Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

The formation of calcium phosphate apatite (hydroxyapatite, carbonate-containing hydroxyapatite, fluorapatite and carbonate-containing fluorapatite) in aqueous systems has been studied for over a century.

However, in the region of low concentrations of liquid phases, the question of the nature, composition and region of existence of apatite compounds remains controversial.

The results of studying the phase equilibrium in the system CaO-PO-HO at 298 K in the isotherm region from the invariant point of dicalcium phosphate and monocalcium phosphate monohydrate to the lowest concentrations of the liquid phase components are presented.

Chemical analysis, thermogravimetry, IR spectroscopy and optical microscopy were used for the analysis.

Long-term monitoring of the establishment of equilibrium (up to 20 months) resulted in the determination of regions of stable solid phases of calcium orthophosphates, calcium-deficient apatites, hydroxyapatite, and apatite with (Ca/P) >1.67. Two types of calcium-deficient apatite were identified that differ in the (Ca/P) ratio: the first type is 1.33 < (Ca/P) ≤ 1.5; the second one is 1.5 ≤ (Ca/P) < 1.67.

The invariant points of calcium orthophosphates and compounds with the apatite structure were determined. The diagram was constructed using the Miller-Kenrick method based on obtained experimental data, which confirms the established regions and invariant points of stable equilibrium solid phases of the studied ternary system. The data obtained can be useful for understanding the processes of formation and change of compounds with apatite structure.

Loading

Article metrics loading...

/content/journals/cam/10.2174/2666731201666221006102124
2023-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. McConnellD. Apatite: Its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences.In: Applied mineralogy.Wien: Springer-Verlag19735111
    [Google Scholar]
  2. ElliottJ.C. Structure and chemistry of the apatites and other calcium orthophosphates.AmsterdamElsevier1994389
    [Google Scholar]
  3. DorozhkinS. Calcium orthophosphates in nature, biology and medicine.Materials20092239949810.3390/ma2020399
    [Google Scholar]
  4. MargolisH.C. KwakS.Y. YamazakiH. Role of mineralization inhibitors in the regulation of hard tissue biomineralization: Relevance to initial enamel formation and maturation.Front. Physiol.2014533910.3389/fphys.2014.0033925309443
    [Google Scholar]
  5. RoveriN. IafiscoM. The biomimetic approach to design apatites for nanobiotechnological applications.Advances in Biomimetics. GeorgeA. RijekaInTech20117510210.5772/15906
    [Google Scholar]
  6. BaturinG.N. Phosphorites on the sea floor.In: Origin, Composition and Distribution.Amsterdam, Oxford, New YorkElsevier1982
    [Google Scholar]
  7. McConnellD. Precipitation of phosphates in sea water.Econ. Geol.19656051059106210.2113/gsecongeo.60.5.1059
    [Google Scholar]
  8. CameronF.K. SeidellA. The action of water upon the phosphates of calcium.J. Am. Chem. Soc.190426111454146310.1021/ja02001a007
    [Google Scholar]
  9. CameronF.K. SeidellA. The phosphates of calcium.J. Am. Chem. Soc.190527121503151210.1021/ja01990a005
    [Google Scholar]
  10. CameronF.K. BellJ.M. The phosphates of calcium.J. Am. Chem. Soc.191032786987310.1021/ja01925a003
    [Google Scholar]
  11. BassetH.Z. Contributions to the study of calcium.Anorg Chem19085917984
    [Google Scholar]
  12. BassetH.J. The phosphates of calcium.J. Chem. Soc.1917111620625
    [Google Scholar]
  13. EisenbergerS. LehrmanA. TurnerW.D. The basic calcium phosphates and related systems. Some theoretical and practical aspects.Chem. Rev.194026225729610.1021/cr60084a008
    [Google Scholar]
  14. ElmoreK.L. FarrT.D. Equilibrium in the system calcium oxidephosphorus pentoxide-water Industrial and engineering chemistry.Ind. Eng. Chem.194032458058610.1021/ie50364a030
    [Google Scholar]
  15. AnsD.J. KnutterR. On the delimitation of the areas of existence of dicalcium phosphates and apatite in the system H2O‐Ca(OH)2‐H3PO4 at 25°C.Angew. Chem.1953652357858110.1002/ange.19530652303
    [Google Scholar]
  16. DuffE.J. Orthophosphates. Part III. The hydrolysis of secondary calcium orthophosphates.J. Chem. Soc. A1971891792110.1039/j19710000917
    [Google Scholar]
  17. GregoryT MorenoEC PatelJM Solubility of β-Ca3(PO4)2 in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25 and 37°C.J Res Nation Bureau of Stand A197478666774
    [Google Scholar]
  18. McDowellH GregoryTM BrownWE Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25 and 37°C.J Res Nation Bureau of Stand A1977812-327381
    [Google Scholar]
  19. TungM.S. EidelmanN. SieckB. BrownW.E. Octacalcium phosphate solubility. Product from 4 to 37oC.J. Res. Natl. Bur. Stand.198893561362410.6028/jres.093.153
    [Google Scholar]
  20. BrownP.W. Phase relationships in the ternary system CaO-P2O5-H2O at 25°C.J. Am. Ceram. Soc.1992751172210.1111/j.1151‑2916.1992.tb05435.x
    [Google Scholar]
  21. BrownP.W. MartinR.I. An analysis of hydroxyapatite surface layer formation.J. Phys. Chem. B1999103101671167510.1021/jp982554i
    [Google Scholar]
  22. LabgairiK JouraniA KaddamiM. The ternary system H3PO4-Ca(OH)2-H2O Isotherms at 15 and 45°C.J Appl Sol Chem Modeling20165276-8110.6000/1929‑5030.2016.05.02.3
    [Google Scholar]
  23. BakherZ. KaddamiM. Thermodynamic equilibrium in the system H2O+P2O5+CaCO3 at 25 and 70°C: Application for synthesis of calcium phosphate products based on calcium carbonate decomposition.Fluid Phase Equilib.2018456465610.1016/j.fluid.2017.10.005
    [Google Scholar]
  24. JensenAT RathlevJ Inorg Syntheses.New York-Toronto-London: McGraw-Hill Book Company1953419-22
    [Google Scholar]
  25. BerryE.E. The structure and composition of some calcium-deficient apatites.J. Inorg. Nucl. Chem.196729231732710.1016/0022‑1902(67)80033‑2
    [Google Scholar]
  26. HayekE. NeweselyH. Inorg Synth.New JerseyWiley Online1963
    [Google Scholar]
  27. Interstate StandardG.O.S.T. Water.In: Methods for determination of phosphorus-containing matters.MoscowStandartinform2015183092014
    [Google Scholar]
  28. Standard ISO 6878. Water quality-Determination of phosphorus - Ammonium molybdate spectrometric method. 2004. Available from: https://www.iso.org/standard/36917.html
  29. Interstate StandardG.O.S.T. 24 596.2-2015. Feed phosphates.Methods for determination of phosphates.MoscowStandartinform201512
    [Google Scholar]
  30. FarrT.D. TarbuttonG. LewisH.T.Jr System CaO-P2O5-HF-H2O: Equilibrium at 25 and 50°.J. Phys. Chem.196266231832110.1021/j100808a030
    [Google Scholar]
  31. Interstate StandardG.O.S.T. Drinking water.In: Methods for Determining Hardness.MoscowStandartinform20143195432012
    [Google Scholar]
  32. MandelS. TasA.C. Brushite (CaHPO4•2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4•5H2O) transformation in DMEM solutions at 36.5°C.Mater. Sci. Eng. C201030224525410.1016/j.msec.2009.10.00930011614
    [Google Scholar]
  33. BakherZ. KaddamiM. Solubility study at high phosphorus pentoxide concentration in ternary system CaCO3+P2O5+H2O at 25, 35 and 70°C.Fluid Phase Equilib.2018478909910.1016/j.fluid.2018.09.006
    [Google Scholar]
  34. PetrovI. ŠoptrajanovB. FusonN. LawsonJ.R. Infra-red investigation of dicalcium phosphates.Spectrochim. Acta A196723102637264610.1016/0584‑8539(67)80155‑7
    [Google Scholar]
  35. BerryE.E. BaddielC.B. Some assignments in the infra-red spectrum of octacalcium phosphate.Spectrochim. Acta A19672361781179210.1016/0584‑8539(67)80061‑8
    [Google Scholar]
  36. PosnerA.S. PerloffA. Apatites deficient in divalent cations.J. Res. Natl. Bur. Stand.195758527928610.6028/jres.058.035
    [Google Scholar]
  37. BerryE.E. The structure and composition of some calcium-deficient apatites-II.J. Inorg. Nucl. Chem.19672971585159010.1016/0022‑1902(67)80200‑8
    [Google Scholar]
  38. TsengY.H. MouC.Y. ChanJ.C.C. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: A mechanistic model for central dark line formation.J. Am. Chem. Soc.2006128216909691810.1021/ja060336u16719471
    [Google Scholar]
  39. WilsonR.M. ElliottJ.C. DowkerS.E.P. RodriguezL.L.M. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite.Biomaterials200526111317132710.1016/j.biomaterials.2004.04.03815475062
    [Google Scholar]
  40. LorahJ.R. TartarH.V. WoodL. A basic phosphate of calcium and of strontium and the adsorption of calcium hydroxide by basic calcium phosphate and by tricalcium phosphate.J. Am. Chem. Soc.19295141097110610.1021/ja01379a015
    [Google Scholar]
  41. BonelG HeughebaertJC HeughebaertM LacoutJL LebugleA Apatitic calcium orthophosphates and related compounds for biomaterials preparation.Ann N Y Acad Sci19885231 Bioceramics1153010.1111/j.1749‑6632.1988.tb38506.x3382122
    [Google Scholar]
  42. TamaiM. NakamuraM. IsshikiT. NishioK. EndohH. NakahiraA. A metastable phase in thermal decomposition of Ca-deficient hydroxyapatite.J. Mater. Sci. Mater. Med.200314761762210.1023/A:102407500816515348424
    [Google Scholar]
  43. AnsariM. NaghibS.M. MoztarzadehF. SalatiA. Synthesis and characterization of hydroxyapatite calcium hydroxide for dental composites.Ceram. Silik.2011552123126
    [Google Scholar]
  44. MillerW.L. KenrickF.B. Note on the identification of basic salts.J. Phys. Chem.19037425926810.1021/j150049a003
    [Google Scholar]
/content/journals/cam/10.2174/2666731201666221006102124
Loading
/content/journals/cam/10.2174/2666731201666221006102124
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test