Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

In diabetic wounds, reactive oxygen species (ROS) are developed in large quantities in a consistently hyperglycemic and excessive biogenic environment. Inflammatory factors are increased as a result of impaired hematopoiesis. Because, subsequent infections obstruct the healing process and as a result, most chronic wounds are not healed properly. The majority of chronic diabetic wounds are worsened during the inflammatory stage. Because of excessive ROS, it is still challenging for a timely closure of diabetic chronic wounds. Wound dressings with anti-inflammatory and ROS scavenging properties are preferable for the treatment of diabetic wounds. Hence, a strategic treatment is required which facilitates both targeting and myogenic potential. In recent decades, the production of macroporous hydrogels three-dimensional (3D) printing has gained popularity as a cutting-edge technique for chronic wounds. Multiple hydrogel subtypes have been formulated for different states of healing of chronic wounds. The hydrogel used in 3D printing indicated better wound healing by enhancing the expression of adipose-derived stem cells (ASCs) activities in scaffolds due to the presence of an ordered macroporous structure. Regenerative medicine has undergone a paradigm shift as a result of the introduction of inventive medicines based on the use of living organisms. New treatments for skin wounds have been the subject of several studies, with bioactive peptides, nanoparticles, and hydrogels attracting a lot of attention due to their potential as therapeutics. For chronic wound healing, hydrogels create an angiogenesis microenvironment and avoid wound infections. Hence, the present review provides light on different superficial hydrogels along with their properties for chronic wound healing.

Loading

Article metrics loading...

/content/journals/cam/10.2174/2666731202666230609142801
2023-07-13
2025-02-17
Loading full text...

Full text loading...

References

  1. ZawaniM. FauziM.B. Injectable hydrogels for chronic skin wound management: A concise review.Biomedicines20219552710.3390/biomedicines905052734068490
    [Google Scholar]
  2. TavakoliS. KlarA.S. Advanced hydrogels as wound dressings.Biomolecules2020108116910.3390/biom1008116932796593
    [Google Scholar]
  3. TsegayF. ElsherifM. ButtH. Smart 3D printed hydrogel skin wound bandages: A review.Polymers2022145101210.3390/polym1405101235267835
    [Google Scholar]
  4. LunevaO. OlekhnovichR. UspenskayaM. Bilayer hydrogels for wound dressing and tissue engineering.Polymers20221415313510.3390/polym1415313535956650
    [Google Scholar]
  5. FrykbergR.G. Challenges in the treatment of chronic wounds.Adv. Wound Care201549560582
    [Google Scholar]
  6. ArmstrongD.G. MeyrA. SanfeyH. Basic principles of wound management Atlas of small animal wound management and reconstructive surgery.Hoboken, NJ, USAJohn Wiley & Sons20183352
    [Google Scholar]
  7. da SilvaL.P. ReisR.L. CorreloV.M. MarquesA.P. Hydrogel-based strategies to advance therapies for chronic skin wounds.Annu. Rev. Biomed. Eng.201921114516910.1146/annurev‑bioeng‑060418‑05242230822099
    [Google Scholar]
  8. BrumbergV. AstrelinaT. MalivanovaT. SamoilovA. Modern wound dressings: Hydrogel dressings.Biomedicines202199123510.3390/biomedicines909123534572421
    [Google Scholar]
  9. LohmannN. SchirmerL. AtallahP. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice.Sci. Transl. Med.20179386eaai904410.1126/scitranslmed.aai904428424334
    [Google Scholar]
  10. FranceskoA. PetkovaP. TzanovT. Hydrogel dressings for advanced wound management.Curr. Med. Chem.201925415782579710.2174/092986732466617092016124628933299
    [Google Scholar]
  11. FirlarI. AltunbekM. McCarthyC. RamalingamM. Camci-UnalG. Functional hydrogels for treatment of chronic wounds.Gels20228212710.3390/gels802012735200508
    [Google Scholar]
  12. Güiza-ArgüelloV.R. Solarte-DavidV.A. Pinzón-MoraA.V. Ávila-QuirogaJ.E. Becerra-BayonaS.M. Current advances in the development of hydrogel-based wound dressings for diabetic foot ulcer treatment.Polymers20221414276410.3390/polym1414276435890541
    [Google Scholar]
  13. HongZ. WuL. ZhangZ. Self-healing supramolecular hydrogels with antibacterial abilities for wound healing.J. Healthc. Eng.20232023710976610.1155/2023/7109766
    [Google Scholar]
  14. NorahanM.H. Pedroza-GonzálezS.C. Sánchez-SalazarM.G. Structural and biological engineering of 3D hydrogels for wound healing.Bioact. Mater.202324197235
    [Google Scholar]
  15. SanjanwalaD. LondheV. TrivediR. Polysaccharide-based hydrogels for drug delivery and wound management: A review.Expert Opin. Drug Deliv.202219121664169510.1080/17425247.2022.2152791
    [Google Scholar]
  16. WangX. MaY. NiuX. Direct three-dimensional printed egg white hydrogel wound dressing promotes wound healing with hitching adipose stem cells.Front. Bioeng. Biotechnol.20221093055110.3389/fbioe.2022.93055136072289
    [Google Scholar]
  17. CaoW. PengS. YaoY. A nanofibrous membrane loaded with doxycycline and printed with conductive hydrogel strips promotes diabetic wound healing in vivo.Acta Biomater.2022152607310.1016/j.actbio.2022.08.048
    [Google Scholar]
  18. Las HerasK IgartuaM Santos-VizcainoE Cell-based dressings: A journey through chronic wound managementBiomater Adv2022135212738
    [Google Scholar]
  19. MonavariM HomaeigoharS MedhekarR A 3D-printed wound-healing material composed of alginate dialdehyde–gelatin incorporating astaxanthin and borate bioactive glass microparticles.ACS Appl Mater Interfaces20232023acsami.2c2325210.1021/acsami.2c2325237155412
    [Google Scholar]
  20. WuJ. SongB. TongS. Recent advances of the nanocomposite hydrogel as a local drug delivery for diabetic ulcers.Front. Bioeng. Biotechnol.2022101039495
    [Google Scholar]
  21. QinP. TangJ. SunD. Zn 2+ Cross-Linked alginate carrying hollow silica nanoparticles loaded with rl-qn15 peptides provides promising treatment for chronic skin wounds.ACS Appl. Mater. Interfaces20221426294912950510.1021/acsami.2c0358335731847
    [Google Scholar]
  22. SrichaiyapolO. MaddocksS.E. ThammawithanS. DaduangS. KlaynongsruangS. PatramanonR. TA-AgNPs/alginate hydrogel and its potential application as a promising antibiofilm material against polymicrobial wound biofilms using a unique biofilm flow model.Microorganisms20221011227910.3390/microorganisms1011227936422349
    [Google Scholar]
  23. ZhangY. CaiW. RenZ. Chiral supramolecular hydrogel loaded with dimethyloxalyglycine to accelerate chronic diabetic wound healing by promoting cell proliferation and angiogenesis.Gels20228743710.3390/gels807043735877522
    [Google Scholar]
  24. ChenL. ChenY. ZhangR. YuQ. LiuY. LiuY. Glucose-activated nanoconfinement supramolecular cascade reaction in situ for diabetic wound healing.ACS Nano20221669929993710.1021/acsnano.2c0456635695717
    [Google Scholar]
  25. ZhangX. FengJ. FengW. Glycosaminoglycan-based hydrogel delivery system regulates the wound microenvironment to rescue chronic wound healing.ACS Appl. Mater. Interfaces20221428317373175010.1021/acsami.2c0859335802505
    [Google Scholar]
  26. ChenH. ChengJ. CaiX. pH-switchable antimicrobial supramolecular hydrogels for synergistically eliminating biofilm and promoting wound healing.ACS Appl. Mater. Interfaces20221416181201813210.1021/acsami.2c0058035394280
    [Google Scholar]
  27. ZhaoW. ZhangX. ZhangR. ZhangK. LiY. XuF.J. Self-assembled herbal medicine encapsulated by an oxidation-sensitive supramolecular hydrogel for chronic wound treatment.ACS Appl. Mater. Interfaces20201251568985690710.1021/acsami.0c1949233296174
    [Google Scholar]
  28. SanthiniE. ParthasarathyR. ShaliniM. Bio inspired growth factor loaded self assembling peptide nano hydrogel for chronic wound healing.Int. J. Biol. Macromol.2022197778710.1016/j.ijbiomac.2021.12.026
    [Google Scholar]
  29. ZhuH. XingC. DouX. Chiral hydrogel accelerates re‐epithelization in chronic wounds via mechanoregulation.Adv. Healthc. Mater.20221121220103210.1002/adhm.20220103236052735
    [Google Scholar]
  30. ChenB. ZhangH. QiuJ. Mechanical force induced self‐assembly of chinese herbal hydrogel with synergistic effects of antibacterial activity and immune regulation for wound healing.Small20221821220176610.1002/smll.20220176635491505
    [Google Scholar]
  31. LouP. LiuS. WangY. Injectable self-assembling peptide nanofiber hydrogel as a bioactive 3D platform to promote chronic wound tissue regeneration.Acta Biomater.2021135100112
    [Google Scholar]
  32. DingQ. JingX. YaoS. Multifunctional hydrogel loaded with 4-octyl itaconate exerts antibacterial, antioxidant and angiogenic properties for diabetic wound repair.Biomater Adv2022139212979
    [Google Scholar]
  33. XuZ. LiuG. LiuP. Hyaluronic acid-based glucose-responsive antioxidant hydrogel platform for enhanced diabetic wound repair.Acta Biomater.202214714715710.1016/j.actbio.2022.05.04735649507
    [Google Scholar]
  34. Baptista-SilvaS. BernardesB.G. BorgesS. Exploring silk sericin for diabetic wounds: An in situ-forming hydrogel to protect against oxidative stress and improve tissue healing and regeneration.Biomolecules202212680110.3390/biom1206080135740928
    [Google Scholar]
  35. QiX. TongX. YouS. Mild hyperthermia-assisted ROS scavenging hydrogels achieve diabetic wound healing.ACS Macro Lett.202211786186710.1021/acsmacrolett.2c0029035759676
    [Google Scholar]
  36. YinX. FanX. ZhouZ. LiQ. Encapsulation of berberine decorated ZnO nano-colloids into injectable hydrogel using for diabetic wound healing.Front Chem.20221096466210.3389/fchem.2022.96466236017170
    [Google Scholar]
  37. HaoM. DingC. SunS. PengX. LiuW. Chitosan/sodium alginate/velvet antler blood peptides hydrogel promotes diabetic wound healing via regulating angiogenesis, inflammatory response and skin flora.J. Inflamm. Res.2022154921493810.2147/JIR.S37669236051089
    [Google Scholar]
  38. KimB. KimY. LeeY. Reactive oxygen species suppressive kraft lignin‐gelatin antioxidant hydrogels for chronic wound repair.Macromol. Biosci.20222211220023410.1002/mabi.20220023436067493
    [Google Scholar]
  39. ChandikaP KhanF HeoS-Y Multifunctional dual crosslinked poly (vinyl alcohol)/methacrylate hyaluronic acid/chitooligosaccharide-sinapic acid wound dressing hydrogel.Int J Biol Macromol2022222A,1113750
    [Google Scholar]
  40. HeY. LiuK. GuoS. Multifunctional hydrogel with reactive oxygen species scavenging and photothermal antibacterial activity accelerates infected diabetic wound healing.Acta Biomater.202236402298
    [Google Scholar]
  41. WangZ. LiW. GouL. Biodegradable and antioxidant DNA hydrogel as a cytokine delivery system for diabetic wound healing.Adv. Healthc. Mater.20221121220078210.1002/adhm.20220078236101484
    [Google Scholar]
  42. WeiX. ZhuangP. LiuK. Mesoporous bioglass capsule composite injectable hydrogels with antibacterial and vascularization promotion properties for chronic wound repair.J. Mater. Chem. B Mater. Biol. Med.20221048101391014910.1039/D2TB01777F36472313
    [Google Scholar]
  43. HuangK. LiuW. WeiW. Photothermal hydrogel encapsulating intelligently bacteria-capturing Bio-MOF for infectious wound healinG.ACS Nano20221611194911950810.1021/acsnano.2c0959336321923
    [Google Scholar]
  44. ZhangR. WangS. MaX. In situ gelation strategy based on ferrocene-hyaluronic acid organic copolymer biomaterial for exudate management and multi-modal wound healing.Acta Biomater.202215418019310.1016/j.actbio.2022.09.07636243366
    [Google Scholar]
  45. LiZ. FanX. LuoZ. Nanoenzyme–chitosan hydrogel complex with cascade catalytic and self-reinforced antibacterial performance for accelerated healing of diabetic wounds.Nanoscale20221440149701498310.1039/D2NR04171E36217671
    [Google Scholar]
  46. UchidaD.T. BruschiM.L. 3D printing as a technological strategy for the personalized treatment of wound healing.AAPS PharmSciTech20232414110.1208/s12249‑023‑02503‑036698047
    [Google Scholar]
  47. TabrizA.G. DouroumisD. Recent advances in 3D printing for wound healing: A systematic review.J. Drug Deliv. Sci. Technol.20227410356410.1016/j.jddst.2022.103564
    [Google Scholar]
  48. WahidF. ZhaoX-J. JiaS-R. Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives.Composites., Part B: Eng.2020200108208
    [Google Scholar]
  49. RenukaR.R. JuliusA. YoganandhamS.T. Diverse nanocomposites as a potential dressing for diabetic wound healing.Front. Endocrinol.2023131336714604
    [Google Scholar]
  50. OmarJ. PonsfordD. DreissC.A. LeeT.C. LohX.J. Supramolecular hydrogels: Design strategies and contemporary biomedical applications.Chem. Asian J.2022179e20220008110.1002/asia.20220008135304978
    [Google Scholar]
  51. YanX. ChenY-R. SongY-F. Advances in the application of supramolecular hydrogels for stem cell delivery and cartilage tissue engineering.Front. Bioeng. Biotechnol.2020884710.3389/fbioe.2020.00847
    [Google Scholar]
  52. LimJ. LinQ. XueK. Recent advances in supramolecular hydrogels for biomedical applications.Mater Today Adv2019310002110.1016/j.mtadv.2019.100021
    [Google Scholar]
  53. WangS. OngP.J. LiuS. Recent advances in host‐guest supramolecular hydrogels for biomedical applications.Chem. Asian J.20221718e20220060810.1002/asia.20220060835866560
    [Google Scholar]
  54. XuZ. HanS. GuZ. WuJ. Advances and impact of antioxidant hydrogel in chronic wound healing.Adv. Healthc. Mater.202095190150210.1002/adhm.20190150231977162
    [Google Scholar]
  55. DsouzaA. ConstantinidouC. ArvanitisT.N. HaddletonD.M. CharmetJ. HandR.A. Multifunctional composite hydrogels for bacterial capture, growth/elimination, and sensing applications.ACS Appl. Mater. Interfaces20221442473234734410.1021/acsami.2c0858236222596
    [Google Scholar]
  56. AsadiN. Pazoki-ToroudiH. Del BakhshayeshA.R. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels.Int. J. Biol. Macromol.2021170728750
    [Google Scholar]
  57. TomarS. PandeyR. SuryaP. Multifunctional, adhesive, and PDA-Coated bioactive glass reinforced composite hydrogel for regenerative wound healing.ACS Biomater. Sci. Eng.2023931520154010.1021/acsbiomaterials.2c0122336826450
    [Google Scholar]
  58. YuQ. YanY. HuangJ. A multifunctional chitosan-based hydrogel with self-healing, antibacterial, and immunomodulatory effects as wound dressing.Int. J. Biol. Macromol.202323112314910.1016/j.ijbiomac.2023.12314936623628
    [Google Scholar]
  59. Nizioł M, Paleczny J, Junka A, Shavandi A, Dawiec-Liśniewska A, Podstawczyk D. 3D printing of thermoresponsive hydrogel laden with an antimicrobial agent towards wound healing applications.Bioengineering2021867910.3390/bioengineering806007934201362
    [Google Scholar]
/content/journals/cam/10.2174/2666731202666230609142801
Loading
/content/journals/cam/10.2174/2666731202666230609142801
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): angiogenesis; healing mechanism; hydrogels; peptides; skin; Wound
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test