Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

Titanium-based two-dimensional (2D) and layered compounds with open and stable crystal structures have attracted increasing attention for energy storage and conversion purposes, , rechargeable alkali-ion batteries and hybrid capacitors, due to their superior rate capability derived from the intercalation-type or pseudocapacitive kinetics. Various strategies, including structure design, conductivity enhancement, surface modification, and electrode engineering, have been implemented to effectively overcome the intrinsic drawbacks while simultaneously maintaining their advantages as promising and competitive electrode materials for advanced energy storage and conversion. Here, we provide a comprehensive overview of the recent progress on Ti-based compound materials for high-rate and low-cost electrochemical energy storage applications (mainly on rechargeable batteries and supercapacitors). The energy storage mechanisms, structure-performance relations, and performance-optimizing strategies in these typical energy storage devices are discussed. Moreover, major challenges and perspectives for future research and industrial application are also illustrated.

Loading

Article metrics loading...

/content/journals/cam/10.2174/2666731201666210520125051
2022-04-01
2024-11-22
Loading full text...

Full text loading...

References

  1. ChuS. MajumdarA. Opportunities and challenges for a sustainable energy future.Nature2012488741129430310.1038/nature11475 22895334
    [Google Scholar]
  2. ChuS. CuiY. LiuN. The path towards sustainable energy.Nat. Mater.2016161162210.1038/nmat4834 27994253
    [Google Scholar]
  3. ZhangX. ChengX. ZhangQ. Nanostructured energy materials for electrochemical energy conversion and storage: A review.J Energy Chem201625696798410.1016/j.jechem.2016.11.003
    [Google Scholar]
  4. BonaccorsoF. ColomboL. YuG. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage.Science20153476217: 1246501.10.1126/science.1246501 25554791
    [Google Scholar]
  5. TanC. CaoX. WuX-J. Recent advances in ultrathin two-dimensional nanomaterials.Chem. Rev.201711796225633110.1021/acs.chemrev.6b00558 28306244
    [Google Scholar]
  6. ZhangH. ChhowallaM. LiuZ. 2D nanomaterials: graphene and transition metal dichalcogenides.Chem. Soc. Rev.20184793015301710.1039/C8CS90048E 29700540
    [Google Scholar]
  7. PomerantsevaE. GogotsiY. Two-dimensional heterostructures for energy storage.Nat. Energy201721708910.1038/nenergy.2017.89
    [Google Scholar]
  8. NiW. ShiL. Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene.J. Vac. Sci. Technol. A2019374: 040803.10.1116/1.5095413
    [Google Scholar]
  9. WeiZ. WangL. ZhuoM. NiW. WangH. MaJ. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries.J. Mater. Chem. A Mater. Energy Sustain.2018626121851221410.1039/C8TA02695E
    [Google Scholar]
  10. HuangJ. WeiZ. LiaoJ. NiW. WangC. MaJ. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond MoS2.J Energy Chem20193310012410.1016/j.jechem.2018.09.001
    [Google Scholar]
  11. ChoiW. ChoudharyN. HanG.H. ParkJ. AkinwandeD. LeeY.H. Recent development of two-dimensional transition metal dichalcogenides and their applications.Mater. Today201720311613010.1016/j.mattod.2016.10.002
    [Google Scholar]
  12. LiaoJ. NiW. WangC. MaJ. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors.Chem. Eng. J.2020391: 123489.10.1016/j.cej.2019.123489
    [Google Scholar]
  13. HuangY. PanY-H. YangR. Universal mechanical exfoliation of large-area 2D crystals.Nat. Commun.2020111245310.1038/s41467‑020‑16266‑w 32415180
    [Google Scholar]
  14. KhanK. TareenA.K. AslamM. WangR. ZhangY. MahmoodA. Recent developments in emerging two-dimensional materials and their applications.J. Mater. Chem. C Mater. Opt. Electron. Devices20208238744010.1039/C9TC04187G
    [Google Scholar]
  15. NiW. WangB. ChengJ. Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance.Nanoscale2014652618262310.1039/C3NR06031D 24488375
    [Google Scholar]
  16. WuM. XuB. ZhangY. QiS. NiW. HuJ. Perspectives in emerging bismuth electrochemistry.Chem. Eng. J.2020381: 122558.10.1016/j.cej.2019.122558
    [Google Scholar]
  17. GuoS. YiJ. SunY. ZhouH. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries.Energy Environ. Sci.20169102978300610.1039/C6EE01807F
    [Google Scholar]
  18. WuM. NiW. HuJ. MaJ. NASICON-structured NaTi2(PO4)3 for sustainable energy storage.Nano-Micro Lett.20191114410.1007/s40820‑019‑0273‑1
    [Google Scholar]
  19. MeiY. HuangY. HuX. Nanostructured Ti-based anode materials for Na-ion batteries.J. Mater. Chem. A Mater. Energy Sustain.2016431120011201310.1039/C6TA04611H
    [Google Scholar]
  20. ShenJ. ZhuY. JiangH. LiC. 2D nanosheets-based novel architectures: synthesis, assembly and applications.Nano Today201611448352010.1016/j.nantod.2016.07.005
    [Google Scholar]
  21. ShiL. ZhaoT. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries.J. Mater. Chem. A Mater. Energy Sustain.2017583735375810.1039/C6TA09831B
    [Google Scholar]
  22. OhS.M. PatilS.B. JinX. HwangS.J. Recent applications of 2D inorganic nanosheets for emerging energy storage system.Chemistry201824194757477310.1002/chem.201704284 29071739
    [Google Scholar]
  23. HanY. GeY. ChaoY. WangC. WallaceG.G. Recent progress in 2D materials for flexible supercapacitors.J Energy Chem2018271577210.1016/j.jechem.2017.10.033
    [Google Scholar]
  24. LiuY. ZhangS. HeJ. WangZ.M. LiuZ. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials.Nano-Micro Lett.20191111310.1007/s40820‑019‑0245‑5
    [Google Scholar]
  25. MeiJ. ZhangY. LiaoT. SunZ. DouS.X. Strategies for improving the lithium-storage performance of 2D nanomaterials.Natl. Sci. Rev.20175338941610.1093/nsr/nwx077
    [Google Scholar]
  26. ZhuY. PengL. FangZ. YanC. ZhangX. YuG. Structural engineering of 2D nanomaterials for energy storage and catalysis.Adv. Mater.20183015: e1706347.10.1002/adma.201706347 29430788
    [Google Scholar]
  27. YiF. RenH. ShanJ. SunX. WeiD. LiuZ. Wearable energy sources based on 2D materials.Chem. Soc. Rev.20184793152318810.1039/C7CS00849J 29412208
    [Google Scholar]
  28. NiemeläJ-P. MarinG. KarppinenM. Titanium dioxide thin films by atomic layer deposition: A review.Semicond. Sci. Technol.2017329: 093005.10.1088/1361‑6641/aa78ce
    [Google Scholar]
  29. AaltonenT. AlnesM. NilsenO. CostelleL. FjellvågH. Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition.J. Mater. Chem.201020142877288110.1039/b923490j
    [Google Scholar]
  30. BiyikliN. HaiderA. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors.Semicond. Sci. Technol.2017329: 093002.10.1088/1361‑6641/aa7ade
    [Google Scholar]
  31. NiuW. LiX. KaruturiS.K. Applications of atomic layer deposition in solar cells.Nanotechnology2015266: 064001.10.1088/0957‑4484/26/6/064001 25604730
    [Google Scholar]
  32. PanL. LiuY.T. XieX.M. YeX.Y. Facile and green production of impurity‐free aqueous solutions of WS2 nanosheets by direct exfoliation in water.Small201612486703671310.1002/smll.201601804 27712031
    [Google Scholar]
  33. CaoX. TanC. ZhangX. ZhaoW. ZhangH. Solution‐processed two‐dimensional metal dichalcogenide‐based nanomaterials for energy storage and conversion.Adv. Mater.201628296167619610.1002/adma.201504833 27071683
    [Google Scholar]
  34. ZhangX. LaiZ. TanC. ZhangH. Solution‐processed two‐dimensional MoS2 nanosheets: preparation, hybridization, and applications.Angew. Chem. Int. Ed. Engl.201655318816883810.1002/anie.201509933 27329783
    [Google Scholar]
  35. HanJ.H. KwakM. KimY. CheonJ. Recent advances in the solution-based preparation of two-dimensional layered transition metal chalcogenide nanostructures.Chem. Rev.2018118136151618810.1021/acs.chemrev.8b00264 29926729
    [Google Scholar]
  36. PejjaiB. ReddyV.R.M. GediS. ParkC. Status review on earth-abundant and environmentally green Sn-X (X= Se, S) nanoparticle synthesis by solution methods for photovoltaic applications.Int. J. Hydrogen Energy20174252790283110.1016/j.ijhydene.2016.11.084
    [Google Scholar]
  37. Titanate nanosheetAvailable from: https://en.wikipedia.org/w/index.php?title=Titanate_nanosheet&oldid=930519608
  38. ChenJ.S. TanY.L. LiC.M. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage.J. Am. Chem. Soc.2010132176124613010.1021/ja100102y 20392065
    [Google Scholar]
  39. LiuJ. WeiX. LiuX-W. Two-dimensional wavelike spinel lithium titanate for fast lithium storage.Sci. Rep.201551978210.1038/srep09782 25985465
    [Google Scholar]
  40. WuY. SunY. ZhengJ. RongJ. LiH. NiuL. MXenes: Advanced materials in potassium ion batteries.Chem. Eng. J.2021404: 126565.10.1016/j.cej.2020.126565
    [Google Scholar]
  41. LiW. ElzatahryA. AldhayanD. ZhaoD. Core-shell structured titanium dioxide nanomaterials for solar energy utilization.Chem. Soc. Rev.201847228203823710.1039/C8CS00443A 30137079
    [Google Scholar]
  42. BatiA.S.R. BatmunkhM. ShapterJ.G. Emerging 2D layered materials for perovskite solar cells.Adv. Energy Mater.20201013: 1902253.10.1002/aenm.201902253
    [Google Scholar]
  43. LiuW. DaiZ. LiuY. Intimate contacted two-dimensional/zero-dimensional composite of bismuth titanate nanosheets supported ultrafine bismuth oxychloride nanoparticles for enhanced antibiotic residue degradation.J. Colloid Interface Sci.2018529233310.1016/j.jcis.2018.05.112 29879679
    [Google Scholar]
  44. HaqueF. DaenekeT. Kalantar-ZadehK. OuJ.Z. Two-dimensional transition metal oxide and chalcogenide-based photocatalysts.Nano-Micro Lett.20181022310.1007/s40820‑017‑0176‑y 30393672
    [Google Scholar]
  45. YuanH. MaS. WangX. LongH. ZhaoX. YangD. Ultra-high adsorption of cationic methylene blue on two dimensional titanate nanosheets.RSC Advances20199115891589410.1039/C8RA10172H
    [Google Scholar]
  46. HuangJ. CaoY. DengZ. TongH. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment.J. Solid State Chem.2011184371271910.1016/j.jssc.2011.01.023
    [Google Scholar]
  47. ZhuX. ChenS. ZhangM. ChenL. WuQ. ZhaoJ. TiS2-based saturable absorber for ultrafast fiber lasers.Photon. Res.2018610C44C4810.1364/PRJ.6.000C44
    [Google Scholar]
  48. ZavabetiA. JannatA. ZhongL. HaidryA.A. YaoZ. OuJ.Z. Two-dimensional materials in large-areas: synthesis, properties and applications.Nano-Micro Lett.20201216610.1007/s40820‑020‑0402‑x
    [Google Scholar]
  49. HaritoC. BavykinD.V. LightM.E. WalshF.C. Titanate nanotubes and nanosheets as a mechanical reinforcement of water-soluble polyamic acid: Experimental and theoretical studies.Compos., Part B Eng.2017124546310.1016/j.compositesb.2017.05.051
    [Google Scholar]
  50. LiuM. IshidaY. EbinaY. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets.Nature20155177532687210.1038/nature14060 25557713
    [Google Scholar]
  51. GuoP-F. WangX-M. WangM-M. YangT. ChenM-L. WangJ-H. Two-dimensional titanate-based zwitterionic hydrophilic sorbent for the selective adsorption of glycoproteins.Anal. Chim. Acta20191088727810.1016/j.aca.2019.08.041 31623718
    [Google Scholar]
  52. GuoP-F. ZhangD-D. GuoZ-Y. ChenM-L. WangJ-H. Copper-decorated titanate nanosheets: novel homogeneous monolayers with a superior capacity for selective isolation of hemoglobin.ACS Appl. Mater. Interfaces2017934282732828010.1021/acsami.7b08942 28786285
    [Google Scholar]
  53. ZhangL. ZhangQ. LiJ. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry.Adv. Funct. Mater.200717121958196510.1002/adfm.200600991
    [Google Scholar]
  54. ZhangY. JiangZ. HuangJ. LimL.Y. LiW. DengJ. Titanate and titania nanostructured materials for environmental and energy applications: a review.RSC Advances2015597794797951010.1039/C5RA11298B
    [Google Scholar]
  55. DingS. ChenJ.S. LouX.W. One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties.Adv. Funct. Mater.201121214120412510.1002/adfm.201100781
    [Google Scholar]
  56. DingS. ChenJ.S. LuanD. BoeyF.Y.C. MadhaviS. LouX.W. Graphene-supported anatase TiO2 nanosheets for fast lithium storage.Chem. Commun. (Camb.)201147205780578210.1039/c1cc10687b 21494738
    [Google Scholar]
  57. LiuY. ElzatahryA.A. LuoW. LanK. ZhangP. FanJ. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery.Nano Energy201625809010.1016/j.nanoen.2016.04.028
    [Google Scholar]
  58. ChenB. LiuE. HeF. ShiC. HeC. LiJ. 2D sandwich-like carbon-coated ultrathin TiO2@defect-rich MoS2 hybrid nanosheets: synergistic-effect-promoted electrochemical performance for lithium ion batteries.Nano Energy20162654154910.1016/j.nanoen.2016.06.003
    [Google Scholar]
  59. LiG. YuL. HuH. ZhuQ. WangY. YuY. Carbon-infused MoS2 supported on TiO2 nanosheet arrays for intensified anodes in lithium ion batteries.Electrochim. Acta2016212596710.1016/j.electacta.2016.06.155
    [Google Scholar]
  60. EidK.A. SolimanK. AbdulmalikD. MitorajD. SleimM.H. LiedkeM.O. Tailored fabrication of iridium nanoparticle-sensitized titanium oxynitride nanotubes for solar-driven water splitting: experimental insights on the photocatalytic–activity–defects relationship.Catal. Sci. Technol.202010380180910.1039/C9CY02366F
    [Google Scholar]
  61. FukudaK. EbinaY. ShibataT. AizawaT. NakaiI. SasakiT. Unusual crystallization behaviors of anatase nanocrystallites from a molecularly thin titania nanosheet and its stacked forms: increase in nucleation temperature and oriented growth.J. Am. Chem. Soc.2007129120220910.1021/ja0668116 17199300
    [Google Scholar]
  62. WhittinghamM.S. The role of ternary phases in cathode reactions.J. Electrochem. Soc.1976123331532010.1149/1.2132817
    [Google Scholar]
  63. GoodenoughJ.B. KimY. Challenges for rechargeable Li batteries.Chem. Mater.201022358760310.1021/cm901452z
    [Google Scholar]
  64. SteeleE.C.H. Electrochemical injection of ions into non-stoichiometric electrodes. Trends in Electrochemistry.Boston, MASpringer, US197714515810.1007/978‑1‑4613‑4136‑9_8
    [Google Scholar]
  65. GengL. ScheifersJ.P. FuC. ZhangJ. FokwaB.P.T. GuoJ. Titanium sulfides as intercalation-type cathode materials for rechargeable aluminum batteries.ACS Appl. Mater. Interfaces2017925212512125710.1021/acsami.7b04161 28570049
    [Google Scholar]
  66. JuS. ChenX. YangZ. XiaG. YuX. Atomic scale understanding of aluminum intercalation into layered TiS2 and its electrochemical properties.J Energy Chem20204311612010.1016/j.jechem.2019.09.003
    [Google Scholar]
  67. HawkinsC.G. VermaA. HorbinskiW. WeeksR. MukherjeeP.P. Whittaker-BrooksL. Decreasing the ion diffusion pathways for the intercalation of multivalent cations into one-dimensional TiS2 nanobelt arrays.ACS Appl. Mater. Interfaces20201219217882179810.1021/acsami.9b21702 32243748
    [Google Scholar]
  68. LiuY. WangH. ChengL. HanN. ZhaoF. LiP. TiS2 nanoplates: a high-rate and stable electrode material for sodium ion batteries.Nano Energy20162016817510.1016/j.nanoen.2015.12.028
    [Google Scholar]
  69. YangQ. CuiS. GeY. TangZ. LiuZ. LiH. Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor.Nano Energy20185062363110.1016/j.nanoen.2018.06.017
    [Google Scholar]
  70. JianZ. HuY.S. JiX. ChenW. NASICON‐structured materials for energy storage.Adv. Mater.20172920: 1601925.10.1002/adma.201601925 28220967
    [Google Scholar]
  71. ChenS. WuC. ShenL. Challenges and perspectives for NASICON‐type electrode materials for advanced sodium‐ion batteries.Adv. Mater.20172948: 1700431.10.1002/adma.201700431 28626908
    [Google Scholar]
  72. LuX. WangS. XiaoR. ShiS. LiH. ChenL. First-principles insight into the structural fundamental of super ionic conducting in NASICON MTi2(PO4)3 (M= Li, Na) materials for rechargeable batteries.Nano Energy20174162663310.1016/j.nanoen.2017.09.044
    [Google Scholar]
  73. ChenM. ZhangY. XingG. TangY. Building high power density of sodium-ion batteries: importance of multidimensional diffusion pathways in cathode materials.Front Chem.2020815210.3389/fchem.2020.00152 32185165
    [Google Scholar]
  74. GaoH. GoodenoughJ.B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3.Angew. Chem. Int. Ed. Engl.20165541127681277210.1002/anie.201606508 27619012
    [Google Scholar]
  75. ThangavelR. MoorthyB. KimD.K. LeeY.S. Pushing the energy output and cyclability of sodium hybrid capacitors at high power to new limits.Adv. Energy Mater.2017714: 1602654.10.1002/aenm.201602654
    [Google Scholar]
  76. XuC. XuY. TangC. WeiQ. MengJ. HuangL. Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance.Nano Energy20162822423110.1016/j.nanoen.2016.08.026
    [Google Scholar]
  77. GuoS. YuH. LiuP. RenY. ZhangT. ChenM. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2.Energy Environ. Sci.2015841237124410.1039/C4EE03361B
    [Google Scholar]
  78. NaguibM. KurtogluM. PresserV. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.Adv. Mater.201123374248425310.1002/adma.201102306 21861270
    [Google Scholar]
  79. SunS. LiaoC. HafezA.M. ZhuH. WuS. Two-dimensional MXenes for energy storage.Chem. Eng. J.2018338274510.1016/j.cej.2017.12.155
    [Google Scholar]
  80. AnasoriB. LukatskayaM.R. GogotsiY. 2D metal carbides and nitrides (MXenes) for energy storage.Nat. Rev. Mater.2017221609810.1038/natrevmats.2016.98
    [Google Scholar]
  81. IbrahimY. MohamedA. AbdelgawadA.M. EidK. AbdullahA.M. ElzatahryA. The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: deep insights into the supercapacitor.Nanomaterials (Basel)20201010191610.3390/nano10101916 32992907
    [Google Scholar]
  82. IbrahimY. KassabA. EidK.M. AbdullahA. OzoemenaK.I. ElzatahryA. Unveiling fabrication and environmental remediation of MXene-based nanoarchitectures in toxic metals removal from wastewater: strategy and mechanism.Nanomaterials (Basel)202010588510.3390/nano10050885 32375362
    [Google Scholar]
  83. ZhangC. KremerM.P. Seral-AscasoA. ParkS-H. McEvoyN. AnasoriB. Stamping of flexible, coplanar micro-supercapacitors using MXene inks.Adv. Funct. Mater.2018289: 1705506.10.1002/adfm.201705506
    [Google Scholar]
  84. ZhangC.J. AnasoriB. Seral-AscasoA. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance.Adv. Mater.20172936: 1702678.10.1002/adma.201702678 28741695
    [Google Scholar]
  85. LukatskayaM.R. KotaS. LinZ. ZhaoM-Q. ShpigelN. LeviM.D. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides.Nat. Energy2017281710510.1038/nenergy.2017.105
    [Google Scholar]
  86. ZhouT. WuC. WangY. Super-tough MXene-functionalized graphene sheets.Nat. Commun.2020111207710.1038/s41467‑020‑15991‑6 32350273
    [Google Scholar]
  87. DubalD.P. ChodankarN.R. KimD-H. Gomez-RomeroP. Towards flexible solid-state supercapacitors for smart and wearable electronics.Chem. Soc. Rev.20184762065212910.1039/C7CS00505A 29399689
    [Google Scholar]
  88. LiL. LouZ. ChenD. JiangK. HanW. ShenG. Recent advances in flexible/stretchable supercapacitors for wearable electronics.Small20181443: 1702829.10.1002/smll.201702829 29164773
    [Google Scholar]
  89. LiuZ. MoF. LiH. ZhuM. WangZ. LiangG. Advances in flexible and wearable energy‐storage textiles.Small Methods2018211: 1800124.10.1002/smtd.201800124
    [Google Scholar]
  90. SeyedinS. YanzaE.R.S. Razal JoselitoM. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets.J. Mater. Chem. A Mater. Energy Sustain.2017546240762408210.1039/C7TA08355F
    [Google Scholar]
  91. ZhangJ. SeyedinS. GuZ. YangW. WangX. RazalJ.M. MXene: a potential candidate for yarn supercapacitors.Nanoscale2017947186041860810.1039/C7NR06619H 29168525
    [Google Scholar]
  92. LevittA.S. AlhabebM. HatterC.B. SarychevaA. DionG. GogotsiY. Electrospun MXene/carbon nanofibers as supercapacitor electrodes.J. Mater. Chem. A Mater. Energy Sustain.20197126927710.1039/C8TA09810G
    [Google Scholar]
  93. ZhouZ. PanatdasirisukW. MathisT.S. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage.Nanoscale201810136005601310.1039/C8NR00313K 29542799
    [Google Scholar]
  94. EomW. ShinH. AmbadeR.B. Large-scale wet-spinning of highly electroconductive MXene fibers.Nat. Commun.2020111282510.1038/s41467‑020‑16671‑1 32499504
    [Google Scholar]
  95. ZhangC.J. McKeonL. KremerM.P. Additive-free MXene inks and direct printing of micro-supercapacitors.Nat. Commun.2019101179510.1038/s41467‑019‑09398‑1 30996224
    [Google Scholar]
  96. ZhengS. ZhangC. ZhouF. DongY. ShiX. NicolosiV. Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density.J. Mater. Chem. A Mater. Energy Sustain.20197169478948510.1039/C9TA02190F
    [Google Scholar]
  97. ZhongY. XiaX. ShiF. ZhanJ. TuJ. FanH.J. Transition metal carbides and nitrides in energy storage and conversion.Adv. Sci. (Weinh.)201635: 1500286.10.1002/advs.201500286 27812464
    [Google Scholar]
  98. YangQ. JiaoT. LiM. LiY. MaL. MoF. In situ formation of NaTi2(PO4)3 cubes on Ti3C2 MXene for dual-mode sodium storage.J. Mater. Chem. A Mater. Energy Sustain.2018638185251853210.1039/C8TA06995F
    [Google Scholar]
  99. YangC. SunX. ZhangY.R. LiuY. ZhangQ.A. YuanC.Z. Facile synthesis of hierarchical NaTi2(PO4)3/Ti3C2 nanocomposites with superior sodium storage performance.Mater. Lett.201923640841110.1016/j.matlet.2018.10.147
    [Google Scholar]
  100. LiQ. ZhouJ. LiF. SunZ. Novel MXene-based hierarchically porous composite as superior electrodes for Li-ion storage.Appl. Surf. Sci.2020530: 147214.10.1016/j.apsusc.2020.147214
    [Google Scholar]
  101. NatuV. PaiR. SokolM. CareyM. KalraV. BarsoumM.W. 2D Ti3C2T z MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents.Chem20206361663010.1016/j.chempr.2020.01.019
    [Google Scholar]
  102. PangS-Y. WongY-T. YuanS. Universal strategy for HF-free facile and rapid synthesis of two-dimensional Mxenes as multifunctional energy materials.J. Am. Chem. Soc.2019141249610961610.1021/jacs.9b02578 31117483
    [Google Scholar]
  103. LiX. LiM. YangQ. WangD. MaL. LiangG. Vertically aligned Sn4+ preintercalated Ti2CT x MXene sphere with enhanced zn ion transportation and superior cycle lifespan.Adv. Energy Mater.20201035: 2001394.10.1002/aenm.202001394
    [Google Scholar]
  104. LiZ. WangX. ZhangW. YangS. Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries.Chem. Eng. J.2020398: 125679.10.1016/j.cej.2020.125679
    [Google Scholar]
  105. HuoX. WangX. LiZ. LiuJ. LiJ. Two-dimensional composite of D-Ti3C2Tx@S@TiO2 (MXene) as the cathode material for aluminum-ion batteries.Nanoscale20201253387339910.1039/C9NR09944A 31984994
    [Google Scholar]
  106. ZhangC. KimS.J. GhidiuM. ZhaoM-Q. BarsoumM.W. NicolosiV. Layered orthorhombic Nb2O5@Nb4C3T x and TiO2@Ti3C2T x hierarchical composites for high performance Li-ion batteries.Adv. Funct. Mater.201626234143415110.1002/adfm.201600682
    [Google Scholar]
  107. DongY. WuZ-S. ZhengS. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities.ACS Nano20171154792480010.1021/acsnano.7b01165 28460161
    [Google Scholar]
  108. KishoreB.G.V. MunichandraiahN. K2Ti4O9: a promising anode material for potassium ion batteries.J. Electrochem. Soc.201616313A2551A255410.1149/2.0421613jes
    [Google Scholar]
  109. BaraiH.R. RahmanM.M. JooS.W. Template-free synthesis of two-dimensional titania/titanate nanosheets as electrodes for high-performance supercapacitor applications.J. Power Sources201737222723410.1016/j.jpowsour.2017.10.076
    [Google Scholar]
  110. WangS. QuanW. ZhuZ. Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries.Nat. Commun.20178162710.1038/s41467‑017‑00574‑9 28931813
    [Google Scholar]
  111. YuS-H. ParkM. KimH.S. JinA. ShokouhimehrM. AhnT-Y. Two-dimensional assemblies of ultrathin titanate nanosheets for lithium ion battery anodes.RSC Advances2014424120871209310.1039/c4ra00624k
    [Google Scholar]
  112. BavykinD.V. WalshF.C. Elongated titanate nanostructures and their applications.Eur. J. Inorg. Chem.20092009897799710.1002/ejic.200801122
    [Google Scholar]
  113. ZengC. XieF. YangX. JaroniecM. ZhangL. QiaoS-Z. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage.Angew. Chem. Int. Ed. Engl.201857288540854410.1002/anie.201803511 29722102
    [Google Scholar]
  114. TianQ. Impressive lithium storage properties of layered sodium titanate with hierarchical nanostructures as anode materials for lithium-ion batteries.J. Alloys Compd.201769954054710.1016/j.jallcom.2017.01.011
    [Google Scholar]
  115. HanM.H. GonzaloE. SinghG. RojoT. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries.Energy Environ. Sci.2015818110210.1039/C4EE03192J
    [Google Scholar]
  116. YuH. GuoS. ZhuY. IshidaM. ZhouH. Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries.Chem. Commun. (Camb.)201450445745910.1039/C3CC47351A 24253537
    [Google Scholar]
  117. KannanK. KouthamanM. ArjunanP. SubadeviR. SivakumarM. Titanium based layered O3-NaTi7/10Ni3/20Mg3/20O2 anode material for sodium ion batteries.Mater. Lett.2020273: 127950.10.1016/j.matlet.2020.127950
    [Google Scholar]
  118. ZhaoC. AvdeevM. ChenL. HuY-S. An O3-type oxide with low sodium content as the phase-transition-free anode for sodium-ion batteries.Angew. Chem. Int. Ed. Engl.201857247056706010.1002/anie.201801923 29664221
    [Google Scholar]
  119. CaoY. ZhangQ. WeiY. GuoY. ZhangZ. HuangW. A Water stable, near-zero-strain O3-layered titanium-based anode for long cycle sodium-ion battery.Adv. Funct. Mater.2020307: 1907023.10.1002/adfm.201907023
    [Google Scholar]
  120. HouJ. SongJ. NiuY. ChengC. HeH. LiY. Carbon-coated P2-type Na0.67Ni0.33Ti0.67O2 as an anode material for sodium ion batteries.J. Solid State Electrochem.20151961827183110.1007/s10008‑015‑2826‑7
    [Google Scholar]
  121. YuH. RenY. XiaoD. An ultrastable anode for long-life room-temperature sodium-ion batteries.Angew. Chem. Int. Ed. Engl.201453348963896910.1002/anie.201404549 24962822
    [Google Scholar]
  122. GuoS. LiuP. SunY. A high-voltage and ultralong-life sodium full cell for stationary energy storage.Angew. Chem. Int. Ed. Engl.20155440117011170510.1002/anie.201505215 26286923
    [Google Scholar]
  123. GuoS SunY YiJ ZhuK LiuP ZhuY Understanding sodiumion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performanceNPG Asia Materials201684e266e10.1038/am.2016.53
    [Google Scholar]
  124. WangP-F. YaoH-R. ZuoT-T. YinY-X. GuoY-G. Novel P2-type Na2/3Ni1/6Mg1/6Ti2/3O2 as an anode material for sodium-ion batteries.Chem. Commun. (Camb.)201753121957196010.1039/C6CC09378G 28119964
    [Google Scholar]
  125. KalathilA.K. ArunkumarP. KimD.H. LeeJ-W. ImW.B. Influence of Ti(4+) on the electrochemical performance of Li-rich layered oxides - high power and long cycle life of Li2Ru1- x Ti x O3 cathodes.ACS Appl. Mater. Interfaces20157137118712810.1021/am507951x 25762101
    [Google Scholar]
  126. HyS. LiuH. ZhangM. QianD. HwangB-J. MengY.S. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries.Energy Environ. Sci.2016961931195410.1039/C5EE03573B
    [Google Scholar]
  127. HongJ. GwonH. JungS-K. KuK. KangK. Review—lithium-excess layered cathodes for lithium rechargeable batteries.J. Electrochem. Soc.201516214A2447A246710.1149/2.0071514jes
    [Google Scholar]
  128. HuangJ. YangK. ZhangZ. YangL. HiranoS.I. Layered perovskite LiEuTiO4 as a 0.8 V lithium intercalation electrode.Chem. Commun. (Camb.)201753557800780310.1039/C7CC03933F 28653063
    [Google Scholar]
  129. ShanmugamR. LaiW. Na2/3Ni1/3Ti2/3O2: “Bi-functional” electrode materials for Na-ion batteries.ECS Electrochem Lett201434A23A2510.1149/2.007404eel
    [Google Scholar]
  130. LiH. PengL. ZhuY. ChenD. ZhangX. YuG. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials.Energy Environ. Sci.20169113399340510.1039/C6EE00794E
    [Google Scholar]
/content/journals/cam/10.2174/2666731201666210520125051
Loading
/content/journals/cam/10.2174/2666731201666210520125051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test