Skip to content
2000
image of Dosimetry Comparison of 3D Conformal Radiotherapy and Intensity-modulated Radiotherapy for the Treatment of Brain Tumors: A Meta-Analysis

Abstract

Background

This study aimed to evaluate IMRT and 3D-CRT in the therapy of brain tumor (BT) in relation to dose-volume histograms (DVHs) parameters, such as Heterogeneity Index (HI), Conformity index (CI), Equivalent Uniform Dose (EUD), and mean dose (Dmean) outcomes, including the program for the tumors of the brain and estimate whether a favored procedure can be found through the features of the pretreatment.

Method

A search of the PubMed, Cochrane Library, and Embase datasets from their beginnings from January 2006 to September 2022 was conducted. The authors separately selected and evaluated studies for qualifying criteria and bias risk.

Result

Seven studies in total were included. Of them, a total of 387 patients were integrated for the Heterogeneity index (HI), Conformity Index (CI), Equivalent Uniform Dose (EUD), and mean dose (Dmean) comparison analysis, which showed 3D-CRT & IMRT with odd ratio (OR) =1.93; 95% confidence interval (95% CI) =1.63, 2.22; and P value=0.00. For brain tumor patients, CI was higher in IMRT than 3D-CRT with OR= 0.72; 95% CI =0.41, 1.03; value <0.001. EUD was higher in IMRT than 3D-CRT, resulting in an increased overall survival with OR=-0.86; 95% CI =-1.30, 0.42; and value<0.001. However, no statistically significant variance was perceived in Dmean between 3D-CRT and IMRT.

Conclusion

Our records suggested that IMRT with conventional linacs results in a meaningfully lower regular percentage of brain tumor volumes compared to 3D-CRT. Finally, this meta-analysis indicated that IMRT is better than 3D-CRT and decreases the average percent irradiated amount of the brain.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928307224241017110758
2024-10-29
2025-01-31
Loading full text...

Full text loading...

References

  1. Laing R.W. Bentley R.E. Nahumb A.E. Warrington A.P. Brada M. Stereotactic radiotherapy of irregular targets: A comparison between static conformal beams and non-coplanar arcs. Radiother. Oncol. 1993 28 3 241 246 10.1016/0167‑8140(93)90064‑F 8256002
    [Google Scholar]
  2. Bourland J.D. McCollough K.P. Static field conformal stereotactic radiosurgery: Physical techniques. Int. J. Radiat. Oncol. Biol. Phys. 1994 28 2 471 479 10.1016/0360‑3016(94)90074‑4 8276664
    [Google Scholar]
  3. Hamilton R.J. Kuchnir F.T. Sweeney P. Rubin S.J. Dujovny M. Pelizzari C.A. Chen G.T.Y. Comparison of static conformal field with multiple noncoplanar arc techniques for stereotactic radiosurgery or stereotactic radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1995 33 5 1221 1228 10.1016/0360‑3016(95)00275‑8 7493846
    [Google Scholar]
  4. Shiu A.S. Kooy H.M. Ewton J.R. Tung S.S. Wong J. Antes K. Maor M.H. Comparison of Miniature Multileaf Collimation (MMLC) with circular collimation for stereotactic treatment. Int. J. Radiat. Oncol. Biol. Phys. 1997 37 3 679 688 10.1016/S0360‑3016(96)00507‑X 9112467
    [Google Scholar]
  5. Kubo H.D. Pappas C.T.E. Wilder R.B. A comparison of arc-based and static mini-multileaf collimator-based radiosurgery treatment plans. Radiother. Oncol. 1997 45 1 89 93 10.1016/S0167‑8140(97)00104‑7 9364637
    [Google Scholar]
  6. Sánchez-Nieto B. Romero-Expósito M. Terrón J.A. Irazola L. Paiusco M. Cagni E. Ghetti C. Filice S. Sánchez-Doblado F. Intensity-modulated radiation therapy and volumetric modulated arc therapy versus conventional conformal techniques at high energy: Dose assessment and impact on second primary cancer in the out-of-field region. Rep. Pract. Oncol. Radiother. 2018 23 4 251 259 10.1016/j.rpor.2018.04.008 29991929
    [Google Scholar]
  7. Li X.A. Ma L. Naqvi S. Shih R. Yu C. Monte Carlo dose verification for intensity-modulated arc therapy. Phys. Med. Biol. 2001 46 9 2269 2282 10.1088/0031‑9155/46/9/301 11580168
    [Google Scholar]
  8. Solberg T.D. Boedeker K.L. Fogg R. Selch M.T. DeSalles A.A.F. Dynamic arc radiosurgery field shaping: a comparison with static field conformal and noncoplanar circular arcs. Int. J. Radiat. Oncol. Biol. Phys. 2001 49 5 1481 1491 10.1016/S0360‑3016(00)01537‑6 11286857
    [Google Scholar]
  9. Grebe G. Pfaender M. Roll M. Luedemann L. Wurm R.E. Dynamic arc radiosurgery and radiotherapy: Commissioning and verification of dose distributions. Int. J. Radiat. Oncol. Biol. Phys. 2001 49 5 1451 1460 10.1016/S0360‑3016(01)01436‑5 11286853
    [Google Scholar]
  10. Earl M.A. Shepard D.M. Naqvi S. Li X.A. Yu C.X. Inverse planning for intensity-modulated arc therapy using direct aperture optimization. Phys. Med. Biol. 2003 48 8 1075 1089 10.1088/0031‑9155/48/8/309 12741503
    [Google Scholar]
  11. Wong E. Chen J.Z. Greenland J. Intensity-modulated arc therapy simplified. Int. J. Radiat. Oncol. Biol. Phys. 2002 53 1 222 235 10.1016/S0360‑3016(02)02735‑9 12007963
    [Google Scholar]
  12. Yu C.X. Li X.A. Ma L. Chen D. Naqvi S. Shepard D. Sarfaraz M. Holmes T.W. Suntharalingam M. Mansfield C.M. Clinical implementation of intensity-modulated arc therapy. Int. J. Radiat. Oncol. Biol. Phys. 2002 53 2 453 463 10.1016/S0360‑3016(02)02777‑3 12023150
    [Google Scholar]
  13. Chui C.S. Chan M.F. Yorke E. Spirou S. Ling C.C. Delivery of intensity‐modulated radiation therapy with a conventional multileaf collimator: Comparison of dynamic and segmental methods. Med. Phys. 2001 28 12 2441 2449 10.1118/1.1418018 11797947
    [Google Scholar]
  14. Langer M. Leong J. Optimization of beam weights under dose-volume restrictions. Int. J. Radiat. Oncol. Biol. Phys. 1987 13 8 1255 1260 10.1016/0360‑3016(87)90203‑3 3610713
    [Google Scholar]
  15. Galvin J.M. Ezzell G. Eisbrauch A. Yu C. Butler B. Xiao Y. Rosen I. Rosenman J. Sharpe M. Xing L. Xia P. Lomax T. Low D.A. Palta J. Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int. J. Radiat. Oncol. Biol. Phys. 2004 58 5 1616 1634 10.1016/j.ijrobp.2003.12.008 15050343
    [Google Scholar]
  16. Cardinale R.M. Benedict S.H. Wu Q. Zwicker R.D. Gaballa H.E. Mohan R. A comparison of three stereotactic radiotherapy techniques; ARCS vs. noncoplanar fixed fields vs. intensity modulation. Int. J. Radiat. Oncol. Biol. Phys. 1998 42 2 431 436 10.1016/S0360‑3016(98)00206‑5 9788426
    [Google Scholar]
  17. Baumert B.G. Norton I.A. Davis J.B. Intensity-modulated stereotactic radiotherapy vs. stereotactic conformal radiotherapy for the treatment of meningioma located predominantly in the skull base. Int. J. Radiat. Oncol. Biol. Phys. 2003 57 2 580 592 10.1016/S0360‑3016(03)00587‑X 12957272
    [Google Scholar]
  18. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010 25 9 603 605 10.1007/s10654‑010‑9491‑z 20652370
    [Google Scholar]
  19. Chaturvedi D. Kumar P. Chauhan A.K. Kumar P. Nigam J. Sivaji S.N. Silambarasan N. Comparison of Hippocampal Sparing Intensity Modulated Radiotherapy Plans in Patients of Brain Tumors treated by Three-dimensional Conformal Radiotherapy. SRMS JOURNAL OF MEDICAL SCIENCE 2022 7 1 22 30 10.21761/jms.v7i01.6
    [Google Scholar]
  20. Ding M. Newman F. Chen C. Stuhr K. Gaspar L.E. Dosimetric comparison between 3DCRT and IMRT using different multileaf collimators in the treatment of brain tumors. Med. Dosim. 2009 34 1 1 8 10.1016/j.meddos.2007.04.001 19181248
    [Google Scholar]
  21. Ding M. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system. Int. J. Radiat. Oncol. Biol. Phys. 2006 66 4 S82 6
    [Google Scholar]
  22. Lorentini S. Amelio D. Giri M.G. Fellin F. Meliadò G. Rizzotti A. Amichetti M. Schwarz M. IMRT or 3D-CRT in glioblastoma? A dosimetric criterion for patient selection. Technol. Cancer Res. Treat. 2013 12 5 411 420 10.7785/tcrt.2012.500341 23617288
    [Google Scholar]
  23. Piroth M.D. Pinkawa M. Holy R. Stoffels G. Demirel C. Attieh C. Kaiser H.J. Langen K.J. Eble M.J. Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison. Radiat. Oncol. 2009 4 1 57 10.1186/1748‑717X‑4‑57 19930657
    [Google Scholar]
  24. Hb G. Ia K. kumar S. Comparison of Intensity Modulated Radiation Therapy (IMRT) and Three Dimensional Conformal Radiotherapy (3DCRT) In Supratentorial Astrocytic Series WHO Grade III-IV Primary Malignant Brain Tumors. J. Nucl. Med. Radiat. Ther. 2018 9 4 1000368 10.4172/2155‑9619.1000368
    [Google Scholar]
  25. MacDonald S.M. Ahmad S. Kachris S. Vogds B.J. DeRouen M. Gitttleman A.E. DeWyngaert K. Vlachaki M.T. Intensity modulated radiation therapy versus three‐dimensional conformal radiation therapy for the treatment of high grade glioma: a dosimetric comparison. J. Appl. Clin. Med. Phys. 2007 8 2 47 60 10.1120/jacmp.v8i2.2423 17592465
    [Google Scholar]
  26. Xu X.G. Bednarz B. Paganetti H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys. Med. Biol. 2008 53 13 R193 R241 10.1088/0031‑9155/53/13/R01 18540047
    [Google Scholar]
  27. Qi X.S. Schultz C.J. Li X.A. An estimation of radiobiologic parameters from clinical outcomes for radiation treatment planning of brain tumor. Int. J. Radiat. Oncol. Biol. Phys. 2006 64 5 1570 1580 10.1016/j.ijrobp.2005.12.022 16580506
    [Google Scholar]
  28. Thieke C. Bortfeld T. Niemierko A. Nill S. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning. Med. Phys. 2003 30 9 2332 2339 10.1118/1.1598852 14528955
    [Google Scholar]
  29. Goitein M. Niemierko A. Intensity modulated therapy and inhomogeneous dose to the tumor: A note of caution. Int. J. Radiat. Oncol. Biol. Phys. 1996 36 2 519 522 10.1016/S0360‑3016(96)00348‑3 8892479
    [Google Scholar]
/content/journals/pra/10.2174/0115748928307224241017110758
Loading
/content/journals/pra/10.2174/0115748928307224241017110758
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test