Skip to content
2000
Volume 25, Issue 12
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background: Research has been directed at the optimization of insulin for medicinal purposes. An insulin analog that could be reversibly activated might provide more precise pharmacokinetic control and broaden the inherent therapeutic index of the hormone. The prospect of using intramolecular structural constraint to reversibly inactive insulin might constitute the first step to achieving such an optimized analog. Chemically crosslinked insulin analogs have been reported where two amines are covalently linked by reaction with symmetrical bifunctional active esters. There is little selectivity in this synthetic approach to molecular constraint with multiple derivatives being formed. Objective: To systematically evaluate the synthesis of covalently crosslinked insulin analogs by asymmetric methods and the biological consequences. Method: We report synthesis of amine crosslinked insulin analogs via a two-step procedure. The stepwise approach was initiated by amide bond formation and followed by second site alkylation to produce site-specific, cross-linked insulin analogs. Results: A set of unique insulin analogs crosslinked at the two of the three native amines were synthesized. They were chemical characterized and assessed by in vitro bioanalysis to result in a significant and reasonably consistent reduction in biological potency. Conclusion: We achieved an unambiguous two-step synthesis of several crosslinked insulin analogs differing in location of the chemical tether. Bioanalysis demonstrated the ability of the molecular constraint to reduce bioactivity. The results set the stage for in vivo assessment of whether such a reduction in potency can be used pharmacologically to establish a constrained hormone upon which reversible tethering might be subsequently introduced.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0929866525666181101103500
2018-12-01
2025-06-25
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/0929866525666181101103500
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test