Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

Recently, the CaMoO nanocrystal has been viewed as one of the most promising substrates for rare-earth-doped nanophosphors due to its high density, stable chemical properties, and good Deep-Ultraviolet (DUV) responding characteristics.

In this work, a green synthesis approach is proposed to obtain rare-earth-doped CaMoO nanodispersion with full-visible-spectra emission by using an ethanol-water mixed solvent in a Rotating Packed Bed (RPB) reactor.

The obtained nanophosphors exhibited bright luminescent emission with tunable color in the range of full-visible-spectra doping of Eu3+, Tb3+, and Dy3+, when they were excited by deep-ultraviolet (DUV) light. The RPB promoted the uniform distribution of rare-earth ions and the crystallinity of CaMoO particles, and the use of ethanol-water as solvents with no toxicity and less environmental pollution was beneficial for large-scale production.

The quantum yields for nanophosphors of CaMoO: Na+, Eu3+, CaMoO: Na+, Tb3+, and CaMoO: Na+, Dy3+ were measured to be 46.96%, 28.05%, and 10.27%, respectively, which were among the highest values ever reported for rare-earth-doped CaMoO-based nanophosphors with similar morphology. The temperature-dependent luminescence of CaMoO: Eu3+, Na+ nanophosphors was investigated in the range of 298 K - 498 K.

The clear correlation between luminescence intensity and temperature indicates the potential novel application areas for CaMoO: Na+, Eu3+ nanophosphor as a non-invasive thermometer. Upon regulating different nanophosphor material ratios, the obtained product shows a flexible fluorescence towards full-visible-spectra emission.

Loading

Article metrics loading...

/content/journals/cam/10.2174/2666731201666220128110046
2022-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. MoonB.J. KimS.J. LeeS. Rare-earth-element-ytterbium-substituted lead-free inorganic perovskite nanocrystals for optoelectronic applications.Adv. Mater.20193133: e1901716.10.1002/adma.201901716 31231874
    [Google Scholar]
  2. YuanB. SongY. ShengY. Luminescence properties and energy transfer of Ca2Mg0.5AlSi1.5O7: Ce3+, Eu2+ phosphors for UV-excited white LEDs.Powder Technol.201425380380810.1016/j.powtec.2013.12.047
    [Google Scholar]
  3. NguyenT.M.H. SuwanP. KoottatepT. BeckS.E. Application of a novel, continuous-feeding ultraviolet light emitting diode (UV-LED) system to disinfect domestic wastewater for discharge or agricultural reuse.Water Res.2019153153536210.1016/j.watres.2019.01.006 30690218
    [Google Scholar]
  4. MinamikawaT. KomaT. SuzukiA. Quantitative evaluation of SARS-CoV-2 inactivation using a deep ultraviolet light-emitting diode.Sci. Rep.2021111507010.1038/s41598‑021‑84592‑0 33658595
    [Google Scholar]
  5. KneisslM. SeongT-Y. HanJ. AmanoH. The emergence and prospects of deep-ultraviolet light-emitting diode technologies.Nat. Photonics20191323324410.1038/s41566‑019‑0359‑9
    [Google Scholar]
  6. SongK. MohseniM. TaghipourF. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review.Water Res.20169434134910.1016/j.watres.2016.03.003 26971809
    [Google Scholar]
  7. WangX. ChenY. LiuF. PanZ. Solar-blind ultraviolet-C persistent luminescence phosphors.Nat. Commun.2020111204010.1038/s41467‑020‑16015‑z 32341355
    [Google Scholar]
  8. StupcaM. NayfehO.M. HoangT. Silicon nanoparticle-ZnS nanophosphors for ultraviolet-based white light emitting diode.J. Appl. Phys.2012112: 074313.10.1063/1.4754449
    [Google Scholar]
  9. ZhuH. ChenY. LiJ. CuiG. WangX. High-pressure X-ray diffraction study, optical properties, and applications of CaMoO4:Eu3+ nanosheets in white LEDs.J. Alloys Compd.2020846: 156473.10.1016/j.jallcom.2020.156473
    [Google Scholar]
  10. WangY. SongJ. ZhaoY. XuL. HeD. JiaoH. Effects of organic additives on morphology and luminescent properties of Eu3+-doped calcium molybdate red phosphors.Powder Technol.201527511110.1016/j.powtec.2015.01.055
    [Google Scholar]
  11. DingY. LiuJ. ZhuY. Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes.J. Mater. Sci.2018534861487310.1007/s10853‑017‑1888‑6
    [Google Scholar]
  12. ParchurA.K. AnsariA.A. SinghB.P. Enhanced luminescence of CaMoO₄:Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe₃O₄: cytotoxicity assessment on human liver cancer cells and mesenchymal stem cells.Integr. Biol.201461536410.1039/C3IB40148K 24287920
    [Google Scholar]
  13. PuY. LinL. LiuJ. WangJ-X. WangD. High-gravity-assisted green synthesis of rare-earth doped calcium molybdate colloidal nanophosphors.Chin. J. Chem. Eng.2020281744175110.1016/j.cjche.2020.03.023
    [Google Scholar]
  14. BuW. ChenZ. ChenF. ShiJ. Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals.J. Phys. Chem. C2009113121761218510.1021/jp901437a
    [Google Scholar]
  15. DinhC-T. NguyenT-D. KleitzF. DoT-O. Shape-controlled synthesis of highly crystalline titania nanocrystals.ACS Nano20093113737374310.1021/nn900940p 19807108
    [Google Scholar]
  16. ZhangY-Q. WangD. ZhangL-L. LeY. WangJ-X. ChenJ-F. Facile preparation of α-calcium sulfate hemihydrate with low aspect ratio using high-gravity reactive precipitation combined with a salt solution method at atmospheric pressure.Ind. Eng. Chem. Res.20175647140531405910.1021/acs.iecr.7b03356
    [Google Scholar]
  17. GaluszkaA. MigaszewskiZ. NamiesnikJ. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical principles.Trends Analyt. Chem.201350788410.1016/j.trac.2013.04.010
    [Google Scholar]
  18. KokosaJ.M. Selecting an extraction solvent for a greener liquid phase microextration (LPME) mode-based analytical method.Trends Analyt. Chem.201911823824710.1016/j.trac.2019.05.012
    [Google Scholar]
  19. LiF. WengH. ShangY. Environmentally friendly and facile synthesis of Rh nanoparticles at room temperature by alkaline ethanol solution and their application for ethanol electrooxidation.RSC Advances201773161316910.1039/C6RA26591J
    [Google Scholar]
  20. ChenS-F. CölfenH. AntoniettiM. YuS-H. Ethanol assisted synthesis of pure and stable amorphous calcium carbonate nanoparticles.Chem. Commun. (Camb.)201349839564956610.1039/c3cc45427d 24022058
    [Google Scholar]
  21. HanJ-H. PackS-P. ChungS. Solvo-hydrothermal synthesis of calcium phosphate nanostructures from calcium inositol hexakisphosphate precursor in water-ethanol mixed solutions.Korean J. Chem. Eng.202037589189710.1007/s11814‑020‑0496‑3
    [Google Scholar]
  22. WangX-F. PengG-H. LiN. LiangZ-H. WangX. WuJ-L. Hydrothermal synthesis and luminescence properties of 3D walnut-like CaMoO4:Eu3+ red phosphors.J. Alloys Compd.201459910210710.1016/j.jallcom.2014.02.091
    [Google Scholar]
  23. BhagwanJ. HussainS.K. YuJ.S. Facile hydrothermal synthesis and electrochemical properties of CaMoO4 nanoparticles for aqueous asymmetric supercapacitors.ACS Sustain. Chem.& Eng.20197123401235010.1021/acssuschemeng.9b01708
    [Google Scholar]
  24. LengJ. ChenJ. WangD. WangJ-X. PuY. ChenJ-F. Scalable preparation of Gd2O3:Yb3+/Er3+ upconversion nanophosphors in a high-gravity rotating packed bed reactor for transparent upconversion luminescent films.Ind. Eng. Chem. Res.201756287977798310.1021/acs.iecr.7b02262
    [Google Scholar]
  25. YangH-J. ChuG-W. ZhangJ-W. ShenZ-G. ChenJ-F. Micromixing efficiency in a rotating packed bed: Experiments and simulation.Ind. Eng. Chem. Res.2005447730773710.1021/ie0503646
    [Google Scholar]
  26. ParkK. HakeemD.A. PiJ.W. JungG.W. Emission enhancement of Eu3þ-doped ZnO by adding charge compensators.J. Alloys Compd.20197721040105110.1016/j.jallcom.2018.08.278
    [Google Scholar]
  27. ParkK. HakeemD.A. PiJ.W. KimS.W. Improvement of photoluminescence properties of Ce3+-doped CaSrAl2SiO7 phosphors by charge compensation with Li+ and Na+.Ceram. Int.20184421929193410.1016/j.ceramint.2017.10.135
    [Google Scholar]
  28. VermaA. SharmaS.K. Rare-earth doped/codoped CaMoO4 phosphors: A candidate for solar spectrum conversion.Solid State Sci.201996: 105945.10.1016/j.solidstatesciences.2019.105945
    [Google Scholar]
  29. HakeemD.A. PiJ.W. KimS.W. ParkK. NewY. 2LuCaAl2SiO12:Ln (Ln = Ce3+, Eu3+, and Tb3+) phosphors for white LED applications.Inorg. Chem. Front.201851336134510.1039/C8QI00111A
    [Google Scholar]
  30. KumariP. ManamJ. Influence of Dy3+ ions doping on structural and luminescent properties of GdVO4.J. Mater.20162794379447
    [Google Scholar]
  31. ZhaiH-F. LiW. ZhangJ. Excitation-induced tunable luminescent properties of polyhedral CaMoO4 microcrystallites.J. Mater. Sci. Mater. Electron.202132100081001710.1007/s10854‑021‑05659‑2
    [Google Scholar]
  32. HazraC. SamantaT. AsaithambiA.V. MahalingamV. Bilayer stabilized Ln³⁺-doped CaMoO₄ nanocrystals with high luminescence quantum efficiency and photocatalytic properties.Dalton Trans.201443186623663010.1039/C3DT53450B 24667891
    [Google Scholar]
  33. ParchurA.K. PrasadA.I. AnsariA.A. RaiS.B. NingthoujamR.S. Luminescence properties of Tb3+-doped CaMoO4 nanoparticles: annealing effect, polar medium dispersible, polymer film and core-shell formation.Dalton Trans.20124136110321104510.1039/c2dt31257c 22859260
    [Google Scholar]
  34. GuoX. SongS. JiangX. Functional applications and luminescence properties of emission tunable phosphors CaMoO4@SiO2:Ln3+ (Ln=Eu, Tb, Dy).J. Alloys Compd.2021857: 157515.10.1016/j.jallcom.2020.157515
    [Google Scholar]
  35. DuttaS. SomS. SharmaS. Excitation spectra and luminescence decay analysis of K+ compensated Dy3+ doped CaMoO4 phosphors.RSC Advances201557380738710.1039/C4RA12447B
    [Google Scholar]
  36. DuP. GuoY. LeeS. YuJ. Broad near-ultraviolet and blue excitation band induced dazzling red emissions in Eu3+-activated Gd2MoO6 phosphors for white light-emitting diodes.RSC Advances201773170317810.1039/C6RA25652J
    [Google Scholar]
  37. RenX. ZhangF. GuoB. GaoN. ZhangX. Synthesis of N-Doped micropore carbon quantum dots with high quantum yield and dual-wavelength photoluminescence emission from biomass for cellular imaging.Nanomaterials (Basel)20199449510.3390/nano9040495 30939724
    [Google Scholar]
  38. KumamotoY. TaguchiA. KawataS. Deep-ultraviolet biomolecular imaging and analysis.Adv. Opt. Mater.20197: 1801099.10.1002/adom.201801099
    [Google Scholar]
  39. GuoY. YangC. ZhangY. TaoT. Nanomaterials for fluorescent detection of curcumin.Spectrochim Acta A Mol Biomol2021120359
    [Google Scholar]
  40. RenardD. TianS. AhmadivandA. Polydopamine-stabilized aluminum nanocrystals: Aqueous stability and benzo[a]pyrene detection.ACS Nano20191333117312410.1021/acsnano.8b08445 30807101
    [Google Scholar]
/content/journals/cam/10.2174/2666731201666220128110046
Loading
/content/journals/cam/10.2174/2666731201666220128110046
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test