Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

The strategy to form functional structures based on powder technology relies on the concept of nanoparticles characteristics. Rare-earth sesquioxides (REO; RE as Y, Tm, Eu) exhibit remarkable properties, and their fields of application include energy, astronomy, environmental, medical, information technology, industry, and materials science. The purpose of this paper is to evaluate the characteristics of REO nanoparticles as a bottom-up strategy to form functional materials for radiation dosimetry.

The REO nanoparticles were characterized by the following techniques: XRD, SEM, PCS, FTIR, ICP, EPR, and zeta potential.

All REO samples exhibited cubic C-type structure in accordance with the sesquioxide diagram, chemical composition over 99.9%, monomodal mean particle size distribution, in which d value was inferior to 130 nm. Among all samples, only yttrium oxide exhibited an EPR signal, in which the most intense peak was recorded at 358mT and g 1.9701.

Evaluating nanoparticle characteristics is extremely important by considering a bottom-up strategy to form functional materials. The REO nanoparticles exhibit promising characteristics for application in radiation dosimetry.

Loading

Article metrics loading...

/content/journals/cam/10.2174/2666731201666220111102037
2022-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. Nanoparticle Technology Handbook Nano Today2007244510.1016/S1748‑0132(07)70119‑6
    [Google Scholar]
  2. ThampiA.D. PrasanthM.A. AnanduA.P. SnehaE. SasidharanB. RaniS. The effect of nanoparticle additives on the tribological properties of various lubricating oils – Review.Mater. Today Proc.202147154919492410.1016/j.matpr.2021.03.664
    [Google Scholar]
  3. Ortiz-GodoyN. Agredo-DiazD.G. Garzón-PosadaA.O. Parra VargasC.A. Landínez TéllezD.A. Roa-RojasJ. A facile method to produce magnetic nanoparticles and its influence on their magnetic and physical properties.Mater. Lett.2021293: 129700.10.1016/j.matlet.2021.129700
    [Google Scholar]
  4. NofarM. SalehiyanR. RayS.S. Influence of nanoparticles and their selective localization on the structure and properties of polylactide-based blend nanocomposites.Compos., Part B Eng.2021215: 108845.10.1016/j.compositesb.2021.108845
    [Google Scholar]
  5. FangC. JingZ. QinX. Effect of heat treatment of green bodies on the sintering and optical properties of large-size and thick transparent YAG ceramics.Ceram. Int.2021479606961210.1016/j.ceramint.2020.12.097
    [Google Scholar]
  6. Abou-ElanwarA.M. ShirkeY.M. KwonS.J. Size effects of carboxylated magnetite nanoparticles on the membrane dehumidification performance.J. Environ. Chem. Eng.20219: 105304.10.1016/j.jece.2021.105304
    [Google Scholar]
  7. ZahmatkeshI. SheremetM. YangL. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review.J. Mol. Liq.2021321: 114430.10.1016/j.molliq.2020.114430
    [Google Scholar]
  8. LavkerR.M. KaplanN. McMahonK.M. Synthetic high-density lipoprotein nanoparticles: Good things in small packages.Ocul. Surf.202121192610.1016/j.jtos.2021.03.001
    [Google Scholar]
  9. GiraldoL.J. DiezR. AcevedoS. CortésF.B. FrancoC.A. The effects of chemical composition of fines and nanoparticles on inhibition of formation damage caused by fines migration: Insights through a simplex-centroid mixture design of experiments.J. Petrol. Sci. Eng.2021203: 108494.10.1016/j.petrol.2021.108494
    [Google Scholar]
  10. JainA. WangY.G. GuoH. Emergence of relaxor behavior along with enhancement in energy storage performance in light rare-earth doped Ba0.90Ca0.10Ti0.90Zr0.10O3 ceramics.Ceram. Int.202147105901060210.1016/j.ceramint.2020.12.171
    [Google Scholar]
  11. BonfanteM.C. RaspiniJ.P. FernandesI.B. FernandesS. CamposL.M.S. AlarconO.E. Achieving sustainable development goals in rare earth magnets production: A review on state of the art and SWOT analysis.Renew. Sustain. Energy Rev.2021137: 110616.10.1016/j.rser.2020.110616
    [Google Scholar]
  12. NiS. ChenQ. GaoY. GuoX. SunX. Recovery of rare earths from industrial wastewater using extraction-precipitation strategy for resource and environmental concerns.Miner. Eng.2020151: 106315.10.1016/j.mineng.2020.106315
    [Google Scholar]
  13. WengW. BiesiekierskiA. LinJ. LiY. WenC. Impact of rare earth elements on nanohardness and nanowear properties of beta-type Ti- 24Nb-38Zr-2Mo alloy for medical applications.Materialia (Oxf.)202012: 100772.10.1016/j.mtla.2020.100772
    [Google Scholar]
  14. DengS. ProdiusD. NlebedimI.C. HuangA. YihY. SutherlandJ.W. A dynamic price model based on supply and demand with application to techno-economic assessments of rare earth element recovery technologies.Sustain Prod Consum2021271718172710.1016/j.spc.2021.04.013
    [Google Scholar]
  15. CostaL. MirleanN. JohannessonK.H. Rare earth elements as tracers of sediment contamination by fertilizer industries in Southern Brazil, Patos Lagoon Estuary.Appl. Geochem.2021129: 104965.10.1016/j.apgeochem.2021.104965
    [Google Scholar]
  16. JakobyM. BeilC. NazariP. Rare-earth coordination polymers with multimodal luminescence on the nano-, micro-, and milli-second time scales.iScience2021243: 102207.10.1016/j.isci.2021.102207 33733068
    [Google Scholar]
  17. DushyanthaN. BatapolaN. IlankoonI.M.S.K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production.Ore Geol. Rev.2020122: 103521.10.1016/j.oregeorev.2020.103521
    [Google Scholar]
  18. Department of the Interior U.S.G.SMineral Commodity SummariesA Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals2017Available from: https://www.commerce. gov/news/reports/2019/06/federal-
    [Google Scholar]
  19. FabriceM FulvioA SilviaB Critical Raw Materials and the Circular EconomyBackground report201710.2760/378123
    [Google Scholar]
  20. JungH.K. KimC.H. HongA-R. Luminescent and magnetic properties of cerium-doped yttrium aluminum garnet and yttrium iron garnet composites.Ceram. Int.2019459846985110.1016/j.ceramint.2019.02.023
    [Google Scholar]
  21. MagdalaneC.M. KaviyarasuK. VijayaJ.J. Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine - B dye for textile engineering application.J. Alloys Compd.20177271324133710.1016/j.jallcom.2017.08.209
    [Google Scholar]
  22. OrdoñezM.F.C. AmorimC.L.G. KrindgesI. Microstructure and micro-abrasive wear of sintered yttria containing 316L stainless steel treated by plasma nitriding.Surf. Coat. Tech.201937470071210.1016/j.surfcoat.2019.06.002
    [Google Scholar]
  23. RajA.K.V. RaoP.P. SreenaT.S. TharaT.R.A. Pigmentary colors from yellow to red in Bi2Ce2O7 by rare earth ion substitutions as possible high NIR reflecting pigments.Dye Pigment201916017718710.1016/j.dyepig.2018.08.010
    [Google Scholar]
  24. HastirA. KohliN. SinghR.C. Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor.J. Phys. Chem. Solids2017105233410.1016/j.jpcs.2017.02.004
    [Google Scholar]
  25. ZhaoF. LiangY. LeeJ.B. HwangS.J. Applications of rare earth Tb3+- Yb3+ Co-doped down-conversion materials for solar cells.Mater. Sci. Eng. B2019248: 114404.10.1016/j.mseb.2019.114404
    [Google Scholar]
  26. DjamalM. YuliantiniL. HidayatR. BooninK. YasakaP. KaewkhaoJ. Glass medium doped rare earth for sensor material.Mater. Today Proc.20185151261513010.1016/j.matpr.2018.04.069
    [Google Scholar]
  27. KershiR.M. Rare-earth ions as a key influencer on the magnetic, spectroscopic and elastic properties of ErγZn0.2Co0.8Fe2−γO4 nanoparticles.J. Alloys Compd.2021864: 158114.10.1016/j.jallcom.2020.158114
    [Google Scholar]
  28. TscharnuterW. Photon Correlation Spectroscopy in Particle Sizing.1st edUnited States of AmericaJohn Wiley & Sons Ltd200010.1002/9780470027318.a1512
    [Google Scholar]
  29. CullityBD Elements of X-Ray DiffractionAddition Wesley Publication Company, Addison Wesley Publication Company California1956
    [Google Scholar]
  30. HanicF. HartmanovaM. KnabG.G. UrusovskayaA.A. BagdasarovK.S. Real Structure of Undoped Y2O3 Single-crystals.Acta Crystallogr. B198440768210.1107/S0108768184001774
    [Google Scholar]
  31. CesariaM. CollinsJ. Di BartoloB. On the efficient warm white-light emission from nano-sized Y2O3.J. Lumin.201616957458010.1016/j.jlumin.2015.08.017
    [Google Scholar]
  32. ZhangL. JiangD.Y. XiaJ.F. LiC.X. ZhangN. LiQ. Novel luminescent yttrium oxide nanosheets doped with Eu3+ and Tb3+.RSC Advances20144176481765210.1039/c4ra01881h
    [Google Scholar]
  33. YavetskiyR.P. BaumerV.N. DanylenkoM.I. Transformation-assisted consolidation of Y2O3:Eu3+ nanospheres as a concept to optical nanograined ceramics.Ceram. Int.2014403561356910.1016/j.ceramint.2013.09.072
    [Google Scholar]
  34. HanX. FengX. QiX. WangX. LiM. The photoluminescent properties of Y2O3:Bi3+, Eu3+, Dy3+ phosphors for white-light-emitting diodes.J. Nanosci. Nanotechnol.20141453387339010.1166/jnn.2014.8030 24734556
    [Google Scholar]
  35. Alarcon-FloresG. Garcia-HipolitoM. Aguilar-FrutisM. Luminescent and structural characteristics of Y2O3:TB3+ thin films as a function of substrate temperature.ECS J. Solid State Sci. Technol.20143R189R19410.1149/2.0141410jss
    [Google Scholar]
  36. QinX. JuY. BernhardS. YaoN. Flame synthesis of Y2O3:Eu nanophosphors using ethanol as precursor solvents.J. Mater. Res.2005202960296810.1557/JMR.2005.0364
    [Google Scholar]
  37. GourlaouenV. SchnedeckerG. LejusA.M. BoncoeurM. CollonguesR. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties.Mater. Res. Bull.19932841542510.1016/0025‑5408(93)90123‑U
    [Google Scholar]
  38. NavrotskyA. BenoistL. LefebvreH. Direct calorimetric measurement of enthalpies of phase transitions at 2000°–2400°C in Yttria and Zirconia.J. Am. Ceram. Soc.2005882942294410.1111/j.1551‑2916.2005.00506.x
    [Google Scholar]
  39. SantosS.C. YamagataC. CamposL.L. Mello-CastanhoS.R.H. Bio- prototyping and thermoluminescence response of cellular rare earth ceramics.J. Eur. Ceram. Soc.20163679179610.1016/j.jeurceramsoc.2015.10.024
    [Google Scholar]
  40. RienerK. AlbrechtN. ZiegelmeierS. Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion (LPBF).Addit. Manuf.202034: 101286.10.1016/j.addma.2020.101286
    [Google Scholar]
  41. YiB.J. ZhangL.Q. MaoZ.H. HuangF. ZhengC.G. Effect of the particle size on combustion characteristics of pulverized coal in an O-2/CO2 atmosphere.Fuel Process. Technol.2014128172710.1016/j.fuproc.2014.06.025
    [Google Scholar]
  42. TeleginS.V. KirillovaN.I. ModinI.A. SuleimanovE.V. Effect of particle size distribution on functional properties of Ce0.9Y0.1O2-d ceramics.Ceram. Int.20214712173161732110.1016/j.ceramint.2021.03.043
    [Google Scholar]
  43. LiuD. LiY. LvC. Permeating behaviour of porous SiC ceramics fabricated with different SiC particle sizes.Ceram. Int.2021475610561610.1016/j.ceramint.2020.10.145
    [Google Scholar]
  44. MinamiT. WangW.N. IskandarF. OkuyamaK. Photoluminescence properties of submicrometer phosphors with different crystallite/particle sizes.Jpn. J. Appl. Phys.2008477220722310.1143/JJAP.47.7220
    [Google Scholar]
  45. PerminD.A. KurashkinS.V. NovikovaA.V. Synthesis and luminescence properties of Yb-doped Y2O3, Sc2O3 and Lu2O3 solid solutions nanopowders.Opt. Mater.20187724024510.1016/j.optmat.2018.01.041
    [Google Scholar]
  46. ShivaramuN.J. LakshminarasappaB.N. NagabhushanaK.R. SinghF. Synthesis characterization and luminescence studies of gamma irradiated nanocrystalline yttrium oxide.Spectrochim. Acta A Mol. Biomol. Spectrosc.201615422023110.1016/j.saa.2015.09.019 26529639
    [Google Scholar]
  47. CarregosaJ.D.C. GriloJ.P.F. GodoiG.S. MacedoD.A. NascimentoR.M. OliveiraR.M.P.B. Microwave-assisted hydrothermal synthesis of ceria (CeO2): Microstructure, sinterability and electrical properties.Ceram. Int.202046232712327510.1016/j.ceramint.2020.06.021
    [Google Scholar]
  48. ChanJ.X. WongJ.F. HassanA. ShrivastavaN.K. MohamadZ. OthmanN. Green hydrothermal synthesis of high aspect ratio wollastonite nanofibers: Effects of reaction medium, temperature and time.Ceram. Int.202046226242263410.1016/j.ceramint.2020.06.025
    [Google Scholar]
  49. TominaV.V. StolyarchukN.V. KatelnikovasA. Preparation and luminescence properties of europium(III)-loaded aminosilica spherical particles.Colloids Surf. A Physicochem. Eng. Asp.2021608: 125552.10.1016/j.colsurfa.2020.125552
    [Google Scholar]
  50. KawaiY. YamamotoT. Synthesis of porous carbon hollow particles maintaining their structure using hyper-cross-linked Poly(St-DVB) hollow particles.Adv. Powder Technol.20203161462010.1016/j.apt.2019.11.016
    [Google Scholar]
  51. MemaI. WagnerE.C. van OmmenJ.R. PaddingJ.T. Fluidization of spherical versus elongated particles - experimental investigation using X- ray tomography.Chem. Eng. J.2020397: 125203.10.1016/j.cej.2020.125203
    [Google Scholar]
  52. ChangT-H. LuY-C. YangM-J. HuangJ-W. ChangL. Multibranched flower-like ZnO particles from eco-friendly hydrothermal synthesis as green antimicrobials in agriculture.J. Clean. Prod.2020262: 121342.10.1016/j.jclepro.2020.121342
    [Google Scholar]
  53. NandiS. SommervilleL. NellenbachK. Platelet-like particles improve fibrin network properties in a hemophilic model of provisional matrix structural defects.J. Colloid Interface Sci.202057740641810.1016/j.jcis.2020.05.088 32502667
    [Google Scholar]
  54. OkadaS. TakagiK. OzakiK. Synthesis of submicron-sized acicular goethite and platelet-like hematite particles and dependence of magnetic properties of α-Fe particles on their shape and size.Mater. Chem. Phys.201617117117710.1016/j.matchemphys.2016.01.002
    [Google Scholar]
  55. DupontA. LargeteauA. ParentC. Le GarrecB. HeintzJ.M. Influence of the yttria powder morphology on its densification ability.J. Eur. Ceram. Soc.2005252097210310.1016/j.jeurceramsoc.2005.03.016
    [Google Scholar]
  56. FaithfulD.B. JohnsonS.M. MccolmI.J. Infrared-spectra of lanthanide sesquioxides.Rev Chim Miner197310291302
    [Google Scholar]
  57. LakshminarasappaB.N. ShivaramuN.J. NagabhushanaK.R. SinghF. Synthesis characterization and luminescence studies of 100 MeV Si8+ ion irradiated sol gel derived nanocrystalline Y2O3. Nucl. Instruments Methods Phys. Res. Sect. B-Beam Interact. with Mater. Atoms2014329404710.1016/j.nimb.2014.02.128
    [Google Scholar]
  58. Hari KrishnaR. NagabhushanaB.M. NagabhushanaH. Auto-ignition based synthesis of Y2O3 for photo- and thermo-luminescent applications.J. Alloys Compd.201458512913710.1016/j.jallcom.2013.09.037
    [Google Scholar]
  59. MangalarajaR.V. MouzonJ. HedströmP. CamurriC.P. AnanthakumarS. OdénM. Microwave assisted combustion synthesis of nanocrystalline yttria and its powder characteristics.Powder Technol.200919130931410.1016/j.powtec.2008.10.019
    [Google Scholar]
  60. AhmedF. KumarS. ArshiN. AnwarM.S. KooB.H. LeeC.G. Doping effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles.Microelectron. Eng.20128912913210.1016/j.mee.2011.03.149
    [Google Scholar]
  61. MuQ. WangY. A simple method to prepare Ln(OH)3 (Ln = La, Sm, Tb, Eu, and Gd) nanorods using CTAB micelle solution and their room temperature photoluminescence properties.J. Alloys Compd.20115092060206510.1016/j.jallcom.2010.10.141
    [Google Scholar]
  62. CuiF. ZhangJ. CuiT. A facile solution-phase approach to the synthesis of luminescent europium methacrylate nanowires and their thermal conversion into europium oxide nanotubes.Nanotechnology2008196: 065607.10.1088/0957‑4484/19/6/065607 21730705
    [Google Scholar]
  63. WangS. GuF. LiC. LüM. Synthesis of Mesoporous Eu2O3 Microspindles.Cryst. Growth Des.200772670267410.1021/cg070111a
    [Google Scholar]
  64. BordunO.M. DmitrukV.V. Luminescence centers in thin films of yttrium oxide and yttrium-aluminum garnet activated with bismuth.J. Appl. Spectrosc.20087520821310.1007/s10812‑008‑9029‑2
    [Google Scholar]
  65. OsipovV.V. RasulevaA.V. SolomonovV.I. Luminescence of pure yttria.Opt. Spectrosc.200810552453010.1134/S0030400X08100068
    [Google Scholar]
  66. SantosS.C. AccharW. YamagataC. Mello-CastanhoS. Yttria nettings by colloidal processing.J. Eur. Ceram. Soc.2014342509251710.1016/j.jeurceramsoc.2014.03.006
    [Google Scholar]
/content/journals/cam/10.2174/2666731201666220111102037
Loading
/content/journals/cam/10.2174/2666731201666220111102037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test