Skip to content
2000
Volume 31, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

The Transforming Growth Factor-β (TGF-β) mediates embryonic development, maintains cellular homeostasis, regulates immune function, and is involved in a wide range of other biological processes. TGF-β superfamily signaling pathways play an important role in cancer development and can promote or inhibit tumorigenesis. Type III TGF-β receptor (TGFBR3) is a co-receptor in the TGF-β signaling pathway, which often occurs with reduced or complete loss of expression in many cancer patients and can act as a tumor suppressor gene. The reduction or deletion of TGFBR3 is more pronounced compared to other elements in the TGF-β signaling pathway. In recent years, lung cancer is one of the major malignant tumors that endanger human health, and its prognosis is poor. Recent studies have reported that TGFBR3 expression decreases to varying degrees in different types of lung cancer, both at the tissue level and at the cellular level. The invasion, metastasis, angiogenesis, and apoptosis of lung cancer cells are closely related to the expression of TGFBR3, which strengthens the inhibitory function of TGFBR3 in the evolution of lung cancer. This article reviews the mechanism of TGFBR3 in lung cancer and the influencing factors associated with TGFBR3. Clarifying the physiological function of TGFBR3 and its molecular mechanism in lung cancer is conducive to the diagnosis and treatment of lung cancer.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665315841240731060636
2024-07-01
2024-11-22
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. Soerjo-mataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. TokgunO. KarakasD.E. TanS. KaragürE.R. İnalB. AkcaH. DurapF. BaysalA. AydemirM. Novel ruthenium and palladium complexes as potential anticancer molecules on SCLC and NSCLC cell lines.Chem. Pap.20207492883289210.1007/s11696‑020‑01129‑x
    [Google Scholar]
  3. HallidayP.R. BlakelyC.M. BivonaT.G. Emerging targeted therapies for the treatment of non-small cell lung cancer.Curr. Oncol. Rep.20192132110.1007/s11912‑019‑0770‑x30806814
    [Google Scholar]
  4. TurnerR.M. ChenY.W. FernandesA.W. Validation of a Case-Finding Algorithm for Identifying Patients with Non-small Cell Lung Cancer (NSCLC) in Administrative Claims Databases.Front. Pharmacol.2017888310.3389/fphar.2017.0088329249970
    [Google Scholar]
  5. SooR.A. StoneE.C.A. CummingsK.M. JettJ.R. FieldJ.K. GroenH.J.M. MulshineJ.L. YatabeY. BubendorfL. DacicS. Rami-PortaR. DetterbeckF.C. LimE. AsamuraH. DoningtonJ. WakeleeH.A. WuY.L. HigginsK. SenanS. SolomonB. KimD.W. JohnsonM. YangJ.C.H. SequistL.V. ShawA.T. AhnM.J. CostaD.B. PatelJ.D. HornL. GettingerS. PetersS. WynesM.W. Faivre-FinnC. RudinC.M. TsaoA. BaasP. KellyR.J. LeighlN.B. ScagliottiG.V. GandaraD.R. HirschF.R. SpigelD.R. Scientific advances in thoracic oncology 2016.J. Thorac. Oncol.20171281183120910.1016/j.jtho.2017.05.01928579481
    [Google Scholar]
  6. EttingerD.S. WoodD.E. AisnerD.L. AkerleyW. BaumanJ.R. BharatA. BrunoD.S. ChangJ.Y. ChirieacL.R. DeCampM. DillingT.J. DowellJ. DurmG.A. GettingerS. GrotzT.E. GubensM.A. HegdeA. LacknerR.P. LanutiM. LinJ. LooB.W. LovlyC.M. MaldonadoF. MassarelliE. MorgenszternD. NgT. OttersonG.A. PatelS.P. PatilT. PolancoP.M. RielyG.J. RiessJ. SchildS.E. ShapiroT.A. SinghA.P. StevensonJ. TamA. TanvetyanonT. YanagawaJ. YangS.C. YauE. GregoryK.M. HughesM. NCCN Guidelines® Insights: Non–small cell lung cancer, version 2. 2023.J. Natl. Compr. Canc. Netw.202321434035010.6004/jnccn.2023.002037015337
    [Google Scholar]
  7. GibsonA.J.W. BoxA. DeanM.L. ElegbedeA.A. HaoD. SanghaR. BebbD.G. Retrospective real-world outcomes for patients with ALK-rearranged lung cancer receiving ALK receptor tyrosine kinase inhibitors.JTO Clin Res Reports20212410015710.1016/j.jtocrr.2021.10015734590010
    [Google Scholar]
  8. MassaguéJ. TGF-β Signal Transduction.Annu. Rev. Biochem.199867175379110.1146/annurev.biochem.67.1.7539759503
    [Google Scholar]
  9. GordonK.J. BlobeG.C. Role of transforming growth factor-β superfamily signaling pathways in human disease.Biochim. Biophys. Acta Mol. Basis Dis.20081782419722810.1016/j.bbadis.2008.01.00618313409
    [Google Scholar]
  10. ParkC. KimW.S. ChoiY. KimH. ParkK. Effects of transforming growth factor β (TGF-β) receptor on lung carcinogenesis.Lung Cancer200238214314710.1016/S0169‑5002(02)00182‑412399125
    [Google Scholar]
  11. AnumanthanG. HalderS.K. OsadaH. TakahashiT. MassionP.P. CarboneD.P. DattaP.K. Restoration of TGF-β signalling reduces tumorigenicity in human lung cancer cells.Br. J. Cancer200593101157116710.1038/sj.bjc.660283116251876
    [Google Scholar]
  12. López-CasillasF. WranaJ.L. MassaguéJ. Betaglycan presents ligand to the TGFβ signaling receptor.Cell19937371435144410.1016/0092‑8674(93)90368‑Z8391934
    [Google Scholar]
  13. WoszczykD. GolaJ. JurzakM. MazurekU. Mykała-CieślaJ. WilczokT. Expression of TGF beta1 genes and their receptor types I, II, and III in low- and high-grade malignancy non-Hodgkin’s lymphomas.Med. Sci. Monit.2004101CR33CR3714704634
    [Google Scholar]
  14. JelinekD.F. TschumperR.C. StolovitzkyG.A. IturriaS.J. TuY. LepreJ. ShahN. KayN.E. Identification of a global gene expression signature of B-chronic lymphocytic leukemia.Mol. Cancer Res.20031534636112651908
    [Google Scholar]
  15. PawlakJ.B. BlobeG.C. TGF -β superfamily co-receptors in cancer.Dev. Dyn.2022251111714310.1002/dvdy.33833797167
    [Google Scholar]
  16. López-CasillasF. PayneH.M. AndresJ.L. MassaguéJ. Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: Mapping of ligand binding and GAG attachment sites.J. Cell Biol.1994124455756810.1083/jcb.124.4.5578106553
    [Google Scholar]
  17. BlairC.R. StoneJ.B. WellsR.G. The type III TGF-β receptor betaglycan transmembrane–cytoplasmic domain fragment is stable after ectodomain cleavage and is a substrate of the intramembrane protease γ-secretase.Biochim. Biophys. Acta Mol. Cell Res.20111813233233910.1016/j.bbamcr.2010.12.00521167215
    [Google Scholar]
  18. SantanderC. BrandanE. Betaglycan induces TGF-β signaling in a ligand-independent manner, through activation of the p38 pathway.Cell. Signal.20061891482149110.1016/j.cellsig.2005.11.01116413747
    [Google Scholar]
  19. JiangX. LiuR. LeiZ. YouJ. ZhouQ. ZhangH. Defective expression of TGFBR3 gene and its molecular mechanisms in non-small cell lung cancer cell lines.Zhongguo Fei Ai Za Zhi201013545145720677641
    [Google Scholar]
  20. AhnJ.Y. ParkS. YunY.S. SongJ.Y. Inhibition of type III TGF-β receptor aggravates lung fibrotic process.Biomed. Pharmacother.201064747247610.1016/j.biopha.2010.01.00620359848
    [Google Scholar]
  21. HaoX. WeiH. LncRNA H19 alleviates sepsis-induced acute lung injury by regulating the miR-107/TGFBR3 axis.BMC Pulm. Med.202222137110.1186/s12890‑022‑02091‑y36180862
    [Google Scholar]
  22. LiuC. YangZ. DengZ. ZhouY. GongQ. ZhaoR. ChenT. Upregulated lncRNA ADAMTS9-AS2 suppresses progression of lung cancer through inhibition of miR-223-3p and promotion of TGFBR3.IUBMB Life201870653654610.1002/iub.175229707897
    [Google Scholar]
  23. YaoF. ShiW. LiC. JiangR. LinL. Targeting regulation of TGFBR3 by microRNA-223-3p affects epithelial mesenchymal transformation of lung cancer cells and Wnt /β-catenin pathway.J. Modern Oncol.2022301526732679
    [Google Scholar]
  24. FingerE.C. TurleyR.S. DongM. HowT. FieldsT.A. BlobeG.C. TβRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity.Carcinogenesis200829352853510.1093/carcin/bgm28918174241
    [Google Scholar]
  25. ZouG. WuY. RenB. WuY. ZhuQ. HeJ. LuoZ. Low expression of INHB co-receptor TGFBR3 in connection with metastasis and immune infiltration in lung adenocarcinoma.Am. J. Transl. Res.20221485263527936105051
    [Google Scholar]
  26. HuangJ.J. CoronaA.L. DunnB.P. CaiE.M. PrakkenJ.N. BlobeG.C. Increased type III TGF-β receptor shedding decreases tumorigenesis through induction of epithelial-to-mesenchymal transition.Oncogene201938183402341410.1038/s41388‑018‑0672‑730643193
    [Google Scholar]
  27. WuY.J. LeiJ. ZhaoJ. CaoX.W. WangF.J. Design and characterization of a novel tumor-homing cell-penetrating peptide for drug delivery in TGFBR3 high-expressing tumors.Chem. Biol. Drug Des.202310261421143410.1111/cbdd.1433337620132
    [Google Scholar]
  28. WangX.F. LinH.Y. Ng-EatonE. DownwardJ. LodishH.F. WeinbergR.A. Expression cloning and characterization of the TGF-β type III receptor.Cell199167479780510.1016/0092‑8674(91)90074‑91657407
    [Google Scholar]
  29. CheifetzS. AndresJ.L. MassaguéJ. The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor.J. Biol. Chem.198826332169841699110.1016/S0021‑9258(18)37487‑82903157
    [Google Scholar]
  30. MorénA. IchijoH. MiyazonoK. Molecular cloning and characterization of the human and porcine transforming growth factor-β type III receptors.Biochem. Biophys. Res. Commun.1992189135636210.1016/0006‑291X(92)91566‑91333192
    [Google Scholar]
  31. López-CasillasF. CheifetzS. DoodyJ. AndresJ.L. LaneW.S. MassaguéJ. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-β receptor system.Cell199167478579510.1016/0092‑8674(91)90073‑81657406
    [Google Scholar]
  32. PepinM.C. BeaucheminM. PlamondonJ. O’Con-nor-McCourtM.D. Mapping of the ligand binding domain of the transforming growth factor beta receptor type III by deletion mutagenesis.Proc. Natl. Acad. Sci. USA199491156997700110.1073/pnas.91.15.69978041735
    [Google Scholar]
  33. HempelN. HowT. CooperS.J. GreenT.R. DongM. CoplandJ.A. WoodC.G. BlobeG.C. Expression of the type III TGF-β receptor is negatively regulated by TGF-β.Carcinogenesis200829590591210.1093/carcin/bgn04918299279
    [Google Scholar]
  34. EickelbergO. CentrellaM. ReissM. KashgarianM. WellsR.G. Betaglycan inhibits TGF-beta signaling by preventing type I-type II receptor complex formation. Glycosaminoglycan modifications alter betaglycan function.J. Biol. Chem.2002277182382910.1074/jbc.M10511020011668175
    [Google Scholar]
  35. ShiY. MassaguéJ. Mechanisms of TGF-beta signaling from cell membrane to the nucleus.Cell2003113668570010.1016/S0092‑8674(03)00432‑X12809600
    [Google Scholar]
  36. NakaoA. ImamuraT. SouchelnytskyiS. KawabataM. IshisakiA. OedaE. TamakiK. HanaiJ. HeldinC.H. MiyazonoK. ten DijkeP. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4.EMBO J.199716175353536210.1093/emboj/16.17.53539311995
    [Google Scholar]
  37. SankarS. Mahooti-BrooksN. CentrellaM. McCarthyT.L. MadriJ.A. Expression of transforming growth factor type III receptor in vascular endothelial cells increases their responsiveness to transforming growth factor beta 2.J. Biol. Chem.199527022135671357210.1074/jbc.270.22.135677768960
    [Google Scholar]
  38. TazatK. Hector-GreeneM. BlobeG.C. HenisY.I. TβRIII independently binds type I and type II TGF-β receptors to inhibit TGF-β signaling.Mol. Biol. Cell201526193535354510.1091/mbc.E15‑04‑020326269580
    [Google Scholar]
  39. MeyerA.E. GatzaC.E. HowT. StarrM. NixonA.B. BlobeG.C. Role of TGF-β receptor III localization in polarity and breast cancer progression.Mol. Biol. Cell201425152291230410.1091/mbc.e14‑03‑082524870032
    [Google Scholar]
  40. SongH. YangJ. YuW. Promoter hypomethylation of TGFBR3 as a risk factor of Alzheimer’s disease: An integrated epigenomic-transcriptomic analysis.Front. Cell Dev. Biol.2022982572910.3389/fcell.2021.82572935310542
    [Google Scholar]
  41. XuD. LiD. LuZ. DongX. WangX. Type III TGF-β receptor inhibits cell proliferation and migration in salivary glands adenoid cystic carcinoma by suppressing NF-κB signaling.Oncol. Rep.201635126727410.3892/or.2015.439026531330
    [Google Scholar]
  42. GrayP.C. BilezikjianL.M. ValeW. Erratum to “Antagonism of activin by inhibin and inhibin receptors: A functional role for betaglycan-glycan”.Mol. Cell. Endocrinol.20021881-225326010.1016/S0303‑7207(02)00037‑011911962
    [Google Scholar]
  43. KirkbrideK.C. TownsendT.A. BruinsmaM.W. BarnettJ.V. BlobeG.C. Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor.J. Biol. Chem.2008283127628763710.1074/jbc.M70488320018184661
    [Google Scholar]
  44. BrownC.B. BoyerA.S. RunyanR.B. BarnettJ.V. Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart.Science199928354102080208210.1126/science.283.5410.208010092230
    [Google Scholar]
  45. StenversK.L. TurskyM.L. HarderK.W. KountouriN. Amatayakul-ChantlerS. GrailD. SmallC. WeinbergR.A. SizelandA.M. ZhuH.J. Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos.Mol. Cell. Biol.200323124371438510.1128/MCB.23.12.4371‑4385.200312773577
    [Google Scholar]
  46. ChenW. KirkbrideK.C. HowT. NelsonC.D. MoJ. FrederickJ.P. WangX.F. LefkowitzR.J. BlobeG.C. Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling.Science200330156381394139710.1126/science.108319512958365
    [Google Scholar]
  47. LiD. LiuK. LiZ. WangJ. WangX. miR-19a and miR-424 target TGFBR3 to promote epithelial-to-mesenchymal transition and migration of tongue squamous cell carcinoma cells.Cell Adhes. Migr.201812323624610.1080/19336918.2017.136599229130787
    [Google Scholar]
  48. GordonK.J. DongM. ChislockE.M. FieldsT.A. BlobeG.C. Loss of type III transforming growth factor β receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression.Carcinogenesis200829225226210.1093/carcin/bgm24917999987
    [Google Scholar]
  49. GordonK.J. KirkbrideK.C. HowT. BlobeG.C. Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2.Carcinogenesis200930223824810.1093/carcin/bgn27419056927
    [Google Scholar]
  50. MargulisV. MaityT. ZhangX.Y. CooperS.J. CoplandJ.A. WoodC.G. Type III transforming growth factor-beta (TGF-beta) receptor mediates apoptosis in renal cell carcinoma independent of the canonical TGF-beta signaling pathway.Clin. Cancer Res.200814185722573010.1158/1078‑0432.CCR‑08‑054618794080
    [Google Scholar]
  51. HempelN. HowT. DongM. MurphyS.K. FieldsT.A. BlobeG.C. Loss of betaglycan expression in ovarian cancer: Role in motility and invasion.Cancer Res.200767115231523810.1158/0008‑5472.CAN‑07‑003517522389
    [Google Scholar]
  52. AllisonP. EspirituD. BarnettJ.V. CamenischT.D. Type III TGFβ receptor and Src direct hyaluronan-mediated invasive cell motility.Cell. Signal.201527345345910.1016/j.cellsig.2014.11.03725499979
    [Google Scholar]
  53. MythreyeK. BlobeG.C. The type III TGF-β receptor regulates directional migration: New tricks for an old dog.Cell Cycle20098193069307010.4161/cc.8.19.941919755845
    [Google Scholar]
  54. GatzaC.E. OhS.Y. BlobeG.C. Roles for the type III TGF-β receptor in human cancer.Cell. Signal.20102281163117410.1016/j.cellsig.2010.01.01620153821
    [Google Scholar]
  55. Aleman-MuenchG.R. MendozaV. StenversK. Garcia-ZepedaE.A. Lopez-CasillasF. RamanC. SoldevilaG. Betaglycan (TβRIII) is expressed in the thymus and regulates T cell development by protecting thymocytes from apoptosis.PLoS One201278e4421710.1371/journal.pone.004421722952931
    [Google Scholar]
  56. Ortega-FranciscoS. de la Fuente-GranadaM. Alvarez SalazarE.K. Bolaños-CastroL.A. Fonseca-CamarilloG. Olguin-AlorR. Alemán-MuenchG.R. López-CasillasF. RamanC. García-ZepedaE.A. SoldevilaG. TβRIII is induced by TCR signaling and downregulated in FoxP3+ regulatory T cells.Biochem. Biophys. Res. Commun.20174941-2828710.1016/j.bbrc.2017.10.08129050936
    [Google Scholar]
  57. LuL. MaJ. WangX. WangJ. ZhangF. YuJ. HeG. XuB. BrandD.D. HorwitzD.A. ShiW. ZhengS.G. Synergistic effect of TGF-β superfamily members on the induction of Foxp3 + Treg.Eur. J. Immunol.201040114215210.1002/eji.20093961819943263
    [Google Scholar]
  58. TurleyR.S. FingerE.C. HempelN. HowT. FieldsT.A. BlobeG.C. The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer.Cancer Res.20076731090109810.1158/0008‑5472.CAN‑06‑311717283142
    [Google Scholar]
  59. DongM. HowT. KirkbrideK.C. GordonK.J. LeeJ.D. HempelN. KellyP. MoellerB.J. MarksJ.R. BlobeG.C. The type III TGF-β receptor suppresses breast cancer progression.J. Clin. Invest.2007117120621710.1172/JCI2929317160136
    [Google Scholar]
  60. XuZ. ChenC. Abnormal expression and prognostic significance of bone morphogenetic proteins and their receptors in lung adenocarcinoma.BioMed. Res. Int.2021202112310.1155/2021/666399034036102
    [Google Scholar]
  61. LeeH. JoungJ.G. ShinH.T. KimD.H. KimY. KimH. KwonO.J. ShimY.M. LeeH.Y. LeeK.S. ChoiY.L. ParkW.Y. HayesD.N. UmS.W. Genomic alterations of ground-glass nodular lung adenocarcinoma.Sci. Rep.201881769110.1038/s41598‑018‑25800‑229769567
    [Google Scholar]
  62. RaponiM. ZhangY. YuJ. ChenG. LeeG. TaylorJ.M.G. MacDonaldJ. ThomasD. MoskalukC. WangY. BeerD.G. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung.Cancer Res.200666157466747210.1158/0008‑5472.CAN‑06‑119116885343
    [Google Scholar]
  63. JakowlewS.B. MathiasA. ChungP. MoodyT.W. Expression of transforming growth factor beta ligand and receptor messenger RNAs in lung cancer cell lines.Cell Growth Differ.1995644654767794814
    [Google Scholar]
  64. NørgaardP. Spang-ThomsenM. PoulsenH.S. Expression and autoregulation of transforming growth factor β receptor mRNA in small-cell lung cancer cell lines.Br. J. Cancer19967391037104310.1038/bjc.1996.2018624260
    [Google Scholar]
  65. JiC. ChenY. McCarthyT.L. CentrellaM. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts.J. Biol. Chem.199927443304873049410.1074/jbc.274.43.3048710521429
    [Google Scholar]
  66. BlobeG.C. LiuX. FangS.J. HowT. LodishH.F. A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC.J. Biol. Chem.200127643396083961710.1074/jbc.M10683120011546783
    [Google Scholar]
  67. VicencioA. G. EickelbergO. StankewichM. C. KashgarianM. HaddadG. G. Regulation of TGF-beta ligand and receptor expression in neonatal rat lungs exposed to chronic hypoxia.J. Appl. Physiol. (1985)2002933112330
    [Google Scholar]
  68. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  69. HaM. KimV.N. Regulation of microRNA biogenesis.Nat. Rev. Mol. Cell Biol.201415850952410.1038/nrm383825027649
    [Google Scholar]
  70. StahlhutC. SlackF.J. MicroRNAs and the cancer phenotype: Profiling, signatures and clinical implications.Genome Med.201351211110.1186/gm51624373327
    [Google Scholar]
  71. XieB. XiongW. ZhangF. WangN. LuoY. ChenY. CaoJ. ChenZ. MaC. ChenH. The miR-103a-3p/TGFBR3 axis regulates TGF-β-induced orbital fibroblast activation and fibrosis in thyroid-eye disease.Mol. Cell. Endocrinol.202355911178010.1016/j.mce.2022.11178036179941
    [Google Scholar]
  72. ChitsazzadehV. NguyenT.N. de Mingo PulidoA. BittencourtB.B. DuL. AdelmannC.H. Ortiz RiveraI. NguyenK.A. GuerraL.D. DavisA. NapoliM. MaW. DavisR.E. RajapaksheK. CoarfaC. FloresE.R. TsaiK.Y. miR-181a promotes multiple protumorigenic functions by targeting TGFβR3.J. Invest. Dermatol.2022142719561965.e210.1016/j.jid.2021.09.04034890627
    [Google Scholar]
  73. ZhangN. LiL. LuoJ. TanJ. HuW. LiZ. WangX. YeT. Retracted: Inhibiting microRNA-424 in bone marrow mesenchymal stem cells-derived exosomes suppresses tumor growth in colorectal cancer by upregulating TGFBR3.Arch. Biochem. Biophys.202170910896510.1016/j.abb.2021.10896534129838
    [Google Scholar]
  74. ShenY. ShaoY. RuanX. ZhuL. ZangZ. WeiT. NakyeyuneR. WeiW. LiuF. Genetic variant in miR-17-92 cluster binding sites is associated with esophageal squamous cell carcinoma risk in Chinese population.BMC Cancer2022221125310.1186/s12885‑022‑10360‑636461008
    [Google Scholar]
  75. AndresJ.L. StanleyK. CheifetzS. MassaguéJ. Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-beta.J. Cell Biol.198910963137314510.1083/jcb.109.6.31372592419
    [Google Scholar]
  76. Velasco-LoydenG. ArribasJ. López-CasillasF. The shedding of betaglycan is regulated by pervanadate and mediated by membrane type matrix metalloprotease-1.J. Biol. Chem.200427997721773310.1074/jbc.M30649920014672946
    [Google Scholar]
  77. LamarreJ. VasudevanJ. GoniasS. L. Plasmin cleaves betaglycan and releases a 60 kDa transforming growth factor-beta complex from the cell surface.Biochem J.1994302Pt 1199205
    [Google Scholar]
  78. BandyopadhyayA. ZhuY. MalikS.N. KreisbergJ. BrattainM.G. SpragueE.A. LuoJ. López-CasillasF. SunL-Z. Extracellular domain of TGFβ type III receptor inhibits angiogenesis and tumor growth in human cancer cells.Oncogene200221223541355110.1038/sj.onc.120543912032856
    [Google Scholar]
  79. HanksB.A. HoltzhausenA. EvansK.S. JamiesonR. GimpelP. CampbellO.M. Hector-GreeneM. SunL. TewariA. GeorgeA. StarrM. NixonA. AugustineC. BeasleyG. TylerD.S. OsadaT. MorseM.A. LingL. LyerlyH.K. BlobeG.C. Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment.J. Clin. Invest.201312393925394010.1172/JCI6574523925295
    [Google Scholar]
  80. MassaguéJ. ObenaufA.C. Metastatic colonization by circulating tumour cells.Nature2016529758629830610.1038/nature1703826791720
    [Google Scholar]
  81. MythreyeK. BlobeG.C. The type III TGF-β receptor regulates epithelial and cancer cell migration through β-arrestin2-mediated activation of Cdc42.Proc. Natl. Acad. Sci. USA2009106208221822610.1073/pnas.081287910619416857
    [Google Scholar]
  82. GeigerT.R. PeeperD.S. Metastasis mechanisms.Biochim. Biophys. Acta20091796229330819683560
    [Google Scholar]
  83. XuJ. LamouilleS. DerynckR. TGF-β-induced epithelial to mesenchymal transition.Cell Res.200919215617210.1038/cr.2009.519153598
    [Google Scholar]
  84. MythreyeK. BlobeG.C. Proteoglycan signaling co-receptors: Roles in cell adhesion, migration and invasion.Cell. Signal.200921111548155810.1016/j.cellsig.2009.05.00119427900
    [Google Scholar]
  85. BerthelootD. LatzE. FranklinB.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death.Cell. Mol. Immunol.20211851106112110.1038/s41423‑020‑00630‑333785842
    [Google Scholar]
  86. MoranaO. WoodW. GregoryC.D. The apoptosis paradox in cancer.Int. J. Mol. Sci.2022233132810.3390/ijms2303132835163253
    [Google Scholar]
  87. BiswasU. RoyR. GhoshS. ChakrabartiG. The interplay between autophagy and apoptosis: Its implication in lung cancer and therapeutics.Cancer Lett.202458521666210.1016/j.canlet.2024.21666238309614
    [Google Scholar]
  88. ZhengF. HeK. LiX. ZhaoD. SunF. ZhangY. NieD. LiX. ChuW. SunY. LuY. Transient overexpression of TGFBR3 induces apoptosis in human nasopharyngeal carcinoma CNE-2Z cells.Biosci. Rep.2013332e0002910.1042/BSR2012004723387308
    [Google Scholar]
  89. ZhangX. ChenY. LiZ. HanX. LiangY. TGFBR3 is an independent unfavourable prognostic marker in oesophageal squamous cell cancer and is positively correlated with Ki-67.Int. J. Exp. Pathol.2020101622322910.1111/iep.1238033146446
    [Google Scholar]
  90. JurisicD. ErjavecI. TrkuljaV. Dumic-CuleI. HadzibegovicI. KovacevicL. SvagusaT. StanecZ. VukicevicS. GrgurevicL. Soluble type III TGFβ receptor in diagnosis and follow-up of patients with breast cancer.Growth Factors201533320020926190421
    [Google Scholar]
  91. ListikE. HorstB. ChoiA.S. LeeN.Y. GyőrffyB. MythreyeK. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors.PLoS One2021164e024955810.1371/journal.pone.024955833819300
    [Google Scholar]
  92. NicolA.J. TokuyamaH. MattarolloS.R. HagiT. SuzukiK. YokokawaK. NiedaM. Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours.Br. J. Cancer2011105677878610.1038/bjc.2011.29321847128
    [Google Scholar]
  93. AlamM. AhmadR. RajabiH. KufeD. MUC1-C induces the LIN28B→LET-7→HMGA2 axis to regulate self-renewal in NSCLC.Mol. Cancer Res.201513344946010.1158/1541‑7786.MCR‑14‑036325368430
    [Google Scholar]
  94. GongQ. WangY. ZhuK. BaiX. FengT. SunG. WangM. PanX. QinC. CUL4B enhances the malignant phenotype of esophageal squamous cell carcinoma by suppressing TGFBR3 expression.Biochem. Biophys. Res. Commun.2023676586510.1016/j.bbrc.2023.07.03737487438
    [Google Scholar]
  95. LiuJ.X. ChenA.N. YuQ. ShiK.T. LiuY.B. GuoC.L. WangZ.Z. YaoY. PanL. LuX. XuK. WangH. ZengM. LiuC. SchleimerR.P. WuN. LiaoB. LiuZ. MEX3B inhibits collagen production in eosinophilic nasal polyps by downregulating epithelial cell TGFBR3 mRNA stability.JCI Insight202389e15905810.1172/jci.insight.15905836976645
    [Google Scholar]
  96. ChenX. WangP. OuT. LiJ. KLF16 downregulates the expression of tumor suppressor gene TGFBR3 to promote bladder cancer proliferation and migration.Cancer Manag. Res.20221446547710.2147/CMAR.S33452135173481
    [Google Scholar]
  97. HouX. YangL. WangK. ZhouY. LiQ. KongF. LiuX. HeJ. HELLS, a chromatin remodeler is highly expressed in pancreatic cancer and downregulation of it impairs tumor growth and sensitizes to cisplatin by reexpressing the tumor suppressor TGFBR3.Cancer Med.202110135036410.1002/cam4.362733280236
    [Google Scholar]
  98. SrinivasaraoM. LowP.S. Ligand-targeted drug delivery.Chem. Rev.201711719121331216410.1021/acs.chemrev.7b0001328898067
    [Google Scholar]
  99. YangE. MundyC. RappaportE.F. PacificiM. BillingsP.C. Identification and characterization of a novel heparan sulfate-binding domain in Activin A longest variants and implications for function.PLoS One2019149e022278410.1371/journal.pone.022278431536599
    [Google Scholar]
  100. OuyangX. LiK. WangJ. ZhuW. YiQ. ZhongJ. HMGA2 promotes nasopharyngeal carcinoma progression and is associated with tumor resistance and poor prognosis.Front. Oncol.202413127108010.3389/fonc.2023.127108038304037
    [Google Scholar]
  101. SunX. XuM. LiuH. MingK. MicroRNA-219 is downregulated in non-small cell lung cancer and inhibits cell growth and metastasis by targeting HMGA2.Mol. Med. Rep.20171633557356410.3892/mmr.2017.700028714014
    [Google Scholar]
  102. TayY. KarrethF.A. PandolfiP.P. Aberrant ceRNA activity drives lung cancer.Cell Res.201424325926010.1038/cr.2014.2124525785
    [Google Scholar]
  103. ZhangH.Y. ZhengF.S. YangW. LuJ.B. The long non-coding RNA MIAT regulates zinc finger E-box binding homeobox 1 expression by sponging miR-150 and promoteing cell invasion in non-small-cell lung cancer.Gene2017633616510.1016/j.gene.2017.08.00928843520
    [Google Scholar]
  104. ZhangY. LiX. HouY. FangN. YouJ. ZhouQ. The lncRNA XIST exhibits oncogenic properties via regulation of miR-449a and Bcl-2 in human non-small cell lung cancer.Acta Pharmacol. Sin.201738337138110.1038/aps.2016.13328248928
    [Google Scholar]
  105. XieW. YuanS. SunZ. LiY. Long noncoding and circular RNAs in lung cancer: Advances and perspectives.Epigenomics2016891275128710.2217/epi‑2016‑003627585562
    [Google Scholar]
  106. IqbalM.A. AroraS. PrakasamG. CalinG.A. SyedM.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance.Mol. Aspects Med.20197032010.1016/j.mam.2018.07.00330102929
    [Google Scholar]
  107. ChenQ.F. KongJ.L. ZouS.C. GaoH. WangF. QinS.M. WangW. LncRNA LINC00342 regulated cell growth and metastasis in non-small cell lung cancer via targeting miR-203a-3p.Eur. Rev. Med. Pharmacol. Sci.201923177408741831539128
    [Google Scholar]
  108. Abdul-MaksoudR.S. RashadN.M. ElsayedW.S.H. ElsayedR.S. SherifM.M. AbbasA. El ShabrawyM. The diagnostic significance of circulating lncRNA ADAMTS9-AS2 tumor biomarker in non-small cell lung cancer among the Egyptian population.J. Gene Med.20212312e338110.1002/jgm.338134312940
    [Google Scholar]
  109. LinZ. HuangW. YiY. LiD. XieZ. LiZ. YeM. LncRNA ADAMTS9-AS2 is a prognostic biomarker and correlated with immune infiltrates in lung adenocarcinoma.Int. J. Gen. Med.2021148541855510.2147/IJGM.S34068334849000
    [Google Scholar]
  110. HannahJ. ZhouP. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B.Gene20155731334510.1016/j.gene.2015.08.06426344709
    [Google Scholar]
  111. HuH. YangY. JiQ. ZhaoW. JiangB. LiuR. YuanJ. LiuQ. LiX. ZouY. ShaoC. ShangY. WangY. GongY. CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis.Cancer Cell201222678179510.1016/j.ccr.2012.10.02423238014
    [Google Scholar]
  112. WangX. ChenZ. Knockdown of CUL4B Suppresses the proliferation and invasion in non-small cell lung cancer cells.Oncol. Res.201624427127710.3727/096504016X1466699034747327656838
    [Google Scholar]
  113. DominguezD. FreeseP. AlexisM.S. SuA. HochmanM. PaldenT. BazileC. LambertN.J. Van NostrandE.L. PrattG.A. YeoG.W. GraveleyB.R. BurgeC.B. Sequence, structure, and context preferences of human RNA binding proteins.Mol. Cell2018705854867.e910.1016/j.molcel.2018.05.00129883606
    [Google Scholar]
  114. KilchertC. SträßerK. KunetskyV. ÄnköM.L. From parts lists to functional significance—RNA–protein interactions in gene regulation.Wiley Interdiscip. Rev. RNA2020113e158210.1002/wrna.158231883228
    [Google Scholar]
  115. CastelloA. HorosR. StreinC. FischerB. EichelbaumK. SteinmetzL.M. KrijgsveldJ. HentzeM.W. System-wide identification of RNA-binding proteins by interactome capture.Nat. Protoc.20138349150010.1038/nprot.2013.02023411631
    [Google Scholar]
  116. ConnS.J. PillmanK.A. ToubiaJ. ConnV.M. SalmanidisM. PhillipsC.A. RoslanS. SchreiberA.W. GregoryP.A. GoodallG.J. The RNA binding protein quaking regulates formation of circRNAs.Cell201516061125113410.1016/j.cell.2015.02.01425768908
    [Google Scholar]
  117. KwonS.C. YiH. EichelbaumK. FöhrS. FischerB. YouK.T. CastelloA. KrijgsveldJ. HentzeM.W. KimV.N. The RNA-binding protein repertoire of embryonic stem cells.Nat. Struct. Mol. Biol.20132091122113010.1038/nsmb.263823912277
    [Google Scholar]
  118. MugridgeJ.S. ZiemniakM. JemielityJ. GrossJ.D. Structural basis of mRNA-cap recognition by Dcp1–Dcp2.Nat. Struct. Mol. Biol.2016231198799410.1038/nsmb.330127694842
    [Google Scholar]
  119. ChenX. LiS. KeY. WuS. HuangT. HuW. FuH. GuoX. KLF16 suppresses human glioma cell proliferation and tumourigenicity by targeting TFAM.Artif. Cells Nanomed. Biotechnol.201846sup160861510.1080/21691401.2018.1431654
    [Google Scholar]
  120. MaP. SunC.Q. WangY.F. PanY.T. ChenQ.N. LiuW.T. LiuJ. ZhaoC.H. ShuY.Q. LiW. KLF16 promotes proliferation in gastric cancer cells via regulating p21 and CDK4.Am. J. Transl. Res.2017963027303628670390
    [Google Scholar]
  121. KumarR. LiD-Q. MüllerS. KnappS. Epigenomic regulation of oncogenesis by chromatin remodeling.Oncogene201635344423443610.1038/onc.2015.51326804164
    [Google Scholar]
  122. HeX. YanB. LiuS. JiaJ. LaiW. XinX. TangC. LuoD. TanT. JiangY. ShiY. LiuY. XiaoD. ChenL. LiuS. MaoC. YinG. ChengY. FanJ. CaoY. MueggeK. TaoY. Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase.Cancer Res.201676195743575510.1158/0008‑5472.CAN‑16‑026827302170
    [Google Scholar]
  123. LawC.T. WeiL. TsangF.H.C. ChanC.Y.K. XuI.M.J. LaiR.K.H. HoD.W.H. LeeJ.M.F. WongC.C.L. NgI.O.L. WongC.M. HELLS regulates chromatin remodeling and epigenetic silencing of multiple tumor suppressor genes in human hepatocellular carcinoma.Hepatology20196952013203010.1002/hep.3041430516846
    [Google Scholar]
  124. LiuX. HouX. ZhouY. LiQ. KongF. YanS. LeiS. XiongL. HeJ. Downregulation of the Helicase Lymphoid-Specific (HELLS) Gene impairs cell proliferation and induces cell cycle arrest in colorectal cancer cells.OncoTargets Ther.201912101531016310.2147/OTT.S22366832063710
    [Google Scholar]
  125. YangR. LiuN. ChenL. JiangY. ShiY. MaoC. LiuY. WangM. LaiW. TangH. GaoM. XiaoD. WangX. YuF. CaoY. YanQ. LiuS. TaoY. LSH interacts with and stabilizes GINS4 transcript that promotes tumourigenesis in non-small cell lung cancer.J. Exp. Clin. Cancer Res.201938128010.1186/s13046‑019‑1276‑y31253190
    [Google Scholar]
  126. ChengC.W. HsiaoJ.R. FanC.C. LoY.K. TzenC.Y. WuL.W. FangW.Y. ChengA.J. ChenC.H. ChangI.S. JiangS.S. ChangJ.Y. LeeA.Y.L. Loss of GDF10/BMP3b as a prognostic marker collaborates with TGFBR3 to enhance chemotherapy resistance and epithelial-mesenchymal transition in oral squamous cell carcinoma.Mol. Carcinog.201655549951310.1002/mc.2229725728212
    [Google Scholar]
  127. ChenJ. ShenZ. ZhengY. WangS. MaoW. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated Hotair.Int. J. Clin. Exp. Pathol.2015877878788626339352
    [Google Scholar]
  128. XuJ. SuC. ZhaoF. TaoJ. HuD. ShiA. PanJ. ZhangY. Paclitaxel promotes lung cancer cell apoptosis via MEG3-P53 pathway activation.Biochem. Biophys. Res. Commun.2018504112312810.1016/j.bbrc.2018.08.14230173893
    [Google Scholar]
  129. MaY. YuwenD. ChenJ. ZhengB. GaoJ. FanM. XueW. WangY. LiW. ShuY. XuQ. ShenY. Exosomal transfer of cisplatin-induced miR-425-3p confers cisplatin resistance in NSCLC through activating autophagy.Int. J. Nanomedicine2019148121813210.2147/IJN.S22138331632022
    [Google Scholar]
  130. BandyopadhyayA. López-CasillasF. MalikS.N. MontielJ.L. MendozaV. YangJ. SunL.Z. Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft.Cancer Res.200262164690469512183427
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665315841240731060636
Loading
/content/journals/ppl/10.2174/0109298665315841240731060636
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; expression deficiency; invasion; lung cancer; metastasis; proliferation; TGFBR3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test