Skip to content
2000
Volume 31, Issue 8
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Marine organisms represent promising bioactive peptide resources with diverse biological activities such as antioxidant, antimicrobial, antihypertensive, anti-fatigue, and immunoregulatory activities. Despite many studies on marine bioactive peptides, there is a dearth of comprehensive review articles on the emerging trends that encompass the production techniques and the biological applications of marine bioactive peptides. In this review, we summarize the major research and findings related to marine bioactive peptides, encompassing aspects of their production, purification, biological activities, nanotechnology-based strategies, and their potential applications. Enzymatic hydrolysis currently stands out as the most commonly used method for producing marine bioactive peptides; the downstream purification process often includes a combination of multiple purification techniques. Due to their diverse biological properties, marine peptides have garnered considerable interest for industrial applications as active ingredients in the food, pharmaceutical, and cosmetics industries. Additionally, the incorporation of encapsulation strategies such as nano emulsion, nanoliposome, and microemulsions holds promise for significantly enhancing the bioavailability and bioactivity of marine peptides. Future research should also prioritize the systematic identification and validation of the potential health benefits of marine peptides by both and animal models, along with the conduct of human clinical trials.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665329840240816062134
2024-08-27
2024-12-23
Loading full text...

Full text loading...

References

  1. ChenY. ChenJ. ChenJ. YuH. ZhengY. ZhaoJ. ZhuJ. Recent advances in seafood bioactive peptides and their potential for managing osteoporosis.Crit. Rev. Food Sci. Nutr.20226251187120310.1080/10408398.2020.183660633094645
    [Google Scholar]
  2. LobineD. RengasamyK.R.R. MahomoodallyM.F. Functional foods and bioactive ingredients harnessed from the ocean: current status and future perspectives.Crit. Rev. Food Sci. Nutr.202262215794582310.1080/10408398.2021.189364333724095
    [Google Scholar]
  3. ChaiK.F. VooA.Y.H. ChenW.N. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development.Compr. Rev. Food Sci. Food Saf.20201963825388510.1111/1541‑4337.1265133337042
    [Google Scholar]
  4. DuZ. ComerJ. LiY. Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives.Trends Analyt. Chem.202316211705110.1016/j.trac.2023.117051
    [Google Scholar]
  5. Suarez-JimenezG.M. Burgos-HernandezA. Ezquerra-BrauerJ.M. Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals.Mar. Drugs201210596398610.3390/md1005096322822350
    [Google Scholar]
  6. SridharK. InbarajB.S. ChenB.H. Recent developments on production, purification and biological activity of marine peptides.Food Res. Int.202114711046810.1016/j.foodres.2021.11046834399466
    [Google Scholar]
  7. MoraL. ToldráF. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides.Curr. Opin. Food Sci.20234910097310.1016/j.cofs.2022.100973
    [Google Scholar]
  8. MatićJ. BøgwaldI. TengstrandE. RønningS.B. AfsethN.K. WubshetS.G. Calanus finmarchicus as a novel source of health-promoting bioactive peptides: Enzymatic protein hydrolysis, characterization, and in vitro bioactivity.Biocatal. Agric. Biotechnol.20235210282010.1016/j.bcab.2023.102820
    [Google Scholar]
  9. Cruz-CasasD.E. AguilarC.N. Ascacio-ValdésJ.A. Rodríguez-HerreraR. Chávez-GonzálezM.L. Flores-GallegosA.C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides.Food Chem. (Oxf)2021310004710.1016/j.fochms.2021.10004735415659
    [Google Scholar]
  10. AkbarianM. KhaniA. EghbalpourS. UverskyV.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action.Int. J. Mol. Sci.2022233144510.3390/ijms2303144535163367
    [Google Scholar]
  11. AhmedI. AsgherM. SherF. HussainS. NazishN. JoshiN. SharmaA. Parra-SaldívarR. BilalM. IqbalH. Exploring marine as a rich source of bioactive peptides: Challenges and opportunities from marine pharmacology.Mar. Drugs202220320810.3390/md2003020835323507
    [Google Scholar]
  12. LinY.H. ChenC.A. TsaiJ.S. ChenG.W. Preparation and identification of novel antihypertensive peptides from the in vitro gastrointestinal digestion of marine cobia skin hydrolysates.Nutrients2019116135110.3390/nu1106135131208053
    [Google Scholar]
  13. ZhangX. CaoD. SunX. SunS. XuN. Preparation and identification of antioxidant peptides from protein hydrolysate of marine alga Gracilariopsis lemaneiformis .J. Appl. Phycol.20193142585259610.1007/s10811‑019‑1746‑9
    [Google Scholar]
  14. ChandikaP. TennakoonP. KimT.H. KimS.C. JeJ.Y. KimJ.I. LeeB. RyuB. KangH. KimH.W. KimY.M. KimC. ChoiI.W. ParkW. YiM. JungW.K. Marine biological macromolecules and chemically modified macromolecules; Potential anticoagulants.Mar. Drugs2022201065410.3390/md2010065436286477
    [Google Scholar]
  15. NeshaniA. ZareH. Akbari EidgahiM.R. KhalediA. GhazviniK. Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities.BMC Pharmacol. Toxicol.20192013310.1186/s40360‑019‑0309‑731138331
    [Google Scholar]
  16. XuB. YeL. TangY. ZhengJ. TianX. YangY. YangZ. Preparation and purification of an immunoregulatory peptide from Stolephorus chinensis of the East Sea of China.Process Biochem.20209815115910.1016/j.procbio.2020.08.011
    [Google Scholar]
  17. Prakash NirmalN. Singh RajputM. Bhojraj RathodN. MudgilP. PatiS. BonoG. NalinanonS. LiL. MaqsoodS. Structural characteristic and molecular docking simulation of fish protein-derived peptides: Recent updates on antioxidant, anti-hypertensive and anti-diabetic peptides.Food Chem.2023405Pt A13473710.1016/j.foodchem.2022.13473736335734
    [Google Scholar]
  18. EghtedariM. Jafari PorzaniS. NowruziB. Anticancer potential of natural peptides from terrestrial and marine environments: A review.Phytochem. Lett.2021428710310.1016/j.phytol.2021.02.008
    [Google Scholar]
  19. AndreevY.A. OsmakovD.I. KoshelevS.G. MaleevaE.E. LogashinaY.A. PalikovV.A. PalikovaY.A. DyachenkoI.A. KozlovS.A. Analgesic activity of acid-sensing ion channel 3 (ASIС3) inhibitors: Sea anemones peptides Ugr9-1 and APETx2 versus low molecular weight compounds.Mar. Drugs2018161250010.3390/md1612050030545037
    [Google Scholar]
  20. KorteR. LepskiS. BrockmeyerJ. Comprehensive peptide marker identification for the detection of multiple nut allergens using a non-targeted LC–HRMS multi-method.Anal. Bioanal. Chem.2016408123059306910.1007/s00216‑016‑9384‑426894760
    [Google Scholar]
  21. MostashariP. MarszałekK. AliyevaA. Mousavi KhaneghahA. The impact of processing and extraction methods on the allergenicity of targeted protein quantification as well as bioactive peptides derived from egg.Molecules2023286265810.3390/molecules2806265836985630
    [Google Scholar]
  22. CaiW.W. HuX.M. WangY.M. ChiC.F. WangB. Bioactive peptides from skipjack tuna cardiac arterial bulbs: Preparation, identification, antioxidant activity, and stability against thermal, pH, and simulated gastrointestinal digestion treatments.Mar. Drugs2022201062610.3390/md2010062636286450
    [Google Scholar]
  23. Nagarajan, P.; Louis, L.R.P.; Patil, S.J.; Adam, J.K.; Krishna, S.B.N. Therapeutic potential of biologically active peptides from marine organisms for biomedical applications. In: Studies in Natural Products Chemistry, 2024; 81, pp. 467-500.10.1016/B978‑0‑443‑15628‑1.00019‑2.
  24. Rivero-PinoF. Bioactive food-derived peptides for functional nutrition: Effect of fortification, processing and storage on peptide stability and bioactivity within food matrices.Food Chem.202340613504610.1016/j.foodchem.2022.13504636446284
    [Google Scholar]
  25. AssadpourE. JafariS.M. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules.Annu. Rev. Food Sci. Technol.201910110313110.1146/annurev‑food‑032818‑12164130649963
    [Google Scholar]
  26. WangX. YuH. XingR. LiP. Characterization, preparation, and purification of marine bioactive peptides.BioMed. Res. Int.2017201711610.1155/2017/974672028761878
    [Google Scholar]
  27. TianX. ZhengJ. XuB. YeJ. YangZ. YuanF. Optimization of extraction of bioactive peptides from monkfish (Lophius litulon) and characterization of their role in H2O2-induced lesion.Mar. Drugs202018946810.3390/md1809046832957435
    [Google Scholar]
  28. PavlicevicM. MaestriE. MarmiroliM. Marine bioactive peptides—An overview of generation, structure and application with a focus on food sources.Mar. Drugs202018842410.3390/md1808042432823602
    [Google Scholar]
  29. WengZ. ChenY. LiangT. LinY. CaoH. SongH. XiongL. WangF. ShenX. XiaoJ. A review on processing methods and functions of wheat germ-derived bioactive peptides.Crit. Rev. Food Sci. Nutr.202363225577559310.1080/10408398.2021.202113934964419
    [Google Scholar]
  30. WisuthiphaetN. KongruangS. ChamcheunC. Production of fish protein hydrolysates by acid and enzymatic hydrolysis.J. Med. Bioeng.20154646647010.12720/jomb.4.6.466‑470
    [Google Scholar]
  31. NongN.T.P. HsuJ.L. Bioactive peptides: An understanding from current screening methodology.Processes (Basel)2022106111410.3390/pr10061114
    [Google Scholar]
  32. ZhuB. HeH. HouT. A comprehensive review of corn protein-derived bioactive peptides: Production, characterization, bioactivities, and transport pathways.Compr. Rev. Food Sci. Food Saf.201918132934510.1111/1541‑4337.1241133337020
    [Google Scholar]
  33. AlvarezC. RenduelesM. DiazM. The yield of peptides and amino acids following acid hydrolysis of haemoglobin from porcine blood.Anim. Prod. Sci.201252531332010.1071/AN11218
    [Google Scholar]
  34. ChourasiaR. Chiring PhukonL. AbedinM.M. PadhiS. SinghS.P. RaiA.K. Bioactive peptides in fermented foods and their application: A critical review.Syst. Microbiol. Biomanufacturing.2023318810910.1007/s43393‑022‑00125‑4
    [Google Scholar]
  35. ZhiT. LiX. SadiqF.A. MaoK. GaoJ. MiS. LiuX. DengW. ChitrakarB. SangY. Novel antioxidant peptides from protein hydrolysates of scallop (Argopecten irradians) mantle using enzymatic and microbial methods: Preparation, purification, identification and characterization.Lebensm. Wiss. Technol.202216411363610.1016/j.lwt.2022.113636
    [Google Scholar]
  36. SongR. ShiQ. GninguueA. WeiR. LuoH. Purification and identification of a novel peptide derived from by-products fermentation of spiny head croaker (Collichthys lucidus) with antifungal effects on phytopathogens.Process Biochem.20176218419210.1016/j.procbio.2017.07.024
    [Google Scholar]
  37. SinghB.P. VijS. HatiS. Functional significance of bioactive peptides derived from soybean.Peptides20145417117910.1016/j.peptides.2014.01.02224508378
    [Google Scholar]
  38. WenC. ZhangJ. ZhangH. DuanY. MaH. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review.Trends Food Sci. Technol.202010530832210.1016/j.tifs.2020.09.019
    [Google Scholar]
  39. Mazorra-ManzanoM.A. Ramírez-SuárezJ.C. Proteolytic enzymes for production of functional protein hydrolysates and bioactive peptides.Improving and Tailoring Enzymes for Food Quality and Functionality. YadaR.Y. DeeD.R. Woodhead Publishing202432535410.1016/B978‑0‑443‑15437‑9.00013‑6
    [Google Scholar]
  40. ShengY. WangW.Y. WuM.F. WangY.M. ZhuW.Y. ChiC.F. WangB. Eighteen novel bioactive peptides from monkfish (Lophius litulon) swim bladders: Production, identification, antioxidant activity, and stability.Mar. Drugs202321316910.3390/md2103016936976218
    [Google Scholar]
  41. YuH. XianM. QuC. PengP. YongoE. GuoZ. DuZ. XiaoJ. Novel Se-enriched α-glucosidase inhibitory peptide derived from tuna dark meat: Preparation, identification and effects on IR-HepG2 cells.Food Biosci.20246010435710.1016/j.fbio.2024.104357
    [Google Scholar]
  42. IñarraB. BaldC. GutierrezM. San MartinD. ZufíaJ. IbarruriJ. Production of bioactive peptides from hake by-catches: optimization and scale-up of enzymatic hydrolysis process.Mar. Drugs2023211155210.3390/md2111055237999376
    [Google Scholar]
  43. MardaniM. BadaknéK. FarmaniJ. AlukoR.E. Antioxidant peptides: Overview of production, properties, and applications in food systems.Compr. Rev. Food Sci. Food Saf.20232214610610.1111/1541‑4337.1306136370116
    [Google Scholar]
  44. VarnavaK.G. SarojiniV. Making solid-phase peptide synthesis greener: A review of the literature.Chem. Asian J.20191481088109710.1002/asia.20180180730681290
    [Google Scholar]
  45. HaoL. WangX. CaoY. XuJ. XueC. A comprehensive review of oyster peptides: Preparation, characterisation and bioactivities.Rev. Aquacult.202214112013810.1111/raq.12588
    [Google Scholar]
  46. ZuX.Y. ZhaoY.N. LiangY. LiY.Q. WangC.Y. ZhaoX.Z. WangH. Research on the screening and inhibition mechanism of angiotensin I-converting enzyme (ACE) inhibitory peptides from tuna dark muscle.Food Biosci.20245910395610.1016/j.fbio.2024.103956
    [Google Scholar]
  47. ChenB. MiaoJ. YeH. XiaZ. HuangW. GuoJ. LiangX. YinY. ZhengY. CaoY. Purification, identification, and mechanistic investigation of novel selenium-enriched antioxidant peptides from Moringa oleifera seeds.J. Agric. Food Chem.202371114625463710.1021/acs.jafc.2c0896536892038
    [Google Scholar]
  48. RiS. ZhaS. KimT. JuK. ZhouW. ShiW. WuM. KimC. BaoY. SunC. LiuG. Identification, characterization, and antimicrobial activity of a novel big defensin discovered in a commercial bivalve mollusc, Tegillarca granosa .Fish Shellfish Immunol.202212417418110.1016/j.fsi.2022.04.00335398526
    [Google Scholar]
  49. VivenzioG. ScalaM.C. MarinoP. ManfraM. CampigliaP. SalaM. Dipropyleneglycol dimethylether, new green solvent for solid-phase peptide synthesis: Further challenges to improve sustainability in the development of therapeutic peptides.Pharmaceutics2023156177310.3390/pharmaceutics1506177337376220
    [Google Scholar]
  50. GennariA. LeonhardtF. PaludoG.B. LehnD.N. RenardG. VolpatoG. de SouzaC.F.V. Microbial production of bioactive peptides.Microbial Bioreactors for Industrial Molecules202310.1002/9781119874096.ch11
    [Google Scholar]
  51. ZhaoZ. DengJ. FanD. Green biomanufacturing in recombinant collagen biosynthesis: Trends and selection in various expression systems.Biomater. Sci.202311165439546110.1039/D3BM00724C37401335
    [Google Scholar]
  52. CaiS. WangJ. WangK. ChenD. DongX. LiuT. ZengY. WangX. WuD. Expression, purification and antibacterial activity of nk-lysin mature peptides from the channel catfish (Ictalurus punctatus ).Appl. Sci. (Basel)20166924010.3390/app6090240
    [Google Scholar]
  53. RosanoG.L. MoralesE.S. CeccarelliE.A. New tools for recombinant protein production in Escherichia coli : A 5-year update.Protein Sci.20192881412142210.1002/pro.366831219641
    [Google Scholar]
  54. LiG. ChenJ. LiJ. ShangC. WangC. Structural characteristics, prokaryotic expression and activity analysis of antimicrobial peptide ALFPm10 from Penaeus monodon .Int. J. Pept. Res. Ther.20222812510.1007/s10989‑021‑10343‑4
    [Google Scholar]
  55. BhatwaA. WangW. HassanY.I. AbrahamN. LiX.Z. ZhouT. Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications.Front. Bioeng. Biotechnol.2021963055110.3389/fbioe.2021.63055133644021
    [Google Scholar]
  56. McElwainL. PhairK. KealeyC. BradyD. Current trends in biopharmaceuticals production in Escherichia coli .Biotechnol. Lett.202244891793110.1007/s10529‑022‑03276‑535796852
    [Google Scholar]
  57. DongC. LiM. ZhangR. LuW. XuL. LiuJ. ChuX. The expression of antibacterial peptide turgencin A in Pichia pastoris and an analysis of its antibacterial activity.Molecules20232814540510.3390/molecules2814540537513276
    [Google Scholar]
  58. DalyR. HearnM.T.W. Expression of heterologous proteins in Pichia pastoris : A useful experimental tool in protein engineering and production.J. Mol. Recognit.200518211913810.1002/jmr.68715565717
    [Google Scholar]
  59. MengD.M. DaiH.X. GaoX.F. ZhaoJ.F. GuoY.J. LingX. DongB. ZhangZ.Q. FanZ.C. Expression, purification and initial characterization of a novel recombinant antimicrobial peptide mytichitin-A in Pichia pastoris .Protein Expr. Purif.2016127354310.1016/j.pep.2016.07.00127389469
    [Google Scholar]
  60. SilaA. BougatefA. Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review.J. Funct. Foods201621102610.1016/j.jff.2015.11.007
    [Google Scholar]
  61. ShiJ. SuR. ZhangW. ChenJ. Purification and the secondary structure of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the alcalase hydrolysate of seahorse protein.J. Food Sci. Technol.202057113927393410.1007/s13197‑020‑04427‑033071314
    [Google Scholar]
  62. ShaikM.I. SarbonN.M. A review on purification and characterization of anti-proliferative peptides derived from fish protein hydrolysate.Food Rev. Int.20223871389140910.1080/87559129.2020.1812634
    [Google Scholar]
  63. JinQ.H. PengD.X. ZhengZ.J. Advances in extracting and understanding the bioactivities of marine organism peptides: A review.J. Food Process. Preserv.2022466e15602
    [Google Scholar]
  64. Khatkar, S.K.; Dudi, K.; Lonkar, S.A.; Sidhu, K.S.; Khatkar, A.B.; Chandla, N.K.; Panghal, A. An overview of membrane technology in dairy & food industry. In: Novel Technologies in Food Science, 2023; 5, 65-108.10.1002/9781119776376.ch3
  65. AlaviF. CiftciO.N. Purification and fractionation of bioactive peptides through membrane filtration: A critical and application review.Trends Food Sci. Technol.202313111812810.1016/j.tifs.2022.11.024
    [Google Scholar]
  66. GhalamaraS. CoscuetaE.R. SilvaS. BrazinhaC. PereiraC.D. PintadoM.E. Integrated ultrafiltration, nanofiltration, and reverse osmosis pilot process to produce bioactive protein/peptide fractions from sardine cooking effluent.J. Environ. Manage.202231711534410.1016/j.jenvman.2022.11534435642813
    [Google Scholar]
  67. FuW. ChenC. ZengH. LinJ. ZhangY. HuJ. ZhengB. Novel angiotensin-converting enzyme inhibitory peptides derived from Trichiurus lepturus myosin: Molecular docking and surface plasmon resonance study.Lebensm. Wiss. Technol.2019110546310.1016/j.lwt.2019.04.053
    [Google Scholar]
  68. YangX.R. QiuY.T. ZhaoY.Q. ChiC.F. WangB. Purification and characterization of antioxidant peptides derived from protein hydrolysate of the marine bivalve mollusk Tergillarca granosa. Mar. Drugs201917525110.3390/md1705025131035632
    [Google Scholar]
  69. LuoJ. ZhouW. SuZ. MaG. GuT. Comparison of fully-porous beads and cored beads in size exclusion chromatography for protein purification.Chem. Eng. Sci.20131029910510.1016/j.ces.2013.07.044
    [Google Scholar]
  70. NaeemM. MalikM.I. UmarT. AshrafS. AhmadA. A comprehensive review about bioactive peptides: Sources to future perspective.Int. J. Pept. Res. Ther.202228615510.1007/s10989‑022‑10465‑3
    [Google Scholar]
  71. Martínez-MolinaE. Chocarro-WronaC. Martínez-MorenoD. MarchalJ.A. BoulaizH. Large-scale production of lentiviral vectors: Current perspectives and challenges.Pharmaceutics20201211105110.3390/pharmaceutics1211105133153183
    [Google Scholar]
  72. CaoS. CaiJ. WangX. ZhouK. LiuL. HeL. QiX. YangH. Cryoprotective effect of collagen hydrolysates from squid skin on frozen shrimp and characterizations of its antifreeze peptides.Lebensm. Wiss. Technol.202317411444310.1016/j.lwt.2023.114443
    [Google Scholar]
  73. CaiB. ChenH. WanP. LuoL. YeZ. HuangJ. ChenD. PanJ. Isolation and identification of immunomodulatory peptides from the protein hydrolysate of tuna trimmings (Thunnas albacares ).Lebensm. Wiss. Technol.202216411361410.1016/j.lwt.2022.113614
    [Google Scholar]
  74. Moreno-GonzálezM. ChuekitkumchornP. SilvaM. GroenewoudR. OttensM. High throughput process development for the purification of rapeseed proteins napin and cruciferin by ion exchange chromatography.Food Bioprod. Process.202112522824110.1016/j.fbp.2020.11.011
    [Google Scholar]
  75. GrönbergA. Ion exchange chromatography.Biopharmaceutical Processing. JagschiesG. LindskogE. ŁąckiK. GalliherP. Elsevier201837939910.1016/B978‑0‑08‑100623‑8.00018‑9
    [Google Scholar]
  76. CumminsP.M. RochfortK.D. O’ConnorB.F. Ion-exchange chromatography: Basic principles and application.Methods Mol. Biol.201720922310.1007/978‑1‑4939‑6412‑3_11
    [Google Scholar]
  77. ParkS.Y. KimY.S. AhnC.B. JeJ.Y. Partial purification and identification of three antioxidant peptides with hepatoprotective effects from blue mussel (Mytilus edulis ) hydrolysate by peptic hydrolysis.J. Funct. Foods201620889510.1016/j.jff.2015.10.023
    [Google Scholar]
  78. Abd-TalibN. ShaharuddinA.S. YajiE.L.A. WahabN.S.A. RazaliN. LenK.Y.T. RoslanJ. WongF.W.F. SaariN. PaéeK.F. Alternative processes for the production of bioactive peptides.Materials Innovations and Solutions in Science and Technology IsmailA. Nur ZulkipliF. Mohd DarilM.A. ÖchsnerA. ChamSpringer Nature Switzerland2023839310.1007/978‑3‑031‑26636‑2_8
    [Google Scholar]
  79. KaurJ. KumarA. KaurJ. Strategies for optimization of heterologous protein expression in E. coli : Roadblocks and reinforcements.Int. J. Biol. Macromol.201810680382210.1016/j.ijbiomac.2017.08.08028830778
    [Google Scholar]
  80. DuC. LiY. XiaX. DuE. LinY. LianJ. RenC. LiS. WeiW. QinY. Identification of a novel collagen-like peptide by high-throughput screening for effective wound-healing therapy.Int. J. Biol. Macromol.202117354155310.1016/j.ijbiomac.2021.01.10433493562
    [Google Scholar]
  81. LiuP. LiW. PengY. HanS. LiangZ. CenY. LiX. WangP. LvH. ZhangQ. ChenH. LinJ. Molecular cloning, expression, and functional analysis of a putative lectin from the pearl oyster (Pinctada fucata, Gould 1850).Fish Shellfish Immunol.202314310921510.1016/j.fsi.2023.10921537951320
    [Google Scholar]
  82. OhR. LeeM.J. KimY.O. NamB.H. KongH.J. KimJ.W. ParkJ. SeoJ.K. KimD.G. Myticusin-beta, antimicrobial peptide from the marine bivalve, Mytilus coruscus .Fish Shellfish Immunol.20209934235210.1016/j.fsi.2020.02.02032061872
    [Google Scholar]
  83. LiH. AliZ. LiuX. JiangL. TangY. DaiJ. Expression of recombinant tachyplesin I in Pichia pastoris.Protein Expr. Purif.2019157505610.1016/j.pep.2019.01.01230711625
    [Google Scholar]
  84. ArumugamV. VenkatesanM. RamachandranK. RamachandranS. PalanisamyS.K. SundaresanU. Purification, characterization and antibacterial properties of peptide from marine Ascidian didemnum sp.Int. J. Pept. Res. Ther.202026120120810.1007/s10989‑019‑09829‑z
    [Google Scholar]
  85. FerrazzanoL. CataniM. CavazziniA. MartelliG. CorbisieroD. CantelmiP. FantoniT. MattelloneA. De LucaC. FellettiS. CabriW. TolomelliA. Sustainability in peptide chemistry: Current synthesis and purification technologies and future challenges.Green Chem.2022243975102010.1039/D1GC04387K
    [Google Scholar]
  86. HuX. YangX. WangT. LiL. WuY. ZhouY. YouL. Purification and identification of antioxidant peptides from round scad (Decapterus maruadsi) hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry.Food Chem. Toxicol.202013511088210.1016/j.fct.2019.11088231622727
    [Google Scholar]
  87. Ahmad, I.Z.; Parvez, S.; Tabassum, H. Cyanobacterial peptides with respect to anticancer activity: Structural and functional perspective. In: Bioactive Natural Products; 2021; pp. 345-388.10.1016/B978‑0‑12‑819483‑6.00010‑2.
  88. CaoW. ZhangC. HongP. JiH. HaoJ. Purification and identification of an ACE inhibitory peptide from the peptic hydrolysate of Acetes chinensis and its antihypertensive effects in spontaneously hypertensive rats.Int. J. Food Sci. Technol.201045595996510.1111/j.1365‑2621.2010.02219.x
    [Google Scholar]
  89. GhanbariR. Review on the bioactive peptides from marine sources: Indication for health effects.Int. J. Pept. Res. Ther.20192531187119910.1007/s10989‑018‑9766‑x
    [Google Scholar]
  90. LuZ. SunN. DongL. GaoY. LinS. Production of bioactive peptides from sea cucumber and its potential health benefits: A comprehensive review.J. Agric. Food Chem.202270257607762510.1021/acs.jafc.2c0269635715003
    [Google Scholar]
  91. UmberJ. QasimM. AshrafS. AshfaqU.A. Mahmood urR. IramA. BhattiR. TariqM. MasoudMS. Antioxidants mitigate oxidative stress: A general overview.The Role of Natural Antioxidants in Brain Disorders. ImranA. HussainG. ChamSpringer International Publishing202314916910.1007/978‑3‑031‑41188‑5_7
    [Google Scholar]
  92. WuR. WuC. LiuD. YangX. HuangJ. ZhangJ. LiaoB. HeH. LiH. Overview of antioxidant peptides derived from marine resources: The sources, characteristic, purification, and evaluation methods.Appl. Biochem. Biotechnol.201517671815183310.1007/s12010‑015‑1689‑926041057
    [Google Scholar]
  93. LiC. ChenX. LiL. ChengJ. ChenH. GaoQ. YangF. CaiX. WangS. Protective effect of antioxidant peptides from bass ( Lateolabrax japonicus ) on oxidative stress injury in Caco-2 cells.Food Front.20234281883010.1002/fft2.224
    [Google Scholar]
  94. PhaniendraA. JestadiD.B. PeriyasamyL. Free radicals: Properties, sources, targets, and their implication in various diseases.Ind. J. Clin. Biochem.2015301112610.1007/s12291‑014‑0446‑025646037
    [Google Scholar]
  95. ZhangL. ZhaoG.X. ZhaoY.Q. QiuY.T. ChiC.F. WangB. Identification and active evaluation of antioxidant peptides from protein hydrolysates of skipjack tuna (Katsuwonus pelamis) head.Antioxidants20198831810.3390/antiox808031831430875
    [Google Scholar]
  96. Sabeena FarvinK.H. AndersenL.L. OtteJ. NielsenH.H. JessenF. JacobsenC. Antioxidant activity of cod (Gadus morhua ) protein hydrolysates: Fractionation and characterisation of peptide fractions.Food Chem.201620440941910.1016/j.foodchem.2016.02.14526988519
    [Google Scholar]
  97. XiaZ. MiaoJ. ChenB. GuoJ. OuY. LiangX. YinY. TongX. CaoY. Purification, identification, and antioxidative mechanism of three novel selenium-enriched oyster antioxidant peptides.Food Res. Int.202215711135910.1016/j.foodres.2022.11135935761620
    [Google Scholar]
  98. AklakurM. Natural antioxidants from sea: A potential industrial perspective in aquafeed formulation.Rev. Aquacult.201810238539910.1111/raq.12167
    [Google Scholar]
  99. WangN. WangW. SadiqF.A. WangS. CaiqinL. JianchangJ. Involvement of Nrf2 and Keap1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent peptides from soft-shelled turtle.Process Biochem.20209217418110.1016/j.procbio.2019.12.022
    [Google Scholar]
  100. ChiC.F. HuF.Y. WangB. LiZ.R. LuoH.Y. Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle.Mar. Drugs20151352580260110.3390/md1305258025923316
    [Google Scholar]
  101. LiX.R. ChiC.F. LiL. WangB. Purification and identification of antioxidant peptides from protein hydrolysate of scalloped hammerhead (Sphyrna lewini) cartilage.Mar. Drugs20171536110.3390/md1503006128257057
    [Google Scholar]
  102. JangH.L. LiceagaA.M. YoonK.Y. Purification, characterisation and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicus) protein hydrolysates.J. Funct. Foods20162043344210.1016/j.jff.2015.11.020
    [Google Scholar]
  103. BashirK.M.I. SohnJ.H. KimJ.S. ChoiJ.S. Identification and characterization of novel antioxidant peptides from mackerel (Scomber japonicus) muscle protein hydrolysates.Food Chem.202032312680910.1016/j.foodchem.2020.12680932330643
    [Google Scholar]
  104. VibhuteP. RadhakrishnanA. JeyachandranS. Antioxidant properties of marine proteins and peptides.Marine Antioxidants. KimS-K. ShinK-H. VenkatesanJ. Academic Press2023112510.1016/B978‑0‑323‑95086‑2.00022‑9
    [Google Scholar]
  105. MojsoskaB. ZuckermannR.N. JenssenH. Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides.Antimicrob. Agents Chemother.20155974112412010.1128/AAC.00237‑1525941221
    [Google Scholar]
  106. GuryanovaS.V. BalandinS.V. Belogurova-OvchinnikovaO.Y. OvchinnikovaT.V. Marine invertebrate antimicrobial peptides and their potential as novel peptide antibiotics.Mar. Drugs2023211050310.3390/md2110050337888438
    [Google Scholar]
  107. ThomasA.M. AntonyS.P. Marine antimicrobial peptides: An emerging nightmare to the life-threatening pathogens.Probiotics Antimicrob. Proteins202416255257810.1007/s12602‑023‑10061‑x37022565
    [Google Scholar]
  108. SruthyK.S. NairA. PuthumanaJ. AntonyS.P. SinghI.S.B. PhilipR. Molecular cloning, recombinant expression and functional characterization of an antimicrobial peptide, Crustin from the Indian white shrimp, Fenneropenaeus indicus .Fish Shellfish Immunol.201771839410.1016/j.fsi.2017.09.07128964865
    [Google Scholar]
  109. PanteleevP.V. TsarevA.V. SafronovaV.N. ReznikovaO.V. BolosovI.A. SychevS.V. ShenkarevZ.O. OvchinnikovaT.V. Structure elucidation and functional studies of a novel β-hairpin antimicrobial peptide from the marine polychaeta Capitella teleta. Mar. Drugs2020181262010.3390/md1812062033291782
    [Google Scholar]
  110. HsuH.C. ChenM.H. YehM.L. ChenW.J. Antibacterial and anticancer activities of pleurocidin-amide, a potent marine antimicrobial peptide derived from winter flounder, Pleuronectes americanus. Mar. Drugs202220851910.3390/md2008051936005521
    [Google Scholar]
  111. ShabirU. AliS. MagrayA.R. GanaiB.A. FirdousP. HassanT. NazirR. Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: A review.Microb. Pathog.2018114505610.1016/j.micpath.2017.11.03929180291
    [Google Scholar]
  112. LeiJ. SunL. HuangS. ZhuC. LiP. HeJ. MackeyV. CoyD.H. HeQ. The antimicrobial peptides and their potential clinical applications.Am. J. Transl. Res.20191173919393131396309
    [Google Scholar]
  113. AgeitosJ.M. Sánchez-PérezA. Calo-MataP. VillaT.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria.Biochem. Pharmacol.201713311713810.1016/j.bcp.2016.09.01827663838
    [Google Scholar]
  114. ChenN. JiangC. Antimicrobial peptides: Structure, mechanism, and modification.Eur. J. Med. Chem.202325511537710.1016/j.ejmech.2023.11537737099837
    [Google Scholar]
  115. ChenP. YeT. LiC. PraveenP. HuZ. LiW. ShangC. Embracing the era of antimicrobial peptides with marine organisms.Nat. Prod. Rep.202441333134610.1039/D3NP00031A37743806
    [Google Scholar]
  116. HocquelletA. le SenechalC. GarbayB. Importance of the disulfide bridges in the antibacterial activity of human hepcidin.Peptides201236230330710.1016/j.peptides.2012.06.00122705624
    [Google Scholar]
  117. WalquistM.J. EilertsenK.E. ElvevollE.O. JensenI.J. Marine-derived peptides with anti-hypertensive properties: prospects for pharmaceuticals, supplements, and functional food.Mar. Drugs202422414010.3390/md2204014038667757
    [Google Scholar]
  118. ZhengS.L. LuoQ.B. SuoS.K. ZhaoY.Q. ChiC.F. WangB. Preparation, identification, molecular docking study and protective function on HUVECs of novel ace inhibitory peptides from protein hydrolysate of skipjack tuna muscle.Mar. Drugs202220317610.3390/md2003017635323475
    [Google Scholar]
  119. SuY. ChenS. ShenJ. YiZ. LiuS. CaiS. PanN. QiaoK. ChenX. ChenB. XuM. YangS. LiuZ. Screening and molecular mechanisms of novel ACE-inhibitory peptides from Gracilariopsis lemaneiformis. Int. J. Mol. Sci.202223231485010.3390/ijms23231485036499176
    [Google Scholar]
  120. DingQ. SheikhA.R. ChenQ. HuY. SunN. SuX. LuoL. MaH. HeR. Understanding the mechanism for the structure-activity relationship of food-derived ACEI peptides.Food Rev. Int.20233941751176910.1080/87559129.2021.1936005
    [Google Scholar]
  121. ZhaoY.Q. ZhangL. TaoJ. ChiC.F. WangB. Eight antihypertensive peptides from the protein hydrolysate of Antarctic krill (Euphausia superba): Isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs).Food Res. Int.201912119720410.1016/j.foodres.2019.03.03531108740
    [Google Scholar]
  122. UcakI. AfreenM. MontesanoD. CarrilloC. TomasevicI. Simal-GandaraJ. BarbaF.J. Functional and bioactive properties of peptides derived from marine side streams.Mar. Drugs20211927110.3390/md1902007133572713
    [Google Scholar]
  123. SamarakoonK. JeonY.J. Bio-functionalities of proteins derived from marine algae — A review.Food Res. Int.201248294896010.1016/j.foodres.2012.03.013
    [Google Scholar]
  124. ZhuS. YangW. LinY. DuC. HuangD. ChenS. YuT. CongX. Antioxidant and anti-fatigue activities of selenium-enriched peptides isolated from Cardamine violifolia protein hydrolysate.J. Funct. Foods20217910441210.1016/j.jff.2021.104412
    [Google Scholar]
  125. WangQ. ShiJ. ZhongH. Abdullah ZhuangJ. ZhangJ. WangJ. ZhangX. FengF. High-degree hydrolysis sea cucumber peptides improve exercise performance and exert antifatigue effect via activating the NRF2 and AMPK signaling pathways in mice.J. Funct. Foods20218610467710.1016/j.jff.2021.104677
    [Google Scholar]
  126. QuY. JiH. SongW. PengS. ZhanS. WeiL. ChenM. ZhangD. LiuS. The anti-fatigue effect of the Auxis thazard oligopeptide via modulation of the AMPK/PGC-1α pathway in mice.Food Funct.20221331641165010.1039/D1FO03320D35080545
    [Google Scholar]
  127. ZhaoY.Q. ZengL. YangZ.S. HuangF.F. DingG.F. WangB. Anti-fatigue effect by peptide fraction from protein hydrolysate of croceine croaker (Pseudosciaena crocea) swim bladder through inhibiting the oxidative reactions including DNA damage.Mar. Drugs2016141222110.3390/md1412022127983570
    [Google Scholar]
  128. LiC. LiL. ChengJ. ChenX. YuanY. FaragM.A. XuB. CaiX. WangS. Anti-fatigue effect of Lateolabrax japonicus peptides in mice and the underlying action mechanism via in vitro and in vivo assays.Food Biosci.20245810376310.1016/j.fbio.2024.103763
    [Google Scholar]
  129. XiaoM. LinL. ChenH. GeX. HuangY. ZhengZ. LiS. PanY. LiuB. ZengF. Anti-fatigue property of the oyster polypeptide fraction and its effect on gut microbiota in mice.Food Funct.202011108659866910.1039/D0FO01713B32936195
    [Google Scholar]
  130. LuX. WangM. YueH. FengX. TianY. XueC. ZhangT. WangY. Novel peptides from sea cucumber intestines hydrolyzed by neutral protease alleviate exercise-induced fatigue via upregulating the glutaminemediated Ca2+/Calcineurin signaling pathway in mice.J. Food Sci.20248931727173810.1111/1750‑3841.1693438258958
    [Google Scholar]
  131. LiH. LiuE.Q. WuY.H. ChenS.L. The anti-fatigue effect of black soybean peptide in mice.Adv. Mat. Res.2012554-5561475148210.4028/www.scientific.net/AMR.554‑556.1475
    [Google Scholar]
  132. SunS. NiuH. YangT. LinQ. LuoF. MaM. Antioxidant and anti-fatigue activities of egg white peptides prepared by pepsin digestion.J. Sci. Food Agric.201494153195320010.1002/jsfa.667124652764
    [Google Scholar]
  133. TabassumS. AhmadS. MadihaS. ShahzadS. BatoolZ. SadirS. HaiderS. Free l-glutamate-induced modulation in oxidative and neurochemical profile contributes to enhancement in locomotor and memory performance in male rats.Sci. Rep.20201011120610.1038/s41598‑020‑68041‑y32641780
    [Google Scholar]
  134. MontuoriE. de PascaleD. LauritanoC. Recent discoveries on marine organism immunomodulatory activities.Mar. Drugs202220742210.3390/md2007042235877715
    [Google Scholar]
  135. ManJ. Abd El-AtyA.M. WangZ. TanM. Recent advances in sea cucumber peptide: Production, bioactive properties, and prospects.Food Front.20234113116310.1002/fft2.196
    [Google Scholar]
  136. SkjånesK. AesoyR. HerfindalL. SkomedalH. Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity.Physiol. Plant.2021173261262310.1111/ppl.1347234085279
    [Google Scholar]
  137. ZhangZ. HuX. LinL. DingG. YuF. Immunomodulatory activity of low molecular-weight peptides from Nibea japonica in RAW264.7 cells via NF-κB pathway.Mar. Drugs201917740410.3390/md1707040431288466
    [Google Scholar]
  138. LiW. YeS. ZhangZ. TangJ. JinH. HuangF. YangZ. TangY. ChenY. DingG. YuF. Purification and characterization of a novel pentadecapeptide from protein hydrolysates of Cyclina sinensis and its immunomodulatory effects on RAW264.7 cells.Mar. Drugs20191713010.3390/md1701003030621347
    [Google Scholar]
  139. WangZ. FangY. ZengY. YangX. YuF.M. WangB. Immunomodulatory peptides from thick-shelled mussel (Mytilus coruscus ): Isolation, identification, molecular docking and immunomodulatory effects on RAW264.7 cells.Food Biosci.20245910387410.1016/j.fbio.2024.103874
    [Google Scholar]
  140. XingL. WangZ. HaoY. ZhangW. Marine products as a promising resource of bioactive peptides: Update of extraction strategies and their physiological regulatory effects.J. Agric. Food Chem.202270103081309510.1021/acs.jafc.1c0786835235313
    [Google Scholar]
  141. AbdoA.A.A. Al-DalaliS. HouY. AleryaniH. ShehzadQ. AsawmahiO. AL-FargaA. MohammedB. LiuX. SangY. Modification of marine bioactive peptides: strategy to improve the biological activity, stability, and taste properties.Food Bioprocess Technol.20241761412143310.1007/s11947‑023‑03142‑w
    [Google Scholar]
  142. HanC. FangL. SongS. MinW. Polysaccharides-based delivery system for efficient encapsulation and controlled release of food-derived active peptides.Carbohydr. Polym.202229111958010.1016/j.carbpol.2022.11958035698398
    [Google Scholar]
  143. MohammadiM. HamishehkarH. McClementsD.J. ShahvalizadehR. BarriA. Encapsulation of Spirulina protein hydrolysates in liposomes: Impact on antioxidant activity and gastrointestinal behavior.Food Chem.202340013397310.1016/j.foodchem.2022.13397336055139
    [Google Scholar]
  144. LiZ. PaulsonA.T. GillT.A. Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes.J. Funct. Foods20151973374310.1016/j.jff.2015.09.058
    [Google Scholar]
  145. HanachiA. BianchiA. KahnC.J.F. VelotE. Arab-TehranyE. Cakir-KieferC. LinderM. Encapsulation of salmon peptides in marine liposomes: Physico-chemical properties, antiradical activities and biocompatibility assays.Mar. Drugs202220424910.3390/md2004024935447922
    [Google Scholar]
  146. SarabandiK. GharehbeglouP. JafariS.M. Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges.Dry. Technol.2020385-657759510.1080/07373937.2019.1689399
    [Google Scholar]
  147. SableR. ParajuliP. JoisS. Peptides, peptidomimetics, and polypeptides from marine sources: A wealth of natural sources for pharmaceutical applications.Mar. Drugs201715412410.3390/md1504012428441741
    [Google Scholar]
  148. CheungR. NgT. WongJ. Marine peptides: Bioactivities and applications.Mar. Drugs20151374006404310.3390/md1307400626132844
    [Google Scholar]
  149. ZhangC. LvJ. QinX. PengZ. LinH. Novel antioxidant peptides from crassostrea hongkongensis improve photo-oxidation in UV-induced HaCaT cells.Mar. Drugs202220210010.3390/md2002010035200629
    [Google Scholar]
  150. CunhaS.A. PintadoM.E. Bioactive peptides derived from marine sources: Biological and functional properties.Trends Food Sci. Technol.202211934837010.1016/j.tifs.2021.08.017
    [Google Scholar]
  151. SinghP. SinghT. GandhiN. Prevention of lipid oxidation in muscle foods by milk proteins and peptides: A review.Food Rev. Int.201834322624710.1080/87559129.2016.1261297
    [Google Scholar]
  152. ChakrabortyP. NathD. HoqueM. SarkarP. HatiS. MishraB.K. Biopolymer-based antimicrobial coatings for aquatic food products: A review.J. Food Process. Preserv.2022464e1646510.1111/jfpp.16465
    [Google Scholar]
  153. BougatefH. KrichenF. KobbiS. Martinez-AlvarezO. NedjarN. BougatefA. SilaA. Physicochemical and biological properties of eel by-products protein hydrolysates: Potential application to meat product preservation.Waste Biomass Valoriz.202011393194210.1007/s12649‑018‑0424‑5
    [Google Scholar]
  154. YangS. DongY. AweyaJ.J. LiJ. ChenX. ZhangY. LiuG.M. A hemoglobin-derived antimicrobial peptide, LCH4, from the large yellow croaker (Larimichthys crocea ) with potential use as a food preservative.Lebensm. Wiss. Technol.202013110965610.1016/j.lwt.2020.109656
    [Google Scholar]
  155. Erdem BüyükkirazM. KesmenZ. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.J. Appl. Microbiol.202213231573159610.1111/jam.1531434606679
    [Google Scholar]
  156. YanY. LiY. ZhangZ. WangX. NiuY. ZhangS. XuW. RenC. Advances of peptides for antibacterial applications.Colloids Surf. B Biointerfaces202120211168210.1016/j.colsurfb.2021.11168233714188
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665329840240816062134
Loading
/content/journals/ppl/10.2174/0109298665329840240816062134
Loading

Data & Media loading...

Supplements

Supplementary material isavailable on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test