-
oa MicroRNA-605-3p Inhibited the Growth and Chemoresistance of Osteosarcoma Cells via Negatively Modulating RAF1
- Source: Protein and Peptide Letters, Volume 31, Issue 7, Jul 2024, p. 559 - 568
-
- 05 Mar 2024
- 30 May 2024
- 01 Jul 2024
- Previous Article
- Table of Contents
- Next Article
Abstract
Osteosarcoma (OS) is the leading cancer-associated mortality in childhood and adolescence. Increasing evidence has demonstrated the key function of microRNAs (miRNAs) in OS development and chemoresistance. Among them, miRNA-605-3p acted as an important tumor suppressor and was frequently down-regulated in multiple cancers. However, the function of miR-650-3p in OS has not been reported.
The aim of this work is to explore the novel role of miR-605-3p in osteosarcoma and its possible involvement in OS chemotherapy resistance.
The expression levels of miR-605-3p in OS tissues and cells were assessed by reverse transcription quantitative PCR (RT-qPCR). The relevance of miR-605-3p with the prognosis of OS patients was determined by the Kaplan-Meier analysis. Additionally, the influence of miR-605-3p on OS cell growth was analyzed using the cell counting kit-8, colony formation assay, and flow cytometry. The mRNA and protein expression of RAF1 were detected by RT-qPCR and western blot. The binding of miR-605-3p with the 3’-UTR of RAF1 was confirmed by dual-luciferase reporter assay.
Our results showed that miR-605-3p was markedly decreased in OS tissues and cells. A lower level of miR-605-3p was strongly correlated with lymph node metastasis and poor 5-year overall survival rate of OS patients. In vitro assay found that miR-605-3p suppressed OS cell proliferation and promoted cell apoptosis. Mechanistically, the proto-oncogene RAF1 was seen as a target of miR-605-3p and strongly suppressed by miR-605-3p in OS cells. Restoration of RAF1 markedly eliminated the inhibitory effect of miR-605-3p on OS progression, suggesting RAF1 as a key mediator of miR-605-3p. Consistent with the decreased level of RAF1, miR-605-3p suppressed the activation of both MEK and ERK in OS cells, which are the targets of RAF1. Moreover, lower levels of miR-605-3p were found in chemoresistant OS patients, and down-regulated miR-605-3p increased the resistance of OS cells to therapeutic agents.
Our data revealed that miR-605-3p serves as a tumor suppressor gene by regulating RAF1 and increasing the chemosensitivity of OS cells, which provided the novel working mechanism of miR-605-3p in OS. Engineering stable nanovesicles that could efficiently deliver miR-605-3p with therapeutic activity into tumors could be a promising therapeutic approach for the treatment of OS.