Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

The world considers environmental concerns a top-notch priority and strictly finds eco-friendly ways to bring transformations. The widely used class of fire extinguishers, halons, has been extensively used for decades until they were acknowledged for producing hazardous components like HF, HCl, HBr, and COF and causing ozone depletion. This creates a surge in the search for a competent substitute with reduced toxins, easing the environmental burden. So, this review discusses the significance of halons, their existence, phase-out, and alternate substitutes in detail. To reduce ozone depletion potential and global warming potential, the Montreal Protocol announced a ban on halons and promoted the search for its replacements by either introducing the use of HFCs and perfluorocarbons having zero ODP, or modifying them by gelling them with dry powders, gelling agents, surfactants, and antiflatulents. The thorough composition of gelled halocarbons proposed as efficient fire extinguishant alternatives is also disclosed here.

Loading

Article metrics loading...

/content/journals/cam/10.2174/0126667312299531240424115847
2024-05-13
2025-01-29
Loading full text...

Full text loading...

References

  1. McCullochA. MidgleyP.M. Stratospheric chemistry topics: Halogen sources, anthropogenic. In: Encyclopedia of Atmospheric Sciences. 2nd ed.Elsevier20155221227
    [Google Scholar]
  2. BurkholderJ.B. WilsonR.R. GierczakT. Atmospheric fate of CF 3 Br, CF 2 Br 2, CF 2 ClBr, and CF 2 BrCF 2 BR.J. Geophys. Res.199196D35025504310.1029/90JD02735
    [Google Scholar]
  3. FukayaH. OnoT. AbeT. New fire suppression mechanism of perfluoroalkylamines.J. Chem. Soc. Chem. Commun.199512121207120810.1039/c39950001207
    [Google Scholar]
  4. ZhangH. WangY. WangX. Thermal decomposition mechanism and fire-extinguishing performance of trans -1,1,1,4,4,4-Hexafluoro-2-butene: A potential candidate for halon substitutes.J. Phys. Chem. A2020124285944595310.1021/acs.jpca.0c0403632567315
    [Google Scholar]
  5. YuR. HuW. WangX. ZhangX. TanZ. In depth study on the fire‐extinguishing mechanism of Octafluoro‐2‐butene as a new promising Halon substitute.Int. J. Quantum Chem.202212214e2691310.1002/qua.26913
    [Google Scholar]
  6. WangY. WangX. ZhangX. FuH. TanZ. ZhangH. Theoretical and experimental studies on the thermal decomposition and fire‐extinguishing performance of cis‐1,1,1,4,4,4‐hexafluoro‐2‐butene.Int. J. Quantum Chem.20201209e2616010.1002/qua.26160
    [Google Scholar]
  7. O.M.S.Jr Fire extinguishing agents. In: Ullmann’s Encyclopedia of Industrial Chemistry.Wiley200810.1002/14356007.a11_113.pub2
    [Google Scholar]
  8. WangW. ZhaiH. LiY. Selection of gas fire extinguishing system based on halon substitutes.Fire Sci. Technol.2002213233
    [Google Scholar]
  9. WangT. HuY. ZhangP. PanR. Study on thermal decomposition properties and its decomposition mechanism of pentafluoroethane (HFC-125) fire extinguishing agent.J. Fluor. Chem.2016190485510.1016/j.jfluchem.2016.08.006
    [Google Scholar]
  10. a HüttenhainS.H. Literature review of the toxicology of the fire-Extinguishing agents halon 1301 and 1211 and their decomposition products.Zentralbl. Hyg. Umweltmed.198918931932042697205
    [Google Scholar]
  11. bSafety Data SheetAvailable from: https://fire-protection.com.au/wp-content/uploads/2021/11/NOVEC-1230.pdf
  12. StavertD. ArchuletaD.C. BehrM.J. LehnertB.E. Relative acute toxicities of hydrogen fluoride, hydrogen chloride, and hydrogen bromide in nose and pseudo-mouth-breathing rats.Fundam. Appl. Toxicol.199116463665510.1016/0272‑0590(91)90152‑T1653158
    [Google Scholar]
  13. MeldrumM. Toxicology of hydrogen fluoride in relation to major accident hazards.Regul. Toxicol. Pharmacol.199930211011610.1006/rtph.1999.134210536106
    [Google Scholar]
  14. HigginsE.A. FiorcaV. ThomasA.A. DavisH.V. Acute toxicity of brief exposures to HF, HCl, NO2 and HCN with and without CO.Fire Technol.19728212013010.1007/BF02590576
    [Google Scholar]
  15. PoklisA. A review of toxicological findings in fatal hydrogen fluoride exposures and a report of two cases.J. Can. Soc. Forensic Sci.199528427127610.1080/00085030.1995.10757487
    [Google Scholar]
  16. BraunJ. StössH. ZoberA. Intoxication following the inhalation of hydrogen fluoride.Arch. Toxicol.1984561505410.1007/BF003163536517713
    [Google Scholar]
  17. WaldbottG.L. LeeJ.R. Toxicity from repeated low-grade exposure to hydrogen fluoride--Case report.Clin. Toxicol.197813339140210.3109/15563657808988247743869
    [Google Scholar]
  18. a LundK. RefsnesM. RamisI. Human exposure to hydrogen fluoride induces acute neutrophilic, eicosanoid, and antioxidant changes in nasal lavage fluid.Inhal. Toxicol.200214211913210.1080/08958370175340394412122575
    [Google Scholar]
  19. b HardisonL.S.Jr WrightE. PizonA.F. Phosgene exposure: A case of accidental industrial exposure.J. Med. Toxicol.2014101515610.1007/s13181‑013‑0319‑623842907
    [Google Scholar]
  20. VeldersG.J.M. AndersenS.O. DanielJ.S. FaheyD.W. McFarlandM. The importance of the montreal protocol in protecting climate.Proc. Natl. Acad. Sci.2007104124814481910.1073/pnas.061032810417360370
    [Google Scholar]
  21. HeathE.A. Amendment to the montreal protocol on substances that deplete the ozone layer (kigali amendment).Int Leg Mater201756119320510.1017/ilm.2016.2
    [Google Scholar]
  22. BurkholderJ.B. CoxR.A. RavishankaraA.R. Atmospheric degradation of ozone depleting substances, their substitutes, and related species.Chem. Rev.2015115103704375910.1021/cr500675925893463
    [Google Scholar]
  23. TaniguchiN. WallingtonT.J. HurleyM.D. GuschinA.G. MolinaL.T. MolinaM.J. Atmospheric chemistry of C2F5C(O)CF(CF3)2: Photolysis and reaction with Cl atoms, OH radicals, and ozone.J. Phys. Chem. A2003107152674267910.1021/jp0220332
    [Google Scholar]
  24. McCullochA. CFC and halon replacements in the environment.J. Fluor. Chem.19991001-216317310.1016/S0022‑1139(99)00198‑0
    [Google Scholar]
  25. NagelM.C. Fire!J. Chem. Educ.198562760710.1021/ed062p607
    [Google Scholar]
  26. TapscottR.E. SpeitelL.C. Halon replacement options for aircraft.International Aircraft Fire and Cabin Safety Research ConferenceAtlantic City USA1998
    [Google Scholar]
  27. NFPA 2001 standard on clean agent fire extinguishing systems, NFPA.1994Available from: https://atapars.com/wpcontent/uploads/2021/01/atapars.com-NFPA-2001-2004.pdf
  28. CaminoG. CostaL. CortemigliaL.D.M.P. Overview of fire retardant mechanisms.Polym. Degrad. Stabil.199133213115410.1016/0141‑3910(91)90014‑I
    [Google Scholar]
  29. KennedyE.M. DlugogorskiB.Z. Conversion of ozone-depleting substances (ODS) to useful products: Design of a process for conversion of halons 1211 and 1301 to HFCS.2003Available from: https://apps.dtic.mil/sti/tr/pdf/ADA432193.pdf
  30. SolomonS. WuebblesD. IsaksenI. Ozone depletion potentials global warming potentials and future chlorine/bromine loading. Scientific Assessment of Ozone Depletion; 1994; Report 37. In: World Meteorologist Organization Global Research and Monitoring Project.Geneva199513.113.6
    [Google Scholar]
  31. The cosmic object you were looking for has disappeared beyond the event horizon.Available from: https://www.nasa.gov/pdf/355567main_Halocarbon%20Overview_October%202006.pdf
  32. Locarbon ozone depletion and global warming potentials.Available from: https://ntrs.nasa.gov/api/citations/19920006216/downloads/19920006216.pdf
  33. HodnebrogØ. ShineK.P. WallingtonT.J. Halocarbons: What are they and why are they important?Eos202010110.1029/2020EO149045
    [Google Scholar]
  34. HodnebrogØ. AamaasB. FuglestvedtJ.S. Updated global warming potentials and radiative efficiencies of halocarbons and other weak atmospheric absorbers.Rev. Geophys.202058310.1029/2019RG00069133015672
    [Google Scholar]
  35. Global warming potential values.Available from: https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf
  36. Fire Suppression Substitutes and Alternatives to Halon for US Navy Applications.Washington, DCThe National Academies Press1997
    [Google Scholar]
  37. TalukdarR. MelloukiA. GierczakT. BurkholderJ.B. McKeenS.A. RavishankaraA.R. Atmospheric lifetime of CHF 2 Br, a proposed substitute for halons.Science199125269369510.1126/science.252.5006.69317746668
    [Google Scholar]
  38. VollmerM.K. MühleJ. TrudingerC.M. Atmospheric histories and global emissions of halons H‐1211 (CBrClF2), H‐1301 (CBrF3), and H‐2402 (CBrF 2 CBrF2).J. Geophys. Res. Atmos.201612173663368610.1002/2015JD024488
    [Google Scholar]
  39. ChipperfieldM.P. LiangQ. StrahanS.E. Multimodel estimates of atmospheric lifetimes of long‐lived ozone‐depleting substances: Present and future.J. Geophys. Res. Atmos.201411952555257310.1002/2013JD021097
    [Google Scholar]
  40. SpeitelL.C. LyonR.E. Guidelines for safe use of gaseous halocarbon extinguishing agents in aircraft, federal aviation administration william.J Hughes Technical Center20092009
    [Google Scholar]
  41. SFPE Handbook of Fire Protection Engineering.5th edSFPE2016
    [Google Scholar]
  42. Fire protection systemsAvailable from: https://fire.nv.gov/uploadedfiles/firenvgov/content/bureaus/FST/4-ifipp-PSsm.pdf
  43. RobinM.L. EllisE.E. Streaming applications of HFC-227ea.Halon Options Technical Working Conference12-14 May 19981998296
    [Google Scholar]
  44. SheldonR.A. The E factor: Fifteen years on.Green Chem.20079121273128310.1039/b713736m
    [Google Scholar]
  45. NimitzJ.S. SkaggsS. TapscottR.E. Next-generation high-efficiency halon alternatives.Proceedings of the 1991 international conference on cfc and halon alternativesBaltimore, MD199135
    [Google Scholar]
  46. RobinM.L. Halon alternatives: Recent technical progress.Proceedings Of The 1992 Halon Alternatives Technical Working ConferenceAlbuquerque, NM19921214
    [Google Scholar]
  47. TapscottR.E. Replacement agents an historical overview.Proceedings Of The 1992 Halon Alternatives Technical Working ConferenceAlbuquerque, NM19921214
    [Google Scholar]
  48. SmartB.E. FernandezR.E. Fluorinated aliphatic compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology. 4th.New YorkJohn Wiley199411
    [Google Scholar]
  49. DaviesR.H. BagnallR.D. BellW. JonesW.G.M. The hydrogen bond proton donor properties of volatile halogenated hydrocarbons and ethers and their method of action in anesthesia.Int. J. Quantum Chem. Quantum Biol. Symp.19763171185
    [Google Scholar]
  50. BrashearW.T. VinegarA. Metabolism and pharmokinetics of halon 1211 and its potential replacements hcfc-123 and perfluorohexane.Proceedings Of The 1992 Halon Alternatives Technical Working ConferenceAlbuquerque, NM12141992
    [Google Scholar]
  51. Federal register.1994Available from: https://www.govinfo.gov/content/pkg/FR-1994-03-18/html/94-6317.htm
  52. SkaggsS. HeinonenE. TapscottR.E. SmithE.D. Research and development for total flood halon 1301 replacements for oil and gas production facilities at the alaskan north slope.Proceedings of the 1991 International Conference on CFC and Halon AlternativesDecember 3-5, 1991Baltimore, MD1991
    [Google Scholar]
  53. MooreT.A. DierdorfD. SkaggsS. Intermediate scale (645 ft3) fire suppression evaluation of NFPA 2001 agents.Proceedings of the 1993 Halon Alternatives Technical Working ConferenceMay 11-13, 1993Albuquerque, NM1993
    [Google Scholar]
  54. SkaggsS. TapscottR.E. MooreT.A. Technical assessment for the SNAP program.Proceedings of the 1992 Halon Alternatives Technical Working ConferenceMay 12-14, 1992Albuquerque, NM1992
    [Google Scholar]
  55. RobinM.L. IikuboY. Fire extinguishing methods utilizing 1-chloro-1,1,2,2-tetrafluoroethane.US. Patent 5,137,0951992
    [Google Scholar]
  56. NimitzJ. Trifluoromethyl iodide and its blends as high-performance, environmentally sound halon 1301 replacements.Proceedings of the 1994 Halon Options Technical Working ConferenceMay 3-5, 1994Albuquerque, NM1994
    [Google Scholar]
  57. KibertC.J. Fluoroiodocarbons as halon 1211/1301 replacements- an overview.Proceedings of the 1994 Halon Options Technical Working ConferenceAlbuquerque, NM1994May 3-5, 1994
    [Google Scholar]
  58. McIlloyA. Ignition suppression by CF3Br and CF3I of H2/O2/Ar- mixtures: Detailed studies of time and space resolved radical profiles.Proceedings of the 1994 Halon Options Technical Working ConferenceMay 3-5, 1994Albuquerque, NM1994
    [Google Scholar]
  59. GrosshandlerW.L. GannR.G. PittsW.M. Evaluation of alternative in-flight fire suppressants for full-scale testing in simulated aircraft engine nacelles and dry bays (NIST SP 861).1994Available from: https://www.nist.gov/publications/evaluation-alternative-flight-fire-suppressants-full-scale-testing-simulated-aircraft
    [Google Scholar]
  60. RavishankaraA.R. SolomonS. TurnipseedA.A. WarrenR.F. Atmospheric lifetimes of long-lived halogenated species.Science1993259509219419910.1126/science.259.5092.19417790983
    [Google Scholar]
  61. MooreT.A. Reducing hydrogen fluoride and other decomposition using powders and halocarbons Halon Options Technical Working Conference.May 2-42000
    [Google Scholar]
  62. HenneA.L. WaalkesT.P. Fluorinated derivatives of propane and propylene. VI.J. Am. Chem. Soc.194668349649710.1021/ja01207a041
    [Google Scholar]
  63. SylvesterW.G. Dry powder fire extinguishing composition compatible with mechanical foam and method of extinguishing fires.US Patent 29526331960
    [Google Scholar]
  64. DessartH. Extinguisher powders based on alkali metal bicarbonates.US Patent 32670301966
    [Google Scholar]
  65. DunnB.G. Fire extinguishing composition.US Patent 40425211977
    [Google Scholar]
  66. SuC.H. ChenC.C. LiawH.J. WangS.C. The assessment of fire suppression capability for the ammonium dihydrogen phosphate dry powder of commercial fire extinguishers.Procedia Eng.20148448549010.1016/j.proeng.2014.10.459
    [Google Scholar]
  67. LiH. HuaM. PanX. The reaction pathway analysis of phosphoric acid with the active radicals: A new insight of the fire-extinguishing mechanism of ABC dry powder.J. Mol. Model.201925825510.1007/s00894‑019‑4136‑y31367801
    [Google Scholar]
  68. GuoX. ZhangH. PanX. Experimental and numerical simulation research on fire suppression efficiency of dry powder mediums containing molybdenum flame retardant additive.Process Saf. Environ. Prot.202215929430810.1016/j.psep.2021.12.009
    [Google Scholar]
  69. HuW. YuR. ChangZ. TanZ. LiuX. The fire extinguishing mechanism of ultrafine composite dry powder agent containing Mg(OH) 2.Int. J. Quantum Chem.202112124e2681010.1002/qua.26810
    [Google Scholar]
  70. ZhangC. LiH. GuoX. Experimental and theoretical studies on the effect of Al(OH)3 on the fire-extinguishing performance of superfine ABC dry powder.Powder Technol.202139328029010.1016/j.powtec.2021.05.075
    [Google Scholar]
  71. LiH. FengL. DuD. GuoX. HuaM. PanX. Fire suppression performance of a new type of composite superfine dry powder.Fire Mater.201943890591610.1002/fam.2750
    [Google Scholar]
  72. DengJ. PuG. LuoZ. ChengF. Comparative experimental study on inhibiting gas explosion using ABC dry powder and diatomite powder.J Coal Sci Eng201218213814210.1007/s12404‑012‑0206‑9
    [Google Scholar]
  73. NiX. ChowW.K. Developments and prospective application of gas-solid hybrid composite powders in fire suppression.J. Appl. Fire Sci.200919431132310.2190/AF.19.4.b
    [Google Scholar]
  74. The science of gelling for improved hfc gas performance.Available from: https://www.nist.gov/system/files/documents/el/fire_research/R0200506.pdf
  75. JohnsonD.W. RabinovichE.M. MacCHESNEY JB, Vogel EM. Preparation of high‐silica glasses from colloidal gels: II, sintering.J. Am. Ceram. Soc.1983661068869310.1111/j.1151‑2916.1983.tb10530.x
    [Google Scholar]
  76. RabinovichE.M. JohnsonD.W.Jr MishkevichA. ChandrossE.A. ThomsonJ.Jr Sol-gel particulate float process to make vitreous silica bodies.J. Sol-Gel Sci. Technol.2003281192910.1023/A:1025624801014
    [Google Scholar]
  77. Rajesh BanuJ. SharmilaG.V. KannahY.R. Impact of novel deflocculant ZnO/Chitosan nanocomposite film in disperser pretreatment enhancing energy efficient anaerobic digestion: Parameter assessment and cost exploration.Chemosphere2022286Pt 313183510.1016/j.chemosphere.2021.13183534426273
    [Google Scholar]
  78. OtrojS. BahrevarM.A. MostarzadehF. NilforoshanM.R. The effect of deflocculants on the self-flow characteristics of ultra low-cement castables in Al2O3–SiC–C system.Ceram. Int.200531564765310.1016/j.ceramint.2004.06.023
    [Google Scholar]
  79. (aFederal Register / Vol. 67, No. 19 / Tuesday, January 29, 2002 / Proposed Rules.2002Available from: https://www.govinfo.gov/content/pkg/FR-2002-01-29/pdf/02-1767.pdf
    [Google Scholar]
  80. (bOptions for aircraft cargo compartment fire protectionAvailable from: https://www.fire.tc.faa.gov/pdf/dcargo.pdf
  81. HollandP.M. RubinghD.N. Mixed surfactant systems.ACS Symp. Ser.199250123010.1021/bk‑1992‑0501.ch001
    [Google Scholar]
  82. OginoK. AbeM. Mixed surfactant systems.CRC Press1992
    [Google Scholar]
  83. SharmaR. KamalA. AbdinejadM. MahajanR.K. KraatzH.B. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants.Adv. Colloid Interface Sci.2017248356810.1016/j.cis.2017.07.03228800974
    [Google Scholar]
  84. HeakalF.E-T. ElkholyA.E. Gemini surfactants as corrosion inhibitors for carbon steel.J. Mol. Liq.201723039540710.1016/j.molliq.2017.01.047
    [Google Scholar]
  85. PérezL. PinazoA. PonsR. InfanteM.R. Gemini surfactants from natural amino acids.Adv. Colloid Interface Sci.201420513415510.1016/j.cis.2013.10.02024238395
    [Google Scholar]
  86. EsumiK. UenoM. Structure-performance Relationships. In: Surfactants.CRC Press200310.1201/9780203911518
    [Google Scholar]
  87. VoraS. GeorgeA. DesaiH. BahadurP. Mixed micelles of some anionic‐anionic, cationic‐cationic, and ionic‐nonionic surfactants in aqueous media.J. Surfactants Deterg.19992221322110.1007/s11743‑999‑0076‑5
    [Google Scholar]
  88. LucksJ.S. MüllerB.W. MüllerR.H. Polymeric and emulsion carriers—interaction with antiflocculants and ionic surfactants.Int. J. Pharm.199063318318810.1016/0378‑5173(90)90123‑L
    [Google Scholar]
  89. MillsA. MeadowsG. Faraday communications. Use of inert metal oxide antiflocculants to improve the rate of heterogeneous catalysis of redox reactions.J. Chem. Soc., Faraday Trans.199389203849385010.1039/ft9938903849
    [Google Scholar]
  90. GafäS. BurzioF. Assessment of sodium nitrilotriacetate as builder in detergent formulations: Determination of the antiflocculating power of sodium nitrilotriacetate compared with some inorganic builders, using the zeta potential technique.Tenside Surfact Det197714631532110.1515/tsd‑1977‑140610
    [Google Scholar]
  91. HuangY. LiuC.S. ShaoH.F. LiuZ.J. Study on the applied properties of tobramycin-loaded calcium phosphate cement.Key Eng. Mater.2000192-195853862
    [Google Scholar]
  92. AtienzaJ. HerreroM.A. MaquieiraA. PuchadesR. Flow injection analysis of seawater: Anionic and organic species.Crit. Rev. Anal. Chem.199122533134410.1080/10408349108051638
    [Google Scholar]
  93. da Silva PerezD. MontanariS. VignonM.R. TEMPO-mediated oxidation of cellulose III.Biomacromolecules2003451417142510.1021/bm034144s12959614
    [Google Scholar]
  94. ColeridgeT. The engineer’s guide to recent developments in modern engine lubricants.New Zealand Eng195611185194
    [Google Scholar]
  95. DaleJ.M. US. Patent 3,480,5451969
    [Google Scholar]
  96. TarpleyW.B.Jr Powder dissemination composition.US. Patent 4,234,4321980
    [Google Scholar]
  97. TarpleyW.B.Jr McKinneyC.D.Jr Nonpyrotechnic disseminator.US. Patent 3,402,6651968
    [Google Scholar]
  98. TarpleyW.B.Jr HuzinecJ.R. FreemanM.K. US. Patent 4,226,7271980
    [Google Scholar]
  99. TarpleyW.B.Jr RuscittoG.L. Vinyl polymer gelling agent for powder dissemination composition.US. Patent 4,652,3831987
    [Google Scholar]
  100. StewartH.E. MacElweeD.B. Fire extinguishing compositionsUS. Patent 5,055,2081991
    [Google Scholar]
  101. StewartH.E. MacElweeD.B. Fire extinguishing compositionsUS. Patent 5,466,3861998
    [Google Scholar]
  102. StewartH.E. MacElweeD.B. Fire extinguishing gels and methods of preparation and use thereof.US Patent 5,833,8741998
    [Google Scholar]
  103. BrollR. HeymerG. Powdered fire extinguishing agents.US Patent 3,755,1631973
    [Google Scholar]
  104. GeyerJ.E. US Patent 0222875A12008
    [Google Scholar]
/content/journals/cam/10.2174/0126667312299531240424115847
Loading
/content/journals/cam/10.2174/0126667312299531240424115847
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keyword(s): environmentally benign; extinguishant; fire; gelled halocarbon; Halons; toxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test