Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

In many previous studies, liquorice plant () extracts have been found to contain more than 300 natural compounds, most of which are triterpenoids and flavonoids, and show promising results in clinical studies for treating many microbial and viral infections. Triterpenoids, like glycyrrhizic acid, have shown anti-SARS-CoV activity . Experimentally, certain glycyrrhizic acid derivatives have shown increased activity by many folds against SARS-associated viruses. These compounds can potentially inhibit the replication cycle of SARS-associated viruses by interfering with the viral gene expression or by inhibiting the spike protein expression, which in turn inhibits the adhesion and entry of the virus. Although the therapeutic has shown great antiviral activity , but , its efficiency deteriorates till it reaches the liver for metabolism. In the current review, we analyze the unique replication strategy of SARS-CoV-2 and glycyrrhizic acid as a potential drug against SARS-CoV-2. We also discuss possible nanoformulations of glycyrrhizic acid for efficient drug delivery in humans and as a potent therapeutic strategy for COVID-19.

Loading

Article metrics loading...

/content/journals/cam/10.2174/2666731201666220114111711
2022-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. ZhuN. ZhangD. WangW. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa2001017 31978945
    [Google Scholar]
  2. GralinskiL.E. MenacheryV.D. Return of the coronavirus: 2019-nCoV.Viruses202012213510.3390/v12020135 31991541
    [Google Scholar]
  3. JinY.H. CaiL. ChengZ.S. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version).Mil. Med. Res.202071410.1186/s40779‑020‑0233‑6 32029004
    [Google Scholar]
  4. CinatlJ. MorgensternB. BauerG. ChandraP. RabenauH. DoerrH.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus.Lancet200336193742045204610.1016/S0140‑6736(03)13615‑X 12814717
    [Google Scholar]
  5. HirabayashiK. IwataS. MatsumotoH. Antiviral activities of glycyrrhizin and its modified compounds against human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus type 1 (HSV-1) in vitro. Chem. Pharm. Bull. (Tokyo)199139111211510.1248/cpb.39.112 1646687
    [Google Scholar]
  6. HuanC. XuY. ZhangW. GuoT. PanH. GaoS. Research progress on the antiviral activity of glycyrrhizin and its derivatives in liquorice.Front. Pharmacol.202112: 680674.10.3389/fphar.2021.680674 34295250
    [Google Scholar]
  7. ChrzanowskiJ. ChrzanowskaA. GrabońW. Glycyrrhizin: An old weapon against a novel coronavirus.Phytother. Res.202135262963610.1002/ptr.6852 32902005
    [Google Scholar]
  8. ShettyR. GhoshA. HonavarS.G. KhamarP. SethuS. Therapeutic opportunities to manage COVID-19/SARS-CoV-2 infection: Present and future.Indian J. Ophthalmol.202068569370210.4103/ijo.IJO_639_20 32317431
    [Google Scholar]
  9. KsiazekT.G. ErdmanD. GoldsmithC.S. SARS Working GroupA novel coronavirus associated with severe acute respiratory syndrome.N. Engl. J. Med.2003348201953196610.1056/NEJMoa030781 12690092
    [Google Scholar]
  10. ShereenM.A. KhanS. KazmiA. BashirN. SiddiqueR. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses.J. Adv. Res.202024919810.1016/j.jare.2020.03.005 32257431
    [Google Scholar]
  11. HoffmannM. Kleine-WeberH. SchroederS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.052 32142651
    [Google Scholar]
  12. ZhouP. YangX.L. WangX.G. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature2020579779827027310.1038/s41586‑020‑2012‑7 32015507
    [Google Scholar]
  13. SnijderE.J. DecrolyE. ZiebuhrJ. The nonstructural proteins directing coronavirus RNA synthesis and processing.Adv. Virus Res.2016965912610.1016/bs.aivir.2016.08.008 27712628
    [Google Scholar]
  14. FehrA.R. PerlmanS. Coronaviruses: An overview of their replication and pathogenesis.Methods Mol. Biol.2015128212310.1007/978‑1‑4939‑2438‑7_1 25720466
    [Google Scholar]
  15. FungT.S. LiuD.X. Human coronavirus: Host-pathogen interaction.Annu. Rev. Microbiol.20197352955710.1146/annurev‑micro‑020518‑115759 31226023
    [Google Scholar]
  16. ZengC-X. YangQ. HuQ. A comparison of the distribution of two glycyrrhizic acid epimers in rat tissues.Eur. J. Drug Metab. Pharmacokinet.200631425325810.1007/BF03190464 17315535
    [Google Scholar]
  17. KimY.W. ZhaoR.J. ParkS.J. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production.Br. J. Pharmacol.2008154116517310.1038/bjp.2008.79 18332856
    [Google Scholar]
  18. RamA. MabalirajanU. DasM. Glycyrrhizin alleviates experimental allergic asthma in mice.Int. Immunopharmacol.2006691468147710.1016/j.intimp.2006.04.020 16846841
    [Google Scholar]
  19. TakiiH. KometaniT. NishimuraT. NakaeT. OkadaS. FushikiT. Antidiabetic effect of glycyrrhizin in genetically diabetic KK-Ay mice.Biol. Pharm. Bull.200124548448710.1248/bpb.24.484 11379765
    [Google Scholar]
  20. YangY. ShiQ. LiuZ. The synergistic anti-asthmatic effects of glycyrrhizin and salbutamol.Acta Pharmacol. Sin.201031444344910.1038/aps.2009.207 20228825
    [Google Scholar]
  21. XuH. FabricantD.S. PiersenC.E. A preliminary RAPD-PCR analysis of Cimicifuga species and other botanicals used for women’s health.Phytomedicine20029875776210.1078/094471102321621403 12587700
    [Google Scholar]
  22. IkedaK. Glycyrrhizin injection therapy prevents hepatocellular carcinogenesis in patients with interferon-resistant active chronic hepatitis C.Hepatol. Res.2007372Suppl. 2S287S29310.1111/j.1872‑034X.2007.00199.x 17877497
    [Google Scholar]
  23. SuX. WuL. HuM. DongW. XuM. ZhangP. Glycyrrhizic acid: A promising carrier material for anticancer therapy.Biomed. Pharmacother.20179567067810.1016/j.biopha.2017.08.123 28886526
    [Google Scholar]
  24. GraebinC.S. VerliH. GuimarãesJ.A. Glycyrrhizin and glycyrrhetic acid: scaffolds to promising new pharmacologically active compounds.J. Braz. Chem. Soc.2010211595161510.1590/S0103‑50532010000900002
    [Google Scholar]
  25. BaltinaL.A. KondratenkoR.M. BaltinaL.A.Jr PlyasunovaO.A. PokrovskiiA.G. TolstikovG.A. Prospects for the creation of new antiviral drugs based on glycyrrhizic acid and its derivatives (a review).Pharm. Chem. J.2009431053954810.1007/s11094‑010‑0348‑2 32214533
    [Google Scholar]
  26. BaltinaL.A. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine.Curr. Med. Chem.200310215517110.2174/0929867033368538 12570715
    [Google Scholar]
  27. HoeverG. BaltinaL. MichaelisM. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus.J. Med. Chem.20054841256125910.1021/jm0493008 15715493
    [Google Scholar]
  28. MusharrafS.G. KanwalN. ArfeenQ.U. Stress degradation studies and stability-indicating TLC-densitometric method of glycyrrhetic acid.Chem. Cent. J.201371910.1186/1752‑153X‑7‑9 23327365
    [Google Scholar]
  29. JaiswalM DudheR SharmaPK Nanoemulsion: An advanced mode of drug delivery system.3 Biotech2015521237
    [Google Scholar]
  30. SarkerD.K. Engineering of nanoemulsions for drug delivery.Curr. Drug Deliv.20052429731010.2174/156720105774370267 16305433
    [Google Scholar]
  31. FangJ-Y. HungC-F. HuaS-C. HwangT-L. Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: Drug release and cytotoxicity against cancer cells.Ultrasonics2009491394610.1016/j.ultras.2008.04.009 18554679
    [Google Scholar]
  32. PoutonC.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems.Eur. J. Pharm. Sci.200011Suppl. 2S93S9810.1016/S0928‑0987(00)00167‑6 11033431
    [Google Scholar]
  33. GutiérrezJ.M. GonzálezC. MaestroA. SolèI. PeyC.M. NollaJ. Nano-emulsions: New applications and optimization of their preparation.Curr. Opin. Colloid Interface Sci.20081324525110.1016/j.cocis.2008.01.005
    [Google Scholar]
  34. SolansC. IzquierdoP. NollaJ. AzemarN. Garcia-CelmaM.J. Nanoemulsions.Curr. Opin. Colloid Interface Sci.20051010211010.1016/j.cocis.2005.06.004
    [Google Scholar]
  35. MéndezJ. MonteagudoA. GriebenowK. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles.Bioconjug. Chem.201223469870410.1021/bc200301a 22375899
    [Google Scholar]
  36. DengZ. ZhenZ. HuX. WuS. XuZ. ChuP.K. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy.Biomaterials201132214976498610.1016/j.biomaterials.2011.03.050 21486679
    [Google Scholar]
  37. LapeyreV. AnclaC. CatargiB. RavaineV. Glucose-responsive microgels with a core-shell structure.J. Colloid Interface Sci.2008327231632310.1016/j.jcis.2008.08.039 18804779
    [Google Scholar]
  38. MiyataT. UragamiT. NakamaeK. Biomolecule-sensitive hydrogels.Adv. Drug Deliv. Rev.2002541799810.1016/S0169‑409X(01)00241‑1 11755707
    [Google Scholar]
  39. ChilkotiA. DreherM.R. MeyerD.E. RaucherD. Targeted drug delivery by thermally responsive polymers.Adv. Drug Deliv. Rev.200254561363010.1016/S0169‑409X(02)00041‑8 12204595
    [Google Scholar]
  40. GaoQ. XuY. WuD. ShenW. DengF. Synthesis, characterization, and in vitro pH-controllable drug release from mesoporous silica spheres with switchable gates.Langmuir20102622171331713810.1021/la102952n 20939524
    [Google Scholar]
  41. SalehiR. DavaranS. RashidiM.R. EntezamiA.A. Thermosensitive nanoparticles prepared from poly(N-isopropylacrylamide-acrylamide-vinilpyrrolidone) and its blend with poly(lactide-co-glycolide) for efficient drug delivery system.J. Appl. Polym. Sci.20091111905191010.1002/app.29199
    [Google Scholar]
  42. QiuY. ParkK. Environment-sensitive hydrogels for drug delivery.Adv. Drug Deliv. Rev.200153332133910.1016/S0169‑409X(01)00203‑4 11744175
    [Google Scholar]
  43. XiongQ. LimY.J. LiD. PuK. LiangL. DuanH. Photoactive nanocarriers for controlled delivery.Adv. Funct. Mater.202030: 1903896.10.1002/adfm.201903896
    [Google Scholar]
  44. Ojea-JiménezI. ComengeJ. García-FernándezL. MegsonZ.A. CasalsE. PuntesV.F. Engineered inorganic nanoparticles for drug delivery applications.Curr. Drug Metab.201314551853010.2174/13892002113149990008 23116108
    [Google Scholar]
  45. JainT.K. RoyI. DeT.K. MaitraA. Nanometer silica particles encapsulating active compounds: A novel ceramic drug carrier.J. Am. Chem. Soc.1998120110921109510.1021/ja973849x
    [Google Scholar]
  46. RasouliS. DavaranS. RasouliF. MahkamM. SalehiR. Synthesis, characterization and pH-controllable methotrexate release from biocompatible polymer/silica nanocomposite for anticancer drug delivery.Drug Deliv.201421315516310.3109/10717544.2013.838714 24107075
    [Google Scholar]
  47. BolhassaniA. JavanzadS. SalehT. HashemiM. AghasadeghiM.R. SadatS.M. Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases.Hum. Vaccin. Immunother.201410232133210.4161/hv.26796 24128651
    [Google Scholar]
  48. GuterresS.S. AlvesM.P. PohlmannA.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications.Drug Target Insights2007214715710.1177/117739280700200002 21901071
    [Google Scholar]
  49. LaquintanaV. DenoraN. LopalcoA. Translocator protein ligand-PLGA conjugated nanoparticles for 5-fluorouracil delivery to glioma cancer cells.Mol. Pharm.201411385987110.1021/mp400536z 24410438
    [Google Scholar]
  50. BhuleierE. WehnerW. VogtleF. “Cascade”-and “nonskid-chain-like” syntheses of molecular cavity topologies.Synthesis1978215515810.1055/s‑1978‑24702
    [Google Scholar]
  51. PerlmanS. DandekarA.A. Immunopathogenesis of coronavirus infections: implications for SARS.Nat. Rev. Immunol.200551291792710.1038/nri1732 16322745
    [Google Scholar]
/content/journals/cam/10.2174/2666731201666220114111711
Loading
/content/journals/cam/10.2174/2666731201666220114111711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test