Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

Perylene Diimide (PDI) is among the most investigated non-fullerene electron acceptor for Organic Solar Cells (OSCs). Constructing PDI derivatives into three-dimensional propeller-like molecular structures is not only one of the viable routes to suppress the over aggregation tendency of the PDI chromophores but also rise possibilities to tune and optimize the optoelectronic property of the molecules.

In this work, we reported the design, synthesis, and characterization of three electron-accepting materials, namely BOZ-PDI, BTZ-PDI, and BIZ-PDI, each with three PDI arms linked to benzotrioxazole, benzotrithiazole, and benzotriimidazole based center cores, respectively.

The introduction of electron-withdrawing center cores with heteroatoms does not significantly complicate the synthesis of the acceptor molecules, but drastically influences the energy levels of the propeller-like PDI derivatives.

The highest power conversion efficiency was obtained with benzoxazole-based BOZ-PDI reaching 7.70% for its higher photon absorption and charge-transport ability.

This work explores the utilization of electron-withdrawing cores with heteroatoms in the propeller-like PDI derivatives, which provides a handy tool to construct high-performance non-fullerene acceptor materials.

Loading

Article metrics loading...

/content/journals/cam/10.2174/2666731201666210616114513
2022-04-01
2025-01-30
Loading full text...

Full text loading...

References

  1. InganäsO. Organic photovoltaics over three decades.Adv. Mater.20183035: e1800388.10.1002/adma.201800388 29938847
    [Google Scholar]
  2. YanC.Q. BarlowS. WangZ.H. Non-fullerene acceptors for organic solar cells.Nat. Rev. Mater.2018331800310.1038/natrevmats.2018.3
    [Google Scholar]
  3. CuiY. YaoH. ZhangJ. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages.Nat. Commun.2019101251510.1038/s41467‑019‑10351‑5 31175276
    [Google Scholar]
  4. YuR. YaoH. CuiY. HongL. HeC. HouJ. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells.Adv. Mater.20193136: e1902302.10.1002/adma.201902302 31294900
    [Google Scholar]
  5. SunH.L. LiuT. YuJ.W. A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency.Energy Environ. Sci.201912113328333710.1039/C9EE01890E
    [Google Scholar]
  6. YanT. SongW. HuangJ. PengR. HuangL. GeZ. 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy.Adv. Mater.20193139: e1902210.10.1002/adma.201902210 31411359
    [Google Scholar]
  7. WangR. JiangK. YuH. WuF. ZhuL.N. YanH. Efficient inverted perovskite solar cells with truxene-bridged PDI trimers as electron transporting materials.Mater. Chem. Front.20193102137214210.1039/C9QM00329K
    [Google Scholar]
  8. ZhuL. ZhangM. ZhouG.Q. Efficient organic solar cell with 16.88% efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties.Adv. Energy Mater.20201018: 1904234.10.1002/aenm.201904234
    [Google Scholar]
  9. LiuT. ZhangY.D. ShaoY.M. Asymmetric acceptors with fluorine and chlorine substitution for organic solar cells toward 16.83% efficiency.Adv. Funct. Mater.20203024: 2000456.10.1002/adfm.202000456
    [Google Scholar]
  10. MacedoA.G. ChristopholiL.P. GavimA.E.X. Perylene derivatives for solar cells and energy harvesting: A review of materials, challenges and advances.J. Mater. Sci. Mater. Electron.20193017158031582410.1007/s10854‑019‑02019‑z
    [Google Scholar]
  11. SinghR. KimM. LeeJ.J. YeT.L. KeivanidisP.E. ChoK.W. Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors.J. Mater. Chem. C Mater. Opt. Electron. Devices2020851686169610.1039/C9TC04955J
    [Google Scholar]
  12. KozmaE. CatellaniM. Perylene diimides based materials for organic solar cells.Dyes Pigments201398116017910.1016/j.dyepig.2013.01.020
    [Google Scholar]
  13. ZhengM.M. MiaoY.W. SyedA.A. Spatial configuration engineering of perylenediimide-based non-fullerene electron transport materials for efficient inverted perovskite solar cells.J Energy Chem20215637438210.1016/j.jechem.2020.08.012
    [Google Scholar]
  14. LiG. YangW.B. WangS.H. Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells.J. Mater. Chem. C Mater. Opt. Electron. Devices2019735109011090710.1039/C9TC03457A
    [Google Scholar]
  15. XiaP. WuM.L. ZhangS.X. High performance PDI based ternary organic solar cells fabricated with non-halogenated solvent.Org. Electron.20197320521110.1016/j.orgel.2019.03.052
    [Google Scholar]
  16. WangH. LiM. LiuY.H. SongJ.S. LiC.H. BoZ.S. Perylene diimide based star-shaped small molecular acceptors for high efficiency organic solar cells.J. Mater. Chem. C Mater. Opt. Electron. Devices20197481982510.1039/C8TC05332D
    [Google Scholar]
  17. Ahmed QureshiM.B. LiM. WangH. SongJ.S. BoZ.S. Nonfullerene acceptors with an n-annulated perylene core and two perylene diimide units for efficient organic solar cells.Dyes Pigments2020173: 107970.10.1016/j.dyepig.2019.107970
    [Google Scholar]
  18. PanJ.W. WangL. ChenW. Non-fullerene small molecule acceptors with three-dimensional thiophene/selenophene-annulated perylene diimides for efficient organic solar cells.J. Mater. Chem. C Mater. Opt. Electron. Devices20208206749675510.1039/D0TC00341G
    [Google Scholar]
  19. CannJ. DaynekoS. SunJ-P. HendsbeeA.D. HillI.G. WelchG.C. N-annulated perylene diimide dimers: Acetylene linkers as a strategy for controlling structural conformation and the impact on physical, electronic, optical and photovoltaic properties.J. Mater. Chem. C Mater. Opt. Electron. Devices2017582074208310.1039/C6TC05107C
    [Google Scholar]
  20. LuoZ.H. LiuT. ChengW.L. A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a Voc over 1.0 V.J. Mater. Chem. C Mater. Opt. Electron. Devices2018651136114210.1039/C7TC05261H
    [Google Scholar]
  21. FanW. LiangN. MengD. A high performance three-dimensional thiophene-annulated perylene dye as an acceptor for organic solar cells.Chem. Commun. (Camb.)20165277115001150310.1039/C6CC05810H 27709212
    [Google Scholar]
  22. SunD. MengD. CaiY. Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiency over 7%.J. Am. Chem. Soc.201513734111561116210.1021/jacs.5b06414 26278192
    [Google Scholar]
  23. MengD. SunD. ZhongC. High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor.J. Am. Chem. Soc.2016138137538010.1021/jacs.5b11149 26652276
    [Google Scholar]
  24. LiM. WangH. LiuY.H. Perylene diimide acceptor with two planar arms and a twisted core for high efficiency polymer solar cells.Dyes Pigments2020175: 108186.10.1016/j.dyepig.2020.108186
    [Google Scholar]
  25. BianG.F. ZhaoF. LauT.K. Simply planarizing nonfused perylene diimide based acceptors toward promising non-fullerene solar cells.J. Mater. Chem. C Mater. Opt. Electron. Devices20197268092810010.1039/C9TC02013F
    [Google Scholar]
  26. WangK. XiaP. WangK. π-extension, selenium incorporation, and trimerization: “Three in one” for efficient perylene diimide oligomer-based organic solar cells.ACS Appl. Mater. Interfaces20201289528953610.1021/acsami.9b21929 32009378
    [Google Scholar]
  27. SunH. SongX. XieJ. PDI derivative through fine-tuning the molecular structure for fullerene-free organic solar cells.ACS Appl. Mater. Interfaces2017935299242993110.1021/acsami.7b08282 28795560
    [Google Scholar]
  28. WengK.K. LiC. BiP.Q. Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency.J. Mater. Chem. A Mater. Energy Sustain.2019783552355710.1039/C8TA12034J
    [Google Scholar]
  29. DingK. WangY. ShanT. Propeller-like acceptors with difluoride perylene diimides for organic solar cells.Org. Electron.202078: 105569.10.1016/j.orgel.2019.105569
    [Google Scholar]
  30. DuanY. XuX. YanH. WuW. LiZ. PengQ. Pronounced effects of a triazine core on photovoltaic performance-efficient organic solar cells enabled by a PDI trimer-based small molecular acceptor.Adv. Mater.2017297: 1605115.10.1002/adma.201605115 27922731
    [Google Scholar]
  31. ZhangG.J. XuX.P. LeeY.W. WooH.Y. LiY. PengQ. Achieving a high fill factor and stability in perylene diimide–based polymer solar cells using the molecular lock effect between 4,4′-bipyridine and a tri(8-hydroxyquinoline)aluminum(III) core.Adv. Funct. Mater.20192929: 1902079.10.1002/adfm.201902079
    [Google Scholar]
  32. LeeJ. SinghR. SinD.H. KimH.G. SongK.C. ChoK. A nonfullerene small molecule acceptor with 3D interlocking geometry enabling efficient organic solar cells.Adv. Mater.2016281697610.1002/adma.201504010 26539752
    [Google Scholar]
  33. LinH. ChenS. HuH. Reduced intramolecular twisting improves the performance of 3D molecular acceptors in non-fullerene organic solar cells.Adv. Mater.201628388546855110.1002/adma.201600997 27501996
    [Google Scholar]
  34. TangF. WuK.L. ZhouZ.J. WangG. ZhaoB. TanS.T. Alkynyl-functionalized pyrene-cored perylene diimide electron acceptors for efficient nonfullerene organic solar cells.ACS Appl. Energy Mater.2019253918392610.1021/acsaem.9b00611
    [Google Scholar]
  35. LinY. WangY. WangJ. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells.Adv. Mater.201426305137514210.1002/adma.201400525 24659432
    [Google Scholar]
  36. ZhangJ.Q. BaiF.J. LiY.K. Intramolecular π-stacked perylene-diimide acceptors for non-fullerene organic solar cells.J. Mater. Chem. A Mater. Energy Sustain.20197148136814310.1039/C9TA00343F
    [Google Scholar]
  37. LiY. GongY. CheY. XuX. YuL. PengQ. Propeller-like all-fused perylene diimide based electron acceptors with chalcogen linkage for efficient polymer solar cells.Front Chem.2020835010.3389/fchem.2020.00350 32411672
    [Google Scholar]
  38. KimH.S. ParkH.J. LeeS.K. ShinW.S. SongC.E. HwangD.H. Effects of the core unit on perylene-diimide-based molecular acceptors in fullerene-free organic solar cells.Org. Electron.20197123824510.1016/j.orgel.2019.05.029
    [Google Scholar]
  39. LiuJ. LuH. LiuY. Efficient organic solar cells based on non-fullerene acceptors with two planar thiophene-fused perylene diimide units.ACS Appl. Mater. Interfaces2020129107461075410.1021/acsami.9b22927 32054268
    [Google Scholar]
  40. BenattoL. MarchioriC.F.N. Moyses AraujoC. KoehlerM. Molecular origin of efficient hole transfer from non-fullerene acceptors: Insights from first-principles calculations.J. Mater. Chem. C Mater. Opt. Electron. Devices2019739121801219310.1039/C9TC03563J
    [Google Scholar]
  41. WangH.L. YangF. XiangY.R. Achieving efficient inverted perovskite solar cells with excellent electron transport and stability by employing a ladder-conjugated perylene diimide dimer.J. Mater. Chem. A Mater. Energy Sustain.2019742241912419810.1039/C9TA09260A
    [Google Scholar]
  42. MengD. FuH. XiaoC. Three-bladed rylene propellers with three-dimensional network assembly for organic electronics.J. Am. Chem. Soc.201613832101841019010.1021/jacs.6b04368 27440216
    [Google Scholar]
  43. WuM.L. YiJ.P. HuJ. Ring fusion attenuates the device performance: Star-shaped long helical perylene diimide based non-fullerene acceptors.J. Mater. Chem. C Mater. Opt. Electron. Devices20197319564957210.1039/C9TC02150G
    [Google Scholar]
  44. LuoZ.H. XiongW.T. LiuT. Triphenylamine-cored star-shape compounds as non-fullerene acceptor for high-efficiency organic solar cells: Tuning the optoelectronic properties by S/Se-annulated perylene diimide.Org. Electron.20174116617210.1016/j.orgel.2016.10.044
    [Google Scholar]
  45. LiS.X. LiuW.Q. LiC.Z. A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells.J. Mater. Chem. A Mater. Energy Sustain.2016427106591066510.1039/C6TA04232E
    [Google Scholar]
  46. WangB. LiuW.Q. LiH.B. Electron acceptors with varied linkages between perylene diimide and benzotrithiophene for efficient fullerene-free solar cells.J. Mater. Chem. A Mater. Energy Sustain.20175199396940110.1039/C7TA02582C
    [Google Scholar]
  47. XiongY. WuB. ZhengX. Novel dimethylmethylene-bridged triphenylamine-pdi acceptor for bulk-heterojunction organic solar cells.Adv. Sci. (Weinh.)2017410: 1700110.10.1002/advs.201700110 29051855
    [Google Scholar]
  48. ZhangL.P. ZhaoW.C. LiuX.Y. A triptycene-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor.New J. Chem.20174118102371024410.1039/C7NJ01971H
    [Google Scholar]
  49. LiG. ZhangY. LiuT. Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells.J. Mater. Chem. C Mater. Opt. Electron. Devices2018641111111111710.1039/C8TC02823K
    [Google Scholar]
  50. ZhangG.J. FengJ. XuX.P. MaW. LiY. PengQ. Perylene diimide-based nonfullerene polymer solar cells with over 11% efficiency fabricated by smart molecular design and supramolecular morphology optimization.Adv. Funct. Mater.20192950: 1906587.10.1002/adfm.201906587
    [Google Scholar]
  51. MalliarasG.G. SalemJ.R. BrockP.J. ScottC. Electrical characteristics and efficiency of single-layer organic light-emitting diodes.Phys. Rev. B Condens. Matter Mater. Phys.19985820134111341410.1103/PhysRevB.58.R13411
    [Google Scholar]
  52. AnderssonL.M. MüllerC. BadadaB.H. ZhangF. WürfelU. InganäsO. Transport mobility and fill factor correlation in geminate recombination limited solar cells.J. Appl. Phys.20111102: 024509.10.1063/1.3609079
    [Google Scholar]
/content/journals/cam/10.2174/2666731201666210616114513
Loading
/content/journals/cam/10.2174/2666731201666210616114513
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test