Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Background

Cutaneous leishmaniasis (CL) is a parasitic disease with a significant burden in the Old World countries.

Objective

In the current study, some of the primary biochemical properties and IFN-γ inducing epitopes with specific binding capacity to human and mouse MHC alleles were predicted for gp46 antigenic protein.

Methods

Several online servers were used to predict physico-chemical traits, allergenicity, antigenicity, transmembrane domain and signal peptide, subcellular localization, post-translational modifications (PTMs), secondary and tertiary structures, tertiary model refining with validations. Also, IEDB web server was used to predict mouse/human cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes.

Results

The 33.25 kDa protein was stable, hydrophilic, antigenic, while non-allergenic, with enhanced thermotolerance and 45 PTM sites. The secondary structure encompassed a random coil, followed by extended strands and helices. Ramachandran-based analysis of the refined model showed 73.1%, 21.6%, 3.4% and 1.9% of residues in the most favored, additional allowed, generously-allowed and disallowed regions, respectively. Epitope screening demonstrated 4 HTL epitopes against seemingly protective HLA alleles, 5 HTL epitopes against the HLA reference set, 3 human CTL epitopes and a number of mouse MHC-restricted epitopes.

Conclusion

This paper provides insights into the bioinformatics characteristics of the gp46 protein as a promising vaccine candidate.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708283588240124095057
2024-09-01
2025-01-20
Loading full text...

Full text loading...

References

  1. Torres-GuerreroE. Quintanilla-CedilloM.R. Ruiz-EsmenjaudJ. ArenasR. Leishmaniasis: A review.F1000 Res.2017675010.12688/f1000research.11120.128649370
    [Google Scholar]
  2. MohebaliM. Visceral leishmaniasis in Iran: Review of the epidemiological and clinical features.Iran. J. Parasitol.20138334835824454426
    [Google Scholar]
  3. TaghipourA. AbdoliA. RamezaniA. Leishmaniasis and trace element alterations: A systematic review.Biol. Trace Elem. Res.2021199103918393810.1007/s12011‑020‑02505‑033405078
    [Google Scholar]
  4. SabzevariS. TeshniziS.H. ShokriA. BahramiF. KouhestaniF. Cutaneous leishmaniasis in Iran: A systematic review and meta-analysis.Microb. Pathog.202115210472110.1016/j.micpath.2020.10472133539962
    [Google Scholar]
  5. FiroozA. MortazaviH. KhamesipourA. Old world cutaneous leishmaniasis in Iran: Clinical variants and treatments.J. Dermatolog. Treat.202132767368310.1080/09546634.2019.170421431869258
    [Google Scholar]
  6. ShamsM. NourmohammadiH. MajidianiH. Engineering a multi-epitope vaccine candidate against Leishmania infantum using comprehensive Immunoinformatics methods.Biologia202277127728910.1007/s11756‑021‑00934‑334866641
    [Google Scholar]
  7. ValeroN.N.H. UriarteM. Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: A systematic review.Parasitol. Res.2020119236538410.1007/s00436‑019‑06575‑531897789
    [Google Scholar]
  8. NazzaroG. RovarisM. VeraldiS. Leishmaniasis.JAMA Dermatol.201415011120410.1001/jamadermatol.2014.101525389793
    [Google Scholar]
  9. KedzierskiL. Leishmaniasis vaccine: Where are we today?J. Glob. Infect. Dis.20102217718510.4103/0974‑777X.6288120606974
    [Google Scholar]
  10. MoulikS. SenguptaS. ChatterjeeM. Molecular tracking of the Leishmania parasite.Front. Cell. Infect. Microbiol.20211162343710.3389/fcimb.2021.62343733692966
    [Google Scholar]
  11. KumariS. KumarA. SamantM. SinghN. DubeA. Discovery of novel vaccine candidates and drug targets against visceral leishmaniasis using proteomics and transcriptomics.Curr. Drug Targets200891193894710.2174/13894500878678609118991606
    [Google Scholar]
  12. RodriguesV. Cordeiro-da-SilvaA. LaforgeM. SilvestreR. EstaquierJ. Regulation of immunity during visceral Leishmania infection.Parasit. Vectors20169111810.1186/s13071‑016‑1412‑x26932389
    [Google Scholar]
  13. MougneauE. BihlF. GlaichenhausN. Cell biology and immunology of Leishmania.Immunol. Rev.2011240128629610.1111/j.1600‑065X.2010.00983.x21349100
    [Google Scholar]
  14. IborraS. SolanaJ.C. RequenaJ.M. SotoM. Vaccine candidates against leishmania under current research.Expert Rev. Vaccines201817432333410.1080/14760584.2018.145919129589966
    [Google Scholar]
  15. KumariD. MahajanS. KourP. SinghK. Virulence factors of Leishmania parasite: Their paramount importance in unraveling novel vaccine candidates and therapeutic targets.Life Sci.202230612082910.1016/j.lfs.2022.12082935872004
    [Google Scholar]
  16. DevaultA. BañulsA.L. The promastigote surface antigen gene family of the Leishmania parasite: Differential evolution by positive selection and recombination.BMC Evol. Biol.20088129210.1186/1471‑2148‑8‑29218950494
    [Google Scholar]
  17. SymonsF.M. MurrayP.J. JiH. Characterization of a polymorphic family of integral membrane proteins in promastigotes of different Leishmania species.Mol. Biochem. Parasitol.199467110311310.1016/0166‑6851(94)90100‑77838170
    [Google Scholar]
  18. KedzierskiL. MontgomeryJ. BullenD. A leucine-rich repeat motif of Leishmania parasite surface antigen 2 binds to macrophages through the complement receptor 3.J. Immunol.200417284902490610.4049/jimmunol.172.8.490215067069
    [Google Scholar]
  19. HandmanE. SymonsF.M. BaldwinT.M. CurtisJ.M. ScheerlinckJ.P. Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response.Infect. Immun.199563114261426710.1128/iai.63.11.4261‑4267.19957591056
    [Google Scholar]
  20. McMahon-PrattD. RodriguezD. RodriguezJ.R. Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection.Infect. Immun.19936183351335910.1128/iai.61.8.3351‑3359.19938335366
    [Google Scholar]
  21. ScarselliM. GiulianiM.M. Adu-BobieJ. PizzaM. RappuoliR. The impact of genomics on vaccine design.Trends Biotechnol.2005232849110.1016/j.tibtech.2004.12.00815661345
    [Google Scholar]
  22. SalemiA. PourseifM.M. OmidiY. Next-generation vaccines and the impacts of state-of-the-art in-silico technologies.Biologicals202169838510.1016/j.biologicals.2020.10.00233143992
    [Google Scholar]
  23. ParvizpourS. PourseifM.M. RazmaraJ. RafiM.A. OmidiY. Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches.Drug Discov. Today20202561034104210.1016/j.drudis.2020.03.00632205198
    [Google Scholar]
  24. MartinsV.T. LageD.P. DuarteM.C. A recombinant fusion protein displaying murine and human MHC class I- and II-specific epitopes protects against Leishmania amazonensis infection.Cell. Immunol.2017313324210.1016/j.cellimm.2016.12.00828049560
    [Google Scholar]
  25. UniProt: A worldwide hub of protein knowledge.Nucleic Acids Res.201947D1D506D51510.1093/nar/gky104930395287
    [Google Scholar]
  26. GasteigerE. HooglandC. GattikerA. Duvaud Se, Wilkins MR, Appel RD, et al Protein identification and analysis tools on the ExPASy server.Springer2005
    [Google Scholar]
  27. AsghariA. ShamsiniaS. NourmohammadiH. Development of a chimeric vaccine candidate based on Toxoplasma gondii major surface antigen 1 and apicoplast proteins using comprehensive immunoinformatics approaches.Eur. J. Pharm. Sci.202116210583710.1016/j.ejps.2021.10583733836177
    [Google Scholar]
  28. DoytchinovaI.A. FlowerD.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines.BMC Bioinformatics200781410.1186/1471‑2105‑8‑417207271
    [Google Scholar]
  29. NosratiM.C. GhasemiE. ShamsM. Toxoplasma gondii ROP38 protein: Bioinformatics analysis for vaccine design improvement against toxoplasmosis.Microb. Pathog.202014910448810.1016/j.micpath.2020.10448832916240
    [Google Scholar]
  30. ShamsM. NourmohammadiH. BasatiG. AdhamiG. MajidianiH. AziziE. Leishmanolysin gp63: Bioinformatics evidences of immunogenic epitopes in Leishmania major for enhanced vaccine design against zoonotic cutaneous leishmaniasis.Informatics in Medicine Unlocked20212410062610.1016/j.imu.2021.100626
    [Google Scholar]
  31. SharmaN. PatiyalS. DhallA. PandeA. AroraC. RaghavaG.P.S. AlgPred 2.0: An improved method for predicting allergenic proteins and mapping of IgE epitopes.Brief. Bioinform.2021224bbaa29410.1093/bib/bbaa29433201237
    [Google Scholar]
  32. HebditchM. Carballo-AmadorM.A. CharonisS. CurtisR. WarwickerJ. Protein–Sol: A web tool for predicting protein solubility from sequence.Bioinformatics201733193098310010.1093/bioinformatics/btx34528575391
    [Google Scholar]
  33. AsghariA. MajidianiH. FatollahzadehM. Insights into the biochemical features and immunogenic epitopes of common bradyzoite markers of the ubiquitous Toxoplasma gondii.Infect. Genet. Evol.20219510503710.1016/j.meegid.2021.10503734390868
    [Google Scholar]
  34. RenJ. WenL. GaoX. JinC. XueY. YaoX. CSS-Palm 2.0: An updated software for palmitoylation sites prediction.Protein Eng. Des. Sel.2008211163964410.1093/protein/gzn03918753194
    [Google Scholar]
  35. BlomN. GammeltoftS. SJJomb Brunak. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.J. Mol. Biol.1999294513511362
    [Google Scholar]
  36. HansenJ.E. LundO. TolstrupN. GooleyA.A. WilliamsK.L. BrunakS. NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility.Glycoconj. J.199815211513010.1023/A:10069600044409557871
    [Google Scholar]
  37. DengW. WangC. ZhangY. GPS-PAIL: Prediction of lysine acetyltransferase-specific modification sites from protein sequences.Sci. Rep.2016613978710.1038/srep3978728004786
    [Google Scholar]
  38. ThumuluriV. Almagro ArmenterosJ.J. JohansenA.R. NielsenH. WintherO. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models.Nucleic Acids Res.202250W1W228-3410.1093/nar/gkac27835489069
    [Google Scholar]
  39. TeufelF. Almagro ArmenterosJ.J. JohansenA.R. SignalP 6.0 predicts all five types of signal peptides using protein language models.Nat. Biotechnol.20224071023102510.1038/s41587‑021‑01156‑334980915
    [Google Scholar]
  40. HallgrenJ. TsirigosK.D. PedersenM.D. Almagro ArmenterosJ.J. MarcatiliP. NielsenH. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks.BioRxiv20222022.0410.1101/2022.04.08.487609
    [Google Scholar]
  41. HøieM.H. KiehlE.N. PetersenB. NetSurfP-3.0: Accurate and fast prediction of protein structural features by protein language models and deep learning.Nucleic Acids Res.202250W1W510-510.1093/nar/gkac43935648435
    [Google Scholar]
  42. YangJ. ZhangY. Protein structure and function prediction using I‐TASSER.Curr. Protoc. Bioinformatics20155211510.1002/0471250953.bi0508s52
    [Google Scholar]
  43. MajidM. AndleebS. Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach.Sci. Rep.2019911978010.1038/s41598‑019‑55613‑w31874963
    [Google Scholar]
  44. VitaR. MahajanS. OvertonJ.A. The immune epitope database (IEDB): 2018 update.Nucleic Acids Res.201947D1D339D34310.1093/nar/gky100630357391
    [Google Scholar]
  45. de VrijN. MeysmanP. GielisS. AdriaensenW. LaukensK. CuypersB. HLA-DRB1 alleles associated with lower leishmaniasis susceptibility share common amino acid polymorphisms and epitope binding repertoires.Vaccines20219327010.3390/vaccines903027033803005
    [Google Scholar]
  46. Olivo-DíazA. DebazH. AlaezC. Role of HLA class II alleles in susceptibility to and protection from localized cutaneous leishmaniasis.Hum. Immunol.200465325526110.1016/j.humimm.2003.12.00815041165
    [Google Scholar]
  47. PourseifM.M. ParvizpourS. JafariB. DehghaniJ. NaghiliB. OmidiY. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: development of self-amplifying mRNA and peptide vaccines.Bioimpacts2020111658410.34172/bi.2021.1133469510
    [Google Scholar]
  48. GillespieP.M. BeaumierC.M. StrychU. HaywardT. HotezP.J. BottazziM.E. Status of vaccine research and development of vaccines for leishmaniasis.Vaccine201634262992299510.1016/j.vaccine.2015.12.07126973063
    [Google Scholar]
  49. DunningN. Leishmania vaccines: From leishmanization to the era of DNA technology.Biosci. Horiz.200921738210.1093/biohorizons/hzp004
    [Google Scholar]
  50. CobeyS. Pathogen evolution and the immunological niche.Ann. N. Y. Acad. Sci.20141320111510.1111/nyas.1249325040161
    [Google Scholar]
  51. AsghariA. SadrebazzazA. ShamsiL. ShamsM. Global prevalence, subtypes distribution, zoonotic potential, and associated risk factors of Blastocystis sp. in domestic pigs (Sus domesticus) and wild boars (Sus scrofa): A systematic review and meta-analysis.Microb. Pathog.202116010518310.1016/j.micpath.2021.10518334517066
    [Google Scholar]
  52. De BritoR.C.F. CardosoJ.M.D.O. ReisL.E.S. Peptide vaccines for leishmaniasis.Front. Immunol.20189104310.3389/fimmu.2018.0104329868006
    [Google Scholar]
  53. AsghariA MajidianiH NematiT FatollahzadehM ShamsM NaserifarR Toxoplasma gondii tyrosine-rich oocyst wall protein: A closer look through an in silico prism.Biomed Res Int2021202110.1155/2021/1315618
    [Google Scholar]
  54. GhaffariA.D. DalimiA. GhaffarifarF. PirestaniM. MajidianiH. Immunoinformatic analysis of immunogenic B- and T-cell epitopes of MIC4 protein to designing a vaccine candidate against Toxoplasma gondii through an in-silico approach.Clin. Exp. Vaccine Res.2021101597710.7774/cevr.2021.10.1.5933628756
    [Google Scholar]
  55. MajidianiH. DalimiA. GhaffarifarF. PirestaniM. Multi-epitope vaccine expressed in Leishmania tarentolae confers protective immunity to Toxoplasma gondii in BALB/c mice.Microb. Pathog.202115510492510.1016/j.micpath.2021.10492533933602
    [Google Scholar]
  56. MajidianiH. DalimiA. GhaffarifarF. PirestaniM. GhaffariA.D. Computational probing of Toxoplasma gondii major surface antigen 1 (SAG1) for enhanced vaccine design against toxoplasmosis.Microb. Pathog.202014710438610.1016/j.micpath.2020.10438632663606
    [Google Scholar]
  57. MajidianiH. SoltaniS. GhaffariA.D. SabaghanM. TaghipourA. ForoutanM. In-depth computational analysis of calcium-dependent protein kinase 3 of Toxoplasma gondii provides promising targets for vaccination.Clin. Exp. Vaccine Res.20209214615810.7774/cevr.2020.9.2.14632864371
    [Google Scholar]
  58. BasmenjE.R. ArastonejadM. MamizadehM. Engineering and design of promising T-cell-based multi-epitope vaccine candidates against leishmaniasis.Sci. Rep.20231311942110.1038/s41598‑023‑46408‑137940672
    [Google Scholar]
  59. KordiB. BasmenjE.R. MajidianiH. BasatiG. SargaziD. NazariN. In silico characterization of an important metacyclogenesis marker in leishmania donovani, HASPB1, as a potential vaccine candidate.In: Biomed Res Int.20232023
    [Google Scholar]
  60. AsghariA. NourmohammadiH. MajidianiH. ShariatzadehS.A. ShamsM. MontazeriF. In silico analysis and prediction of immunogenic epitopes for pre-erythrocytic proteins of the deadly Plasmodium falciparum.Infect. Genet. Evol.20219310498510.1016/j.meegid.2021.10498534214673
    [Google Scholar]
  61. Azimi-ResketiM. HeydaryanS. KumarN. TakalouA. DizajiR.E. GorganiB.N. Computational clues of immunogenic hotspots in plasmodium falciparum erythrocytic stage vaccine candidate antigens: In silico approach.Biomed Res. Int.202210.1155/2022/5886687
    [Google Scholar]
  62. AsghariA KordiB MalekiB MajidianiH ShamsM NaserifarR. Neospora caninum SRS2 protein: essential vaccination targets and biochemical features for next-generation vaccine design.Biomed Res Int2022202210.1155/2022/7070144
    [Google Scholar]
  63. ShamsM MalekiB KordiB MajidianiH NazariN IrannejadH Towards the first multiepitope vaccine candidate against neospora caninum in mouse model: Immunoinformatic standpoint.Biomed Res Int20222022
    [Google Scholar]
  64. NourmohammadiH. JavanmardiE. ShamsM. Multi-epitope vaccine against cystic echinococcosis using immunodominant epitopes from EgA31 and EgG1Y162 antigens.Inform Med Unlocked20202110046410.1016/j.imu.2020.100464
    [Google Scholar]
  65. ShamsM. JavanmardiE. NosratiM.C. Bioinformatics features and immunogenic epitopes of Echinococcus granulosus Myophilin as a promising target for vaccination against cystic echinococcosis.Infect. Genet. Evol.20218910471410.1016/j.meegid.2021.10471433434702
    [Google Scholar]
  66. LohmanK.L. LangerP.J. McMahon-PrattD. Molecular cloning and characterization of the immunologically protective surface glycoprotein GP46/M-2 of Leishmania amazonensis.Proc. Natl. Acad. Sci. USA199087218393839710.1073/pnas.87.21.83932236047
    [Google Scholar]
  67. MurrayP.J. SpithillT.W. Variants of a Leishmania surface antigen derived from a multigenic family.J. Biol. Chem.199126636244772448410.1016/S0021‑9258(18)54253‑81761547
    [Google Scholar]
  68. KempM. HandmanE. KempK. The Leishmania promastigote surface antigen-2 (PSA-2) is specifically recognised by Th1 cells in humans with naturally acquired immunity to L. major.FEMS Immunol. Med. Microbiol.199820320921810.1111/j.1574‑695X.1998.tb01129.x9566492
    [Google Scholar]
  69. HandmanE. OsbornA.H. SymonsF. van DrielR. CappaiR. The Leishmania promastigote surface antigen 2 complex is differentially expressed during the parasite life cycle.Mol. Biochem. Parasitol.199574218920010.1016/0166‑6851(95)02500‑68719160
    [Google Scholar]
  70. TonuiW.K. MejiaJ.S. HochbergL. Immunization with Leishmania major exogenous antigens protects susceptible BALB/c mice against challenge infection with L. major.Infect. Immun.200472105654566110.1128/IAI.72.10.5654‑5661.200415385463
    [Google Scholar]
  71. KieferD. HuX. DalbeyR. KuhnA. Negatively charged amino acid residues play an active role in orienting the Sec-independent Pf3 coat protein in the Escherichia coli inner membrane.EMBO J.19971692197220410.1093/emboj/16.9.21979171335
    [Google Scholar]
  72. RaiM. PadhH. Expression systems for production of heterologous proteins.Curr. Sci.200111211128
    [Google Scholar]
  73. MacRaildC.A. SeowJ. DasS.C. NortonR.S. Disordered epitopes as peptide vaccines.Pept. Sci.20181103e2406710.1002/pep2.2406732328540
    [Google Scholar]
  74. ShaddelM. EbrahimiM. TabandehM.R. Bioinformatics analysis of single and multi-hybrid epitopes of GRA-1, GRA-4, GRA-6 and GRA-7 proteins to improve DNA vaccine design against Toxoplasma gondii.J. Parasit. Dis.201842226927610.1007/s12639‑018‑0996‑929844632
    [Google Scholar]
  75. KempM. HeyA.S. BendtzenK. KharazmiA. TheanderT.G. Th1-like human T-cell clones recognizing Leishmania gp63 inhibit Leishmania major in human macrophages.Scand. J. Immunol.199440662963510.1111/j.1365‑3083.1994.tb03515.x7997852
    [Google Scholar]
  76. KempM. HeyA.S. KurtzhalsJ A L. Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis.Clin. Exp. Immunol.200896341041510.1111/j.1365‑2249.1994.tb06043.x8004809
    [Google Scholar]
  77. GlennieN.D. VolkS.W. ScottP. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes.PLoS Pathog.2017134e100634910.1371/journal.ppat.100634928419151
    [Google Scholar]
  78. QadoumiM. BeckerI. DonhauserN. RöllinghoffM. BogdanC. Expression of inducible nitric oxide synthase in skin lesions of patients with american cutaneous leishmaniasis.Infect. Immun.20027084638464210.1128/IAI.70.8.4638‑4642.200212117977
    [Google Scholar]
  79. BogdanC. MollH. SolbachW. RöllinghoffM. Tumor necrosis factor‐α in combination with interferon‐γ, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes.Eur. J. Immunol.19902051131113510.1002/eji.18302005282113475
    [Google Scholar]
  80. GreenS.J. CrawfordR.M. HockmeyerJ.T. MeltzerM.S. NacyC. Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha.J. Immunol.19901451242904297
    [Google Scholar]
  81. GabrielÁ Valério-BolasA Palma-MarquesJ Mourata-GonçalvesP RuasP Dias-GuerreiroT. Cutaneous leishmaniasis: The complexity of host’s effective immune response against a polymorphic parasitic disease.J Immunol Res2019201910.1155/2019/2603730
    [Google Scholar]
  82. ScottP. NovaisF.O. Cutaneous leishmaniasis: Immune responses in protection and pathogenesis.Nat. Rev. Immunol.201616958159210.1038/nri.2016.7227424773
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708283588240124095057
Loading
/content/journals/raiad/10.2174/0127722708283588240124095057
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): gp46; immunogenic; immunogenic epitopes; L. major; leishmania gp46; PSA-2; vaccination
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test