Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Aberrant expression of tumor protein D52 (TPD52) is associated with some tumors. The role of TPD52 in uterine corpus endometrial carcinoma (UCEC) remains uncertain.

Objective

We aimed to investigate the involvement of TPD52 in the pathogenesis of UCEC.

Methods

We employed bioinformatics analysis and experimental validation in our study.

Results

Our findings indicated that elevated TPD52 expression in UCEC was significantly associated with various clinical factors, including clinical stage, race, weight, body mass index (BMI), histological type, histological grade, surgical approach, and age ( < 0.01). Furthermore, high TPD52 expression was a predictor of poorer overall survival (OS), progress-free survival (PFS), and disease-specific survival (DSS) ( = 0.011, = 0.006, and = 0.003, respectively). TPD52 exhibited a significant correlation with DSS (HR: 2.500; 95% CI: 1.153-5.419; = 0.02). TPD52 was involved in GPCR ligand binding and formation of the cornified envelope in UCEC. Moreover, TPD52 expression was found to be associated with immune infiltration, immune checkpoints, tumor mutation burden (TMB)/ microsatellite instability (MSI), and mRNA stemness indices (mRNAsi). The somatic mutation rate of TPD52 in UCEC was 1.9%. A ceRNA network of AC011447.7/miR-1-3p/TPD52 was constructed. There was excessive TPD52 protein expression. The upregulation of TPD52 expression in UCEC cell lines was found to be statistically significant.

Conclusion

TPD52 is upregulated in UCEC and may be a useful patent for prognostic biomarkers of UCEC, which may have important value for clinical treatment and supervision of UCEC patients.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928267447231107101539
2024-01-03
2025-01-06
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. GaoY. DaiX. ChenL. Body mass index is positively associated with endometrial cancer in chinese women, especially prior to menopause.J. Cancer2016791169117310.7150/jca.15037 27326261
    [Google Scholar]
  3. ZhangH. WangS. CacalanoN. Oncogenic Y68 frame shift mutation of PTEN represents a mechanism of docetaxel resistance in endometrial cancer cell lines.Sci. Rep.201991211110.1038/s41598‑019‑38585‑9 30765787
    [Google Scholar]
  4. GengR. ZhengY. zhou D, Li Q, Li R, Guo X. ZBTB7A, a potential biomarker for prognosis and immune infiltrates, inhibits progression of endometrial cancer based on bioinformatics analysis and experiments.Cancer Cell Int.202020154210.1186/s12935‑020‑01600‑5 33292231
    [Google Scholar]
  5. LiuC. ZhangY.H. DengQ. Cancer-related triplets of mRNA-lncRNA-miRNA revealed by integrative network in uterine corpus endometrial carcinoma.BioMed Res. Int.201720171710.1155/2017/3859582 28280730
    [Google Scholar]
  6. OuyangD. LiR. LiY. ZhuX. Construction of a competitive endogenous RNA network in uterine corpus endometrial carcinoma.Med. Sci. Monit.2019257998801010.12659/MSM.915798 31650984
    [Google Scholar]
  7. ZhaoT. ZhangY. MaX. Elevated expression of LPCAT1 predicts a poor prognosis and is correlated with the tumour microenvironment in endometrial cancer.Cancer Cell Int.202121126910.1186/s12935‑021‑01965‑1 34016103
    [Google Scholar]
  8. LuK.H. BroaddusR.R. Endometrial Cancer.N. Engl. J. Med.2020383212053206410.1056/NEJMra1514010 33207095
    [Google Scholar]
  9. BoutrosR. FanayanS. ShehataM. ByrneJ.A. The tumor protein D52 family: Many pieces, many puzzles.Biochem. Biophys. Res. Commun.200432541115112110.1016/j.bbrc.2004.10.112 15555543
    [Google Scholar]
  10. KangJ.W. KimY. LeeY. MyungK. KimY.H. OhC.K. AML poor prognosis factor, TPD52, is associated with the maintenance of haematopoietic stem cells through regulation of cell proliferation.J. Cell. Biochem.20211223-440341210.1002/jcb.29869 33166425
    [Google Scholar]
  11. WangZ. LiY. FanL. Silencing of TPD52 inhibits proliferation, migration, invasion but induces apoptosis of pancreatic cancer cells by deactivating Akt pathway.Neoplasma202067227728510.4149/neo_2019_190404N295 31847526
    [Google Scholar]
  12. FanayanS. ShehataM. AgterofA.P. McGuckinM.A. AlonsoM.A. ByrneJ.A. Mucin 1 (MUC1) is a novel partner for MAL2 in breast carcinoma cells.BMC Cell Biol.2009101710.1186/1471‑2121‑10‑7 19175940
    [Google Scholar]
  13. WuY. HuangJ. XuH. GongZ. Over-expression of miR-15a-3p enhances the radiosensitivity of cervical cancer by targeting tumor protein D52.Biomed. Pharmacother.20181051325133410.1016/j.biopha.2018.06.033 30021370
    [Google Scholar]
  14. YinW. ShiL. MaoY. MicroRNA-449b-5p suppresses cell proliferation, migration and invasion by targeting TPD52 in nasopharyngeal carcinoma.J. Biochem.2019166543344010.1093/jb/mvz057 31350893
    [Google Scholar]
  15. BoutrosR. ByrneJ.A. D53 (TPD52L1) is a cell cycle-regulated protein maximally expressed at the G2-M transition in breast cancer cells.Exp. Cell Res.2005310115216510.1016/j.yexcr.2005.07.009 16112108
    [Google Scholar]
  16. ShiP. ZhangX. LouC. XueY. GuoR. ChenS. Hsa_circ_0084927 regulates cervical cancer advancement via regulation of the miR-634/TPD52 Axis.Cancer Manag. Res.2020129435944810.2147/CMAR.S272478 33061631
    [Google Scholar]
  17. WangY. FangJ. GuF. MiR-125b-5p/TPD52 axis affects proliferation, migration and invasion of breast cancer cells.Mol. Biotechnol.20226491003101210.1007/s12033‑022‑00475‑3 35320453
    [Google Scholar]
  18. UmmanniR. TellerS. JunkerH. Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells.FEBS J.2008275225703571310.1111/j.1742‑4658.2008.06697.x 18959755
    [Google Scholar]
  19. XuH. WangH. LiG. JinX. ChenB. The immune-related gene ELF3 is a novel biomarker for the prognosis of ovarian cancer.Int. J. Gen. Med.2021145537554810.2147/IJGM.S332320 34531679
    [Google Scholar]
  20. YangD. LiuM. JiangJ. Comprehensive analysis of DMRT3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma.Cancers20221424622010.3390/cancers14246220 36551704
    [Google Scholar]
  21. ChenJ. TangH. LiT. Comprehensive analysis of the expression, prognosis, and biological significance of ovols in breast cancer.Int. J. Gen. Med.2021143951396010.2147/IJGM.S326402 34345183
    [Google Scholar]
  22. HanQ. CuiZ. WangQ. PangF. LiD. WangD. Upregulation of OTX2-AS1 is associated with immune infiltration and predicts prognosis of gastric cancer.Technol. Cancer Res. Treat.20232210.1177/15330338231154091 36740995
    [Google Scholar]
  23. LinZ. HuangW. YiY. LncRNA ADAMTS9-AS2 is a prognostic biomarker and correlated with immune infiltrates in lung adenocarcinoma.Int. J. Gen. Med.2021148541855510.2147/IJGM.S340683 34849000
    [Google Scholar]
  24. YiW. ShenH. SunD. Low expression of long noncoding RNA SLC26A4 antisense RNA 1 is an independent prognostic biomarker and correlate of immune infiltrates in breast cancer.Med. Sci. Monit.202127e934522 34880202
    [Google Scholar]
  25. LiangW. LuY. PanX. Decreased expression of a novel lncRNA FAM181A-AS1 is associated with poor prognosis and immune infiltration in lung adenocarcinoma.Pharm. Genomics Pers. Med.20221598599810.2147/PGPM.S384901 36482943
    [Google Scholar]
  26. ChenT. ZhuC. WangX. PanY. LncRNA ELF3-AS1 is a prognostic biomarker and correlated with immune infiltrates in hepatocellular carcinoma.Can. J. Gastroenterol. Hepatol.2021202111210.1155/2021/8323487 34336727
    [Google Scholar]
  27. LiuJ. LichtenbergT. HoadleyK.A. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics.Cell20181732400416.e1110.1016/j.cell.2018.02.052 29625055
    [Google Scholar]
  28. LuX. JingL. LiuS. WangH. ChenB. miR-149-3p is a potential prognosis biomarker and correlated with immune infiltrates in uterine corpus endometrial carcinoma.Int. J. Endocrinol.2022202211510.1155/2022/5006123 35719192
    [Google Scholar]
  29. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑8 25516281
    [Google Scholar]
  30. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: an R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.0118 22455463
    [Google Scholar]
  31. SubramanianA. TamayoP. MoothaV.K. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci.200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  32. HänzelmannS. CasteloR. GuinneyJ. GSVA: gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  33. BindeaG. MlecnikB. TosoliniM. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer.Immunity201339478279510.1016/j.immuni.2013.10.003 24138885
    [Google Scholar]
  34. ChalmersZ.R. ConnellyC.F. FabrizioD. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.Genome Med.2017913410.1186/s13073‑017‑0424‑2 28420421
    [Google Scholar]
  35. JardimD.L. GoodmanA. de Melo GagliatoD. KurzrockR. The challenges of tumor mutational burden as an immunotherapy biomarker.Cancer Cell202139215417310.1016/j.ccell.2020.10.001 33125859
    [Google Scholar]
  36. León-CastilloA. BrittonH. McConechyM.K. Interpretation of somatic POLE mutations in endometrial carcinoma.J. Pathol.2020250332333510.1002/path.5372 31829442
    [Google Scholar]
  37. JonesN.L. XiuJ. RocconiR.P. HerzogT.J. WinerI.S. Immune checkpoint expression, microsatellite instability, and mutational burden: Identifying immune biomarker phenotypes in uterine cancer.Gynecol. Oncol.2020156239339910.1016/j.ygyno.2019.11.035 31882243
    [Google Scholar]
  38. WillvonsederB. StögbauerF. SteigerK. The immunologic tumor microenvironment in endometrioid endometrial cancer in the morphomolecular context: mutual correlations and prognostic impact depending on molecular alterations.Cancer Immunol. Immunother.20217061679168910.1007/s00262‑020‑02813‑3 33340331
    [Google Scholar]
  39. BonnevilleR KrookMA KauttoEA MiyaJ WingMR ChenHZ Landscape of microsatellite instability across 39 cancer types.JCO Precis Oncol20172017 PO.17.00073
    [Google Scholar]
  40. ZhongF. LiuJ. GaoC. ChenT. LiB. Downstream regulatory network of MYBL2 mediating its oncogenic role in melanoma.Front. Oncol.20221281607010.3389/fonc.2022.816070 35664780
    [Google Scholar]
  41. LaoY. LiT. XieX. ChenK. LiM. HuangL. MiR-195-3p is a novel prognostic biomarker associated with immune infiltrates of lung adenocarcinoma.Int. J. Gen. Med.20221519120310.2147/IJGM.S350340 35023957
    [Google Scholar]
  42. LuX. LiG. LiuS. WangH. ChenB. MiR-585-3p suppresses tumor proliferation and migration by directly targeting CAPN9 in high grade serous ovarian cancer.J. Ovarian Res.20211419010.1186/s13048‑021‑00841‑w 34238324
    [Google Scholar]
  43. LiM. WangX. LiuJ. Identification of core prognosis-related candidate genes in chinese gastric cancer population based on integrated bioinformatics.BioMed Res. Int.2020202011410.1155/2020/8859826 33381592
    [Google Scholar]
  44. TangJ. TianX. MinJ. HuM. HongL. RPP40 is a prognostic biomarker and correlated with tumor microenvironment in uterine corpus endometrial carcinoma.Front. Oncol.20221295747210.3389/fonc.2022.957472 36091104
    [Google Scholar]
  45. WangF. BiJ. YiC. ZhangY. ZhangY. YueQ. Relationship between prognosis, immune infiltration level, and differential expression of parvg gene in uterine corpus endometrial carcinoma.Contrast Media Mol. Imaging202220221910.1155/2022/7376588 35655721
    [Google Scholar]
  46. PeiL.P. ZhangY.Z. LiG.Y. SunJ.L. Comprehensive analysis of the expression and prognosis for MCM4 in uterine corpus endometrial carcinoma.Front. Genet.20221389059110.3389/fgene.2022.890591 35719366
    [Google Scholar]
  47. YuC. QiH. ZhangY. ZhaoW. WuG. Elevated expression of gamma-glutamyl hydrolase is associated with poor prognosis and altered immune signature in uterine corpus endometrial carcinoma.Front. Genet.20221276419410.3389/fgene.2021.764194 35082830
    [Google Scholar]
  48. LiJ. XuW. ZhuY. Mammaglobin B may be a prognostic biomarker of uterine corpus endometrial cancer.Oncol. Lett.2020205110.3892/ol.2020.12118 32994818
    [Google Scholar]
  49. ZhaoQ. ChenG. YangX. WangT. YuanS. MengQ. SIX1: A prognostic biomarker in uterine corpus endometrial carcinoma.Comb. Chem. High Throughput Screen.2022 35379118
    [Google Scholar]
  50. YanJ. YeG. ShaoY. High expression of the ferroptosis‐associated MGST1 gene in relation to poor outcome and maladjusted immune cell infiltration in uterine corpus endometrial carcinoma.J. Clin. Lab. Anal.2022364e2431710.1002/jcla.24317 35218676
    [Google Scholar]
  51. LaiC.H. YangL.Y. LinC.Y. ChaoA. Methods and kits for assessing the risk of developing or diagnosing endometrial cancer.Patent 107041062020
  52. MooreR. SomersE. AllardJ.W. Use of HE4 and other biochemical markers for assessment of endometrial and uterine cancers.US Patent 202002925492020
  53. ChibaH. SugimotoK. A biomarker for predicting the prognosis for an endometrial cancer patient. US Patent 202200188422022
  54. ZhangJ. DongW. Expression of B cell translocation gene 1 protein in colon carcinoma and its clinical significance.Recent Patents Anticancer Drug Discov.2020151788510.2174/1574892815666200109113114 31916520
    [Google Scholar]
  55. LiuL. HuK. ZengZ. Expression and clinical significance of microtubule-actin cross-linking factor 1 in serous ovarian cancer.Recent Patents Anticancer Drug Discov.2021161667210.2174/1574892816666210211091543 33573562
    [Google Scholar]
  56. DengY. LiuL. FengW. LinZ. NingY. LuoX. High expression of MYL9 indicates poor clinical prognosis of epithelial ovarian cancer.Recent Patents Anticancer Drug Discov.202116453353910.2174/1574891X16666210706153740 34551701
    [Google Scholar]
  57. Martinez GarcíaE. ColásO.E. Gil MorenoA. ReventósP.J. DomonB. LesurA. CTNB1 as a marker for endometrial cancer.US Patent 202002641832020
    [Google Scholar]
  58. RiceL. PuseyM. WandziochE. BailS.M.G. WerdaA.L. PME-1 as a biomarker to predict and diagnose an increased risk of endometrial cancer and gene silencing of pme-1 to inhibit epithelial to mesenchymal transition.US Patent 202001905922020
    [Google Scholar]
  59. Martinez GarcíaE. ColásO.E. Gil MorenoA. ReventósP.J. DomonB. LesurA. Markers of endometrial cancer.US Patent 202302213232023
  60. HanG. FanM. ZhangX. microRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression.Biochem. Biophys. Res. Commun.2015456380480910.1016/j.bbrc.2014.12.026 25511701
    [Google Scholar]
  61. LuW. WanX. TaoL. WanJ. Long non-coding RNA HULC promotes cervical cancer cell proliferation, migration and invasion via miR-218/TPD52 axis.OncoTargets Ther.2020131109111810.2147/OTT.S232914 32103980
    [Google Scholar]
  62. LiG. YaoL. ZhangJ. Tumor-suppressive microRNA-34a inhibits breast cancer cell migration and invasion via targeting oncogenic TPD52.Tumour Biol.20163767481749110.1007/s13277‑015‑4623‑4 26678891
    [Google Scholar]
  63. KumamotoT. SekiN. MatakiH. Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma.Int. J. Oncol.20164951870188010.3892/ijo.2016.3690 27633630
    [Google Scholar]
  64. PanH. LiuQ. ZhangF. WangX. WangS. ShiX. High STK40 expression as an independent prognostic biomarker and correlated with immune infiltrates in low-grade gliomas.Int. J. Gen. Med.2021146389640010.2147/IJGM.S335821 34675607
    [Google Scholar]
  65. ChenB. LuX. ZhouQ. PAXIP1-AS1 is associated with immune infiltration and predicts poor prognosis in ovarian cancer.PLoS One2023188e029003110.1371/journal.pone.0290031 37582104
    [Google Scholar]
  66. LappanoR. MaggioliniM. GPCRs and cancer.Acta Pharmacol. Sin.201233335136210.1038/aps.2011.183 22266725
    [Google Scholar]
  67. Nieto GutierrezA. McDonaldP.H. GPCRs: Emerging anti-cancer drug targets.Cell. Signal.201841657410.1016/j.cellsig.2017.09.005 28931490
    [Google Scholar]
  68. IzziV. DavisM.N. NabaA. Pan-cancer analysis of the genomic alterations and mutations of the matrisome.Cancers2020128204610.3390/cancers12082046 32722287
    [Google Scholar]
  69. GlaveyS.V. NabaA. ManierS. Proteomic characterization of human multiple myeloma bone marrow extracellular matrix.Leukemia201731112426243410.1038/leu.2017.102 28344315
    [Google Scholar]
  70. GiatromanolakiA. KouroupiM. KontomanolisE.N. KoukourakisM.I. Regulatory tumor-infiltrating lymphocytes prevail in endometrial tumors with low vascular survival ability.Immunobiology2021226315207810.1016/j.imbio.2021.152078 33725493
    [Google Scholar]
  71. IkedaY. KiyotaniK. YewP.Y. Clinical significance of T cell clonality and expression levels of immune-related genes in endometrial cancer.Oncol. Rep.20173752603261010.3892/or.2017.5536 28358435
    [Google Scholar]
  72. FriedmanL.A. RingK.L. MillsA.M. LAG-3 and GAL-3 in endometrial carcinoma: Emerging candidates for immunotherapy.Int. J. Gynecol. Pathol.202039320321210.1097/PGP.0000000000000608 32267656
    [Google Scholar]
  73. ZhuX. YuanZ. ChengS. TIMM8A is associated with dysfunction of immune cell in BRCA and UCEC for predicting anti-PD-L1 therapy efficacy.World J. Surg. Oncol.202220133610.1186/s12957‑022‑02736‑6 36207751
    [Google Scholar]
  74. FridmanW.H. PetitprezF. MeylanM. B cells and cancer: To B or not to B?J. Exp. Med.20212181e2020085110.1084/jem.20200851 33601413
    [Google Scholar]
  75. TanakaA. SakaguchiS. Targeting Treg cells in cancer immunotherapy.Eur. J. Immunol.20194981140114610.1002/eji.201847659 31257581
    [Google Scholar]
  76. MunroM.J. WickremesekeraS.K. PengL. TanS.T. ItinteangT. Cancer stem cells in colorectal cancer: A review.J. Clin. Pathol.201871211011610.1136/jclinpath‑2017‑204739 28942428
    [Google Scholar]
  77. WangL. LiuW. LiuJ. Identification of immune-related therapeutically relevant biomarkers in breast cancer and breast cancer stem cells by transcriptome-wide analysis: A clinical prospective study.Front. Oncol.20211055413810.3389/fonc.2020.554138 33718103
    [Google Scholar]
/content/journals/pra/10.2174/0115748928267447231107101539
Loading
/content/journals/pra/10.2174/0115748928267447231107101539
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ceRNA; immune infiltration; mRNAsi; MSI; prognosis; TPD52; Uterine corpus endometrial carcinoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test