Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

Radar is a delicate detection device and since its evolution different techniques for reducing electromagnetic reflections have been discovered. This paper provides a concise review on fundamentals of absorption which reduce radar cross section from stealth target with which radar cross section affects the survivability and mission capability. The reduction of radar cross section depends on dielectric and magnetic properties of the material. The first section reviews the Radar Absorbing Material (RAM) in order to provide a background on fundamentals, various stealth techniques for absorption and its properties at microwave frequencies. The second section reviews the Multi-Walled Carbon Nanotubes and their different composites by encapsulation of other metals, polymers or epoxies into it and its microwave absorption properties were studies at microwave frequencies. Multi-Walled Carbon Nanotubes based composites for microwave absorption are reviewed on the basis of various factors; material composition, reflection loss performance, thickness, complex permittivity, complex permeability, dielectric tangent loss, magnetic tangent loss, bandwidth, and frequency band.

Loading

Article metrics loading...

/content/journals/cam/10.2174/2666731201666210803110914
2022-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. VinoyK.J. JhaR.M. Radar Absorbing Materials: From theory to design and characterization.Springer Germany1996
    [Google Scholar]
  2. UçarH. Radar cross section reduction.J Nav Sci Eng2013927287
    [Google Scholar]
  3. SavilleP. Review of radar absorbing materials defence r & d Canada – atlantic.Def Res Dev Canada200562
    [Google Scholar]
  4. Retrieved fromTheory and application of rf/microwave absorbersAvailable from: http://www.eccosorb.com/resource-white-papers.htm
  5. PandeyP. DahiyaM. Carbon nanotubes: Types, methods of preparation and applications.Int. J. Pharm. Sci. Res.201614152110.1016/j.amjsurg.2005.11.007
    [Google Scholar]
  6. Retrieved from Carbon NanotubesAvailable from: https://www.nanowerk.com/nanotechnology/introduction/introduction_to_nanotechnology_22.php
  7. DasS. A review on Carbon nano-tubes - A new era of nanotechnology.Int. J. Emerg. Technol. Adv. Eng.200833774783
    [Google Scholar]
  8. ZakharychevE.A. RazovE.N. SemchivkovY.D. Radar absorbing properties of carbon nanotubes/polymer composites in the V-band.201639: pp. (2)451-6.10.1007/s12034‑016‑1168‑0
    [Google Scholar]
  9. KongJ. CassellA.M. DaiH. Chemical vapor deposition of methane for single-walled carbon nanotubes.Chem. Phys. Lett.19982924–656757410.1016/S0009‑2614(98)00745‑3
    [Google Scholar]
  10. AqelA. El-NourK.M.M.A. AmmarR.A.A. Al-WarthanA. Carbon nanotubes, science and technology part (I) structure, synthesis and char-acterisation.Arab. J. Chem.20125112310.1016/j.arabjc.2010.08.022
    [Google Scholar]
  11. KausarA. RafiqueI. MuhammadB. Review of applications of polymer/carbon nanotubes and epoxy/cnt composites.Polym. Plast. Technol. Eng.201655111167119110.1080/03602559.2016.1163588
    [Google Scholar]
  12. PanwarR. LeeJ.R. Recent advances in thin and broadband layered microwave absorbing and shielding structures for commercial and defense applications.Funct Compos Struct201913: 032001.10.1088/2631‑6331/ab2863
    [Google Scholar]
  13. YusufJ.Y. SoleimaniH. SanusiY.K. AdebayoL.L. SikiruS. WahaabF.A. Recent advances and prospect of cobalt based microwave absorbing materialsCeram. Int.2020461710.1016/j.ceramint.2020.07.244
    [Google Scholar]
  14. KumarP. Narayan MaitiU. SikdarA. Kumar DasT. KumarA. SudarsanV. Recent advances in polymer and polymer composites for electromagnetic interference shielding: Review and future prospects.Polym. Rev. (Phila. Pa.)201959468773810.1080/15583724.2019.1625058
    [Google Scholar]
  15. IqbalS. AhmadS. Conducting polymer composites: An efficient EMI shielding material.Elsevier Inc. 2020.
    [Google Scholar]
  16. RaveendranA. SebastianM.T. RamanS. Applications of microwave materials: A review.J. Electron. Mater.20194852601263410.1007/s11664‑019‑07049‑1
    [Google Scholar]
  17. SetuaD.K. MordinaB. SrivastavaA.K. RoyD. Eswara PrasadN. Carbon nanofibers-reinforced polymer nanocomposites as efficient microwave absorber.Micro Nano Technol2020202039543010.1016/B978‑0‑12‑819904‑6.00018‑9
    [Google Scholar]
  18. NaitoY YinJ MizumotoT Electromagnetic wave absorbing properties of carbon‐rubber doped with ferrite.Electron Commun Japan(Part II Electron 1988; 71(7): 77-83.10.1002/ecjb.4420710710
    [Google Scholar]
  19. NaitoY. SuetakeK. Application of ferrite to electromagnetic wave absorber and its characteristics.IEEE Trans. Microw. Theory Tech.1971191657210.1109/TMTT.1971.1127446
    [Google Scholar]
  20. BalanisC.A. Advanced engineering electromagnetics.second edition.Wiley & Sons, Inc2012
    [Google Scholar]
  21. KasapS O Principles of electronic materials & devices2018
    [Google Scholar]
  22. QiX. XuJ. HuQ. Metal-free carbon nanotubes: Synthesis, and enhanced intrinsic microwave absorption properties.Sci. Rep.201662831010.1038/srep28310 27324290
    [Google Scholar]
  23. SongW.L. ZhangK-L. ChenM. A universal permittivity-attenuation evaluation diagram for accelerating design of dielectric-based microwave absorption materials: A case of graphene-based composites.Carbon N Y2017118869710.1016/j.carbon.2017.03.016
    [Google Scholar]
  24. GreenM. ChenX. Recent progress of nanomaterials for microwave absorption.J. Mater.20195450354110.1016/j.jmat.2019.07.003
    [Google Scholar]
  25. ZhaoD.L. ZhangJ.M. LiX. ShenZ.M. Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes.J. Alloys Compd.2010505271271610.1016/j.jallcom.2010.06.122
    [Google Scholar]
  26. ZhaoD.L. LiX. ShenZ.M. Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes.Compos. Sci. Technol.200868142902290810.1016/j.compscitech.2007.10.006
    [Google Scholar]
  27. LinH. ZhuH. GuoH. YuL. Microwave-absorbing properties of Co-filled carbon nanotubes.Mater. Res. Bull.200843102697270210.1016/j.materresbull.2007.10.016
    [Google Scholar]
  28. TianjiaoB YanZ XiaofengS YuexinD. A study of the electromagnetic properties of Cobalt-multiwalled carbon nanotubes (Co- MWCNTs) compositesMater Sci Eng B Solid-State Mater Adv Technol2011176129061210.1016/j.mseb.2011.05.016
    [Google Scholar]
  29. YiH WenF QiaoL LiF Microwave electromagnetic properties of multiwalled carbon nanotubes filled with Co nanoparticles.J Appl Phys2009106100410.1063/1.3260234
    [Google Scholar]
  30. DengL. HanM. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability.Appl. Phys. Lett.20079122005200810.1063/1.2755875
    [Google Scholar]
  31. WenF. ZhangF. LiuZ. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers.J. Phys. Chem. C201111529140251403010.1021/jp202078p
    [Google Scholar]
  32. ZhaoP-Y. WangH-Y. WangG-S. Enhanced electromagnetic absorption properties of commercial Ni/MWCNTs composites by adjusting dielectric properties.Front Chem.202063511710.1039/x0xx00000x
    [Google Scholar]
  33. ChenW. ZhengX. HeX. Achieving full effective microwave absorption in X band by double-layered design of glass fiber epoxy composites containing MWCNTs and Fe3O4 NPs.Polym. Test.202086: 106448.10.1016/j.polymertesting.2020.106448
    [Google Scholar]
  34. LiY. ZhengW. ZhangA. WangD. KongJ. Effect of nickel shell thickness of Ni-microsphere on microwave absorption properties of Ni-microsphere@MWCNTs hybrids.J. Magn. Magn. Mater.2020513July: 167218.10.1016/j.jmmm.2020.167218
    [Google Scholar]
  35. WuM. QiX. XieR. Graphene oxide/carbon nanotubes/CoxFe3-xO4 ternary nanocomposites: Controllable synthesis and their ex-cellent microwave absorption capabilities.J. Alloys Compd.2020813: 151996.10.1016/j.jallcom.2019.151996
    [Google Scholar]
  36. SuX. WangJ. ZhangX. One-step preparation of CoFe2O4/FeCo/graphite nanosheets hybrid composites with tunable microwave absorption performance.Ceram. Int.2020468123531236310.1016/j.ceramint.2020.01.286
    [Google Scholar]
  37. PeiboL. YizeS. AkinayY. The influence of MWCNTs on microwave absorption properties of Co/C and Ba-Hexaferrite hybrid nano-composites.Synth. Met.2020263January: 116369.10.1016/j.synthmet.2020.116369
    [Google Scholar]
  38. YinP. ZhangL. WuH. Two-step solvothermal synthesis of (Zn0.5Co0.5Fe2O4/Mn0.5Ni0.5Fe2o4)@C-MWCNTs hybrid with enhanced low frequency microwave absorbing performance.Nanomaterials (Basel)201991184785710.3390/nano9111601 31718034
    [Google Scholar]
  39. YanJ. HuangY. ZhangZ. LiuX. Novel 3D microsheets contain cobalt particles and numerous interlaced carbon nanotubes for high-performance electromagnetic wave absorption.J. Alloys Compd.20197851206121410.1016/j.jallcom.2019.01.275
    [Google Scholar]
  40. BhardwajP. KaushikS. GairolaP. GairolaS.P. Designing of nickel cobalt molybdate/multiwalled carbon nanotube composites for sup-pression of electromagnetic radiation.SN Appl Sci20191111310.1007/s42452‑018‑0115‑7
    [Google Scholar]
  41. TaoY. YinP. ZhangL. One-pot hydrothermal synthesis of Co3O4/MWCNTs/graphene composites with enhanced microwave ab-sorption in low frequency band.ChemNanoMat20195684785710.1002/cnma.201900173
    [Google Scholar]
  42. PeymanfarR. JavanshirS. Naimi-JamalM.R. CheldaviA. EsmkhaniM. Preparation and Characterization of MWCNT/Zn0.25Co0.75Fe2O4 Nanocomposite and Investigation of Its Microwave Absorption Properties at X-Band Frequency Using Silicone Rubber Polymeric Ma-trix.J. Electron. Mater.2019483086309510.1007/s11664‑019‑07065‑1
    [Google Scholar]
  43. ShuR. WuY. LiZ. Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band.Compos. Sci. Technol.2019184July: 107839.10.1016/j.compscitech.2019.107839
    [Google Scholar]
  44. ShuR. ZhangG.S. WangX. Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers.Chem. Eng. J.201833724225510.1016/j.cej.2017.12.106
    [Google Scholar]
  45. YinY. LiuX. WeiX. Magnetically aligned co-c/mwcnts composite derived from mwcnt-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorberACS Appl. Mater. Interfaces2017936308503086110.1021/acsami.7b10067 28820573
    [Google Scholar]
  46. ShuR. LiW. WuY. ZhangJ. ZhangG. Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frame-works for electromagnetic wave absorption in the X-band.Chem. Eng. J.201936251352410.1016/j.cej.2019.01.090
    [Google Scholar]
  47. AshrafA. TariqM. NaveedK. Design of carbon/glass/epoxy-based radar absorbing composites: Microwaves attenuation proper-ties.Polym. Eng. Sci.20131810.1002/pen
    [Google Scholar]
  48. ZhangZ LiT JingD ZhuangQ Absorption properties of radar absorbing structure laminate composites filled with carbon nanotubes.Carbon - Sci Technol 2009231179
    [Google Scholar]
  49. LeeS.E. KangJ.H. KimC.G. Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites.Compos. Struct.200676439740510.1016/j.compstruct.2005.11.036
    [Google Scholar]
  50. ParkK.Y. LeeS.E. KimC.G. HanJ.H. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich struc-tures.Compos. Sci. Technol.2006663–457658410.1016/j.compscitech.2005.05.034
    [Google Scholar]
  51. MakeiffD.A. HuberT. Microwave absorption by polyaniline-carbon nanotube composites.Synth. Met.20061567–849750510.1016/j.synthmet.2005.05.019
    [Google Scholar]
  52. LiuZ. BaiG. HuangY. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites.J. Phys. Chem. C200711137136961370010.1021/jp0731396
    [Google Scholar]
  53. NamI.W. LeeH.K. JangJ.H. Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites.Compos., Part A Appl. Sci. Manuf.20114291110111810.1016/j.compositesa.2011.04.016
    [Google Scholar]
  54. da SilvaL.V. PezzinS.H. RezendeM.C. AmicoS.C. Glass fiber/carbon nanotubes/epoxy three-component composites as radar absorbing materials.Polym. Compos.20163711810.1002/pc
    [Google Scholar]
  55. da SilvaV.A. RezendeM.C. Effect of the morphology and structure on the microwave absorbing properties of multiwalled carbon nano-tube filled epoxy resin nanocomposites.Mater. Res.201821510.1590/1980‑5373‑mr‑2017‑0977
    [Google Scholar]
  56. ZhaoG-L Study of electromagnetic wave absorption properties of carbon nanotubes-based composites2012298070417
  57. ZhaoT. HouC. ZhangH. Electromagnetic wave absorbing properties of amorphous carbon nanotubes.Sci. Rep.20144561910.1038/srep05619 25007783
    [Google Scholar]
  58. YeZ. LiZ. RobertsJ.A. ZhangP. WangJ.T. ZhaoG.L. Electromagnetic wave absorption properties of carbon nanotubes-epoxy compo-sites at microwave frequencies.J. Appl. Phys.201010851710.1063/1.3477195
    [Google Scholar]
  59. ZhangH. ZengG. GeY. ChenT. HuL. Electromagnetic characteristic and microwave absorption properties of carbon nanotubes/epoxy composites in the frequency range from 2 to 6 GHz.J. Appl. Phys.200910551410.1063/1.3086630
    [Google Scholar]
  60. LinH. ZhuH. GuoH. YuL. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes.Mater. Lett.200761163547355010.1016/j.matlet.2007.01.077
    [Google Scholar]
  61. SilvaV.A. De Castro FolguerasL. CândidoG.M. De PaulaA.L. RezendeM.C. CostaM.L. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials.Mater. Res.20131661299130810.1590/S1516‑14392013005000146
    [Google Scholar]
  62. FanZ LuoG ZhangZ ZhouL WeiF Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/ polymer compositesMater Sci Eng B Solid-State Mater Adv Technol20061321–285910.1016/j.mseb.2006.02.045
    [Google Scholar]
  63. GuptaT.K. SinghB.P. DhakateS.R. SinghV.N. MathurR.B. Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites.J. Mater. Chem. A Mater. Energy Sustain.20131329138914910.1039/c3ta11611e
    [Google Scholar]
  64. OhJ.H. OhK.S. KimC.G. HongC.S. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges.Compos., Part B Eng.2004351495610.1016/j.compositesb.2003.08.011
    [Google Scholar]
  65. ChinW.S. LeeD.G. Development of the composite RAS (radar absorbing structure) for the X-band frequency range.Compos. Struct.200777445746510.1016/j.compstruct.2005.07.021
    [Google Scholar]
  66. LiuQ. ZhangD. FanT. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites.Appl. Phys. Lett.200893101311001311310.1063/1.2957035
    [Google Scholar]
  67. LiuT. XieX. PangY. KobayashiS. Co/C nanoparticles with low graphitization degree: A high performance microwave-absorbing materi-al.J. Mater. Chem. C Mater. Opt. Electron. Devices2016481727173510.1039/C5TC03874J
    [Google Scholar]
  68. ZhangD. XuF. LinJ. YangZ. ZhangM. Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2-18-GHz frequency range.Carbon N Y201480110311110.1016/j.carbon.2014.08.044
    [Google Scholar]
  69. PanG. ZhuJ. MaS. SunG. YangX. Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexag-onal and cubic Co nanocrystals grown on graphene.ACS Appl. Mater. Interfaces2013523127161272410.1021/am404117v 24266516
    [Google Scholar]
  70. DingD. WangY. LiX. Rational design of core-shell Co@C microspheres for high-performance microwave absorption.Carbon N Y201711172273210.1016/j.carbon.2016.10.059
    [Google Scholar]
  71. SunJ. WangL. YangQ. ShenY. ZhangX. Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its ap-plications in microwave absorption coating.Prog. Org. Coat.2020141: 105552.10.1016/j.porgcoat.2020.105552
    [Google Scholar]
  72. WuQ. JinH. ZhangB. Facile synthesis of cobalt-doped porous composites with amorphous carbon/Zn shell for high-performance microwave absorption.Nanomaterials (Basel)202010211410.3390/nano10020330 32075194
    [Google Scholar]
  73. GuanZ.J. JiangJ.T. YanS.J. SunY.M. ZhenL. Sandwich-like cobalt/reduced graphene oxide/cobalt composite structure presenting syner-getic electromagnetic loss effect.J. Colloid Interface Sci.202056168769510.1016/j.jcis.2019.11.045 31785935
    [Google Scholar]
  74. ZhuX. WangX. LiuK. MengM. Niaz AkhtarM. Microwave absorption characteristics of carbon foam decorated with BaFe12O19 and Ni0.5Co0.5Fe2O4 magnetic composite in X-band frequency.J. Magn. Magn. Mater.2020513May: 167258.10.1016/j.jmmm.2020.167258
    [Google Scholar]
  75. ZhengX. LiY. FunX. Design of efficient microwave absorbers based on cobalt-based mof/srfe10cotio19/carbon nanofibers nano-composite.J. Supercond. Nov. Magn.202033296710.1007/s10948‑020‑05499‑x
    [Google Scholar]
  76. ShuR. WuY. ZhangJ. WanZ. LiX. Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocompo-sites for electromagnetic wave absorption.Compos., Part B Eng.2020193April: 108027.10.1016/j.compositesb.2020.108027
    [Google Scholar]
  77. SuX. WangJ. ZhangX. HuoS. DaiW. ZhangB. Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excel-lent microwave absorption performance.J. Alloys Compd.2020829: 154426.10.1016/j.jallcom.2020.154426
    [Google Scholar]
  78. DengJ. ZhangX. ZhaoB. Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO.J. Mater. Chem. C Mater. Opt. Electron. Devices20186267128714010.1039/C8TC02520G
    [Google Scholar]
  79. FengW. WangY. ChenJ. Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: Tunable surface area and electromagnetic wave absorption properties.J. Mater. Chem. C Mater. Opt. Electron. Devices201761101810.1039/C7TC03784H
    [Google Scholar]
  80. LvH. GuoY. WuG. JiG. ZhaoY. XuZ.J. Interface polarization strategy to solve electromagnetic wave interference issue.ACS Appl. Mater. Interfaces2017965660566810.1021/acsami.6b16223 28116900
    [Google Scholar]
  81. LvH. ZhangH. JiG. XuZ.J. Interface strategy to achieve tunable high frequency attenuation.ACS Appl. Mater. Interfaces20168106529653810.1021/acsami.5b12662 26918285
    [Google Scholar]
  82. LvH. ZhangH. ZhaoJ. JiG. DuY. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhe-dron structures.Nano Res.2016961813182210.1007/s12274‑016‑1074‑1
    [Google Scholar]
  83. XiangZ. DengB. HuangC. LiuZ. SongY. LuW. Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption.J. Alloys Compd.2020822: 153570.10.1016/j.jallcom.2019.153570
    [Google Scholar]
  84. XuX. RanF. FanZ. Cactus-inspired bimetallic metal-organic framework-derived 1d-2d hierarchical co/n-decorated carbon archi-tecture toward enhanced electromagnetic wave absorbing performance.ACS Appl. Mater. Interfaces20191114135641357310.1021/acsami.9b00356 30882206
    [Google Scholar]
  85. WangZ. ZhaoG-L. Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2 - 20 GHz.Open J Compos Mater20130302172310.4236/ojcm.2013.32003
    [Google Scholar]
/content/journals/cam/10.2174/2666731201666210803110914
Loading
/content/journals/cam/10.2174/2666731201666210803110914
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test