities of quercetin and its complexes for medicinal application.Molecules2019246112310.3390/molecules2406112330901869
    [Google Scholar]
  62. PrabhakarP.K. PrasadR. AliS. DobleM. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats.Phytomedicine201320648849410.1016/j.phymed.2012.12.00423490007
    [Google Scholar]
  63. SunithaD. A review on antioxidant methods.Asian J. Pharm. Clin. Res.201692143210.22159/ajpcr.2016.v9s2.13092
    [Google Scholar]
  64. ChandK. Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives.Pharmacol. Rep.201769228129510.1016/j.pharep.2016.11.00728171830
    [Google Scholar]
  65. Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application.Skin Pharmacol. Physiol.201831633233610.1159/00049175530235459
    [Google Scholar]
  66. ThyagarajuB.M. MuralidharaB. Ferulic acid supplements abrogate oxidative impairments in liver and testis in the streptozotocin-diabetic rat.Zool. Sci.200825885486010.2108/zsj.25.85418795822
    [Google Scholar]
  67. MaitzM.F. Applications of synthetic polymers in clinical medicine.Biosurf. Biotribol.20151316117610.1016/j.bsbt.2015.08.002
    [Google Scholar]
  68. RoyS. MetyaS.K. SannigrahiS. RahamanN. AhmedF. Treatment with ferulic acid to rats with streptozotocin-induced diabetes: Effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell.Endocrine201344236937910.1007/s12020‑012‑9868‑823299178
    [Google Scholar]
  69. LinC.M. ChiuJ.H. WuI.H. WangB.W. PanC.M. ChenY.H. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1α.J. Nutr. Biochem.201021762763310.1016/j.jnutbio.2009.04.00119443196
    [Google Scholar]
  70. UmreR. GaneshpurkarA. GaneshpurkarA. PandeyS. PandeyV. ShrivastavaA. DubeyN. In vitro, in vivo and in silico antiulcer activity of ferulic acid.Future J. Pharmaceut. Sci.20184224825310.1016/j.fjps.2018.08.001
    [Google Scholar]
  71. SivakumarS. MuraliR. ArathanaikottiD. GopinathA. SenthilkumarC. KesavanS. MadhanB. Ferulic acid loaded microspheres reinforced in 3D hybrid scaffold for antimicrobial wound dressing.Int. J. Biol. Macromol.202117746347310.1016/j.ijbiomac.2021.02.12433609580
    [Google Scholar]
  72. WangS. ZhengH. ZhouL. ChengF. LiuZ. ZhangH. WangL. ZhangQ. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria.Nano Lett.20202075149515810.1021/acs.nanolett.0c0137132574064
    [Google Scholar]
  73. GulrezS.K. Al-assafS. PhillipsG.O. Hydrogels: Methods of preparation, characterisation and applications.Adv. Res.20036210512110.1016/j.jare.2013.07.006
    [Google Scholar]
  74. GavanA. ColobatiuL. HanganuD. BogdanC. OlahN. AchimM. MirelS. Development and evaluation of hydrogel wound dressings loaded with herbal extracts.Processes202210224210.3390/pr10020242
    [Google Scholar]
  75. Casado-DiazA. Moreno-RojasJ.M. Verdú-SorianoJ. Lázaro-MartínezJ.L. Rodríguez-MañasL. TunezI. La TorreM. Berenguer PérezM. Priego-CapoteF. Pereira-CaroG. Evaluation of antioxidant and wound-healing properties of eho-85, a novel multifunctional amorphous hydrogel containing Olea europaea leaf extract.Pharmaceutics202214234910.3390/pharmaceutics1402034935214081
    [Google Scholar]
  76. ZhouL. PiW. ChengS. GuZ. ZhangK. MinT. ZhangW. DuH. ZhangP. WenY. Multifunctional DNA hydrogels with hydrocolloid‐cotton structure for regeneration of diabetic infectious wounds.Adv. Funct. Mater.20213148210616710.1002/adfm.202106167
    [Google Scholar]
  77. XuanQ. JiangF. DongH. ZhangW. ZhangF. MaT. ZhuangJ. YuJ. WangY. ShenH. ChenC. WangP. Bioinspired intrinsic versatile hydrogel fabricated by amyloidal toxin simulant‐based nanofibrous assemblies for accelerated diabetic wound healing.Adv. Funct. Mater.20213149210670510.1002/adfm.202106705
    [Google Scholar]
  78. ChenY.H. RaoZ.F. LiuY.J. LiuX.S. LiuY.F. XuL.J. WangZ.Q. GuoJ.Y. ZhangL. DongY.S. QiC.X. YangC. WangS.F. Multifunctional injectable hydrogel loaded with cerium-containing bioactive glass nanoparticles for diabetic wound healing.Biomolecules202111570210.3390/biom1105070234066859
    [Google Scholar]
  79. ChenC. ZhouP. HuangC. ZengR. YangL. HanZ. QuY. ZhangC. Photothermal-promoted multi-functional dual network polysaccharide hydrogel adhesive for infected and susceptible wound healing.Carbohydr. Polym.202127311855710.1016/j.carbpol.2021.11855734560968
    [Google Scholar]
  80. LiuH. LiZ. ZhaoY. FengY. ZvyaginA.V. WangJ. YangX. YangB. LinQ. Novel diabetic foot wound dressing based on multifunctional hydrogels with extensive temperature-tolerant, durable, adhesive, and intrinsic antibacterial properties.ACS Appl. Mater. Interfaces20211323267702678110.1021/acsami.1c0551434096258
    [Google Scholar]
  81. KimJ. SongY. KimH. BaeN.H. LeeT.J. ParkY.M. LeeS.J. Im, S.G.; Choi, B.G.; Lee, K.G. 3D Hierarchical polyaniline-metal hybrid nanopillars: Morphological control and its antibacterial application.Nanomaterials20211110271610.3390/nano1110271634685158
    [Google Scholar]
  82. ZhaoL. NiuL. LiangH. TanH. LiuC. ZhuF. pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing.ACS Appl. Mater. Interfaces2017943375633757410.1021/acsami.7b0939528994281
    [Google Scholar]
  83. KongL. WuZ. ZhaoH. CuiH. ShenJ. ChangJ. LiH. HeY. Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing.ACS Appl. Mater. Interfaces20181036301033011410.1021/acsami.8b0919130113159
    [Google Scholar]
  84. MaH. ZhouQ. ChangJ. WuC. Grape seed-inspired smart hydrogel scaffolds for melanoma therapy and wound healing.ACS Nano20191344302431110.1021/acsnano.8b0949630925040
    [Google Scholar]
  85. ZhuY. ZhangJ. SongJ. YangJ. DuZ. ZhaoW. GuoH. WenC. LiQ. SuiX. ZhangL. A multifunctional pro‐healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment.Adv. Funct. Mater.2020306190549310.1002/adfm.201905493
    [Google Scholar]
  86. ChenH. ChengR. ZhaoX. ZhangY. TamA. YanY. ShenH. ZhangY.S. QiJ. FengY. LiuL. PanG. CuiW. DengL. An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair.NPG Asia Mater.2019111310.1038/s41427‑018‑0103‑9
    [Google Scholar]
  87. ZhangJ. WuC. XuY. ChenJ. NingN. YangZ. GuoY. HuX. WangY. Highly stretchable and conductive self-healing hydrogels for temperature and strain sensing and chronic wound treatment.ACS Appl. Mater. Interfaces20201237409904099910.1021/acsami.0c0829132808753
    [Google Scholar]
  88. GaoD. ZhangY. BowersD.T. LiuW. MaM. Functional hydrogels for diabetic wound management.APL Bioeng.20215303150310.1063/5.004668234286170
    [Google Scholar]
  89. MunteanuI.G. ApetreiC. Analytical methods used in determining antioxidant activity: A review.Int. J. Mol. Sci.2021227338010.3390/ijms2207338033806141
    [Google Scholar]
  90. Güiza-ArgüelloV.R. Solarte-DavidV.A. Pinzón-MoraA.V. Ávila-QuirogaJ.E. Becerra-BayonaS.M. Current advances in the development of hydrogel-based wound dressings for diabetic foot ulcer treatment.Polymers20221414276410.3390/polym1414276435890541
    [Google Scholar]
  91. PougetC. Dunyach-RemyC. PantelA. Boutet-DuboisA. SchuldinerS. SottoA. LavigneJ.P. LoubetP. Alternative approaches for the management of diabetic foot ulcers.Front. Microbiol.20211274761810.3389/fmicb.2021.74761834675910
    [Google Scholar]
  92. ChinG.A. ThigpinT.G. PerrinK.J. MoldawerL.L. SchultzG.S. Treatment of chronic ulcers in diabetic patients with a topical metalloproteinase inhibitor, doxycycline.Wounds20031510315323
    [Google Scholar]
  93. HedayatyanfardK. Bagheri KhoulenjaniS. AbdollahifarM.A. AmaniD. HabibiB. ZareF. AsadiradA. PouriranR. ZiaiS.A. Chitosan/PVA/Doxycycline film and nanofiber accelerate diabetic wound healing in a rat model.Iran. J. Pharm. Res.202019422523910.22037/ijpr.2020.112620.1385933841538
    [Google Scholar]
  94. AlvenS. PeterS. MbeseZ. AderibigbeB.A. Polymer-based wound dressing materials loaded with bioactive agents: Potential materials for the treatment of diabetic wounds.Polymers202214472410.3390/polym1404072435215637
    [Google Scholar]
/content/journals/cam/10.2174/2666731202666230720142646
Loading
/content/journals/cam/10.2174/2666731202666230720142646
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antibiotic; antioxidant; Diabetic wound; hydrogel; hyperglycemia; multifunctional
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test