Skip to content
2000
Volume 31, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Colorectal cancer remains to be the third leading cause of cancer mortality rates. Despite the diverse effects of the miRNA cluster located in of 8q24.21 across various tumors, the specific biological function in colorectal cancer has not been clarified.

Methods

The amplification of the cluster was analyzed with the cBioPortal database, while the expression and survival analysis of the miRNAs in the cluster were obtained from several GEO databases of colorectal cancer. To investigate the functional role of in colorectal cancer, overexpression and silencing experiments were performed by mimic and inhibitor transfection in colorectal cancer cell lines, respectively. Then, the effects of on cell proliferation were assessed through CCK-8, colony formation, and Edu assay. In addition, cell migration was evaluated using wound healing and Transwell assay. Moreover, candidate genes identified through RNA sequencing and predicted databases were identified and validated using PCR and western blot. A Dual-luciferase reporter experiment was conducted to identify as the target gene of .

Results

In colorectal cancer, the cluster exhibited high amplification, and the expression levels of several cluster miRNAs were also significantly increased. Furthermore, was found to be significantly associated with disease-specific survival according to the analysis of GSE17536. Functional experiments demonstrated that transfection of mimic or inhibitor could enhance or decrease cancer cell proliferation and migration. was identified as a target of . Additionally, the overexpression of partially rescued the effect of mimics on tumorigenic abilities in LOVO cells.

Conclusion

positioning in 8q24.21 promotes the proliferation and migration of colorectal cancer cells by targeting .

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665305114240718072029
2024-07-01
2024-11-22
Loading full text...

Full text loading...

References

  1. LiC.G. EcclesM.R. PAX genes in cancer; friends or foes?Front. Genet.20123610.3389/fgene.2012.0000622303411
    [Google Scholar]
  2. GhoussainiM. SongH. KoesslerT. Al OlamaA.A. Kote-JaraiZ. DriverK.E. PooleyK.A. RamusS.J. KjaerS.K. HogdallE. DiCioccioR.A. WhittemoreA.S. GaytherS.A. GilesG.G. GuyM. EdwardsS.M. MorrisonJ. DonovanJ.L. HamdyF.C. DearnaleyD.P. Ardern-JonesA.T. HallA.L. O’BrienL.T. Gehr-SwainB.N. WilkinsonR.A. BrownP.M. HopperJ.L. NealD.E. PharoahP.D.P. PonderB.A.J. EelesR.A. EastonD.F. DunningA.M. Multiple loci with different cancer specificities within the 8q24 gene desert.J. Natl. Cancer Inst.20081001396296610.1093/jnci/djn19018577746
    [Google Scholar]
  3. HaerianM.S. BaumL. HaerianB.S. Association of 8q24.21 loci with the risk of colorectal cancer: A systematic review and meta-analysis.J. Gastroenterol. Hepatol.201126101475148410.1111/j.1440‑1746.2011.06831.x21722176
    [Google Scholar]
  4. WilsonC. KanhereA. 8q24.21 locus: A paradigm to link non-coding rnas, genome polymorphisms and cancer.Int. J. Mol. Sci.2021223109410.3390/ijms2203109433499210
    [Google Scholar]
  5. HaimanC.A. PattersonN. FreedmanM.L. MyersS.R. PikeM.C. WaliszewskaA. NeubauerJ. TandonA. SchirmerC. McDonaldG.J. GreenwayS.C. StramD.O. Le MarchandL. KolonelL.N. FrascoM. WongD. PoolerL.C. ArdlieK. Oakley-GirvanI. WhittemoreA.S. CooneyK.A. JohnE.M. InglesS.A. AltshulerD. HendersonB.E. ReichD. Multiple regions within 8q24 independently affect risk for prostate cancer.Nat. Genet.200739563864410.1038/ng201517401364
    [Google Scholar]
  6. ChinK. DeVriesS. FridlyandJ. SpellmanP.T. RoydasguptaR. KuoW.L. LapukA. NeveR.M. QianZ. RyderT. ChenF. FeilerH. TokuyasuT. KingsleyC. DairkeeS. MengZ. ChewK. PinkelD. JainA. LjungB.M. EssermanL. AlbertsonD.G. WaldmanF.M. GrayJ.W. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies.Cancer Cell200610652954110.1016/j.ccr.2006.10.00917157792
    [Google Scholar]
  7. DouglasE.J. FieglerH. RowanA. HalfordS. BicknellD.C. BodmerW. TomlinsonI.P.M. CarterN.P. Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas.Cancer Res.200464144817482510.1158/0008‑5472.CAN‑04‑032815256451
    [Google Scholar]
  8. ArakawaN. SugaiT. HabanoW. EizukaM. SugimotoR. AkasakaR. ToyaY. YamamotoE. KoedaK. SasakiA. MatsumotoT. SuzukiH. Genome-wide analysis of DNA copy number alterations in early and advanced gastric cancers.Mol. Carcinog.201756252753710.1002/mc.2251427312513
    [Google Scholar]
  9. van DuinM. van MarionR. VissersK. WatsonJ.E.V. van WeerdenW.M. SchröderF.H. HopW.C.J. van der KwastT.H. CollinsC. van DekkenH. High-resolution array comparative genomic hybridization of chromosome arm 8q: Evaluation of genetic progression markers for prostate cancer.Genes Chromosomes Cancer200544443844910.1002/gcc.2025916130124
    [Google Scholar]
  10. TaylorB.S. SchultzN. HieronymusH. GopalanA. XiaoY. CarverB.S. AroraV.K. KaushikP. CeramiE. RevaB. AntipinY. MitsiadesN. LandersT. DolgalevI. MajorJ.E. WilsonM. SocciN.D. LashA.E. HeguyA. EasthamJ.A. ScherH.I. ReuterV.E. ScardinoP.T. SanderC. SawyersC.L. GeraldW.L. Integrative genomic profiling of human prostate cancer.Cancer Cell2010181112210.1016/j.ccr.2010.05.02620579941
    [Google Scholar]
  11. PomerantzM.M. AhmadiyehN. JiaL. HermanP. VerziM.P. DoddapaneniH. BeckwithC.A. ChanJ.A. HillsA. DavisM. YaoK. KehoeS.M. LenzH.J. HaimanC.A. YanC. HendersonB.E. FrenkelB. BarretinaJ. BassA. TaberneroJ. BaselgaJ. ReganM.M. ManakJ.R. ShivdasaniR. CoetzeeG.A. FreedmanM.L. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer.Nat. Genet.200941888288410.1038/ng.40319561607
    [Google Scholar]
  12. TuupanenS. TurunenM. LehtonenR. HallikasO. VanharantaS. KiviojaT. BjörklundM. WeiG. YanJ. NiittymäkiI. MecklinJ.P. JärvinenH. RistimäkiA. Di-BernardoM. EastP. Carvajal-CarmonaL. HoulstonR.S. TomlinsonI. PalinK. UkkonenE. KarhuA. TaipaleJ. AaltonenL.A. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling.Nat. Genet.200941888589010.1038/ng.40619561604
    [Google Scholar]
  13. DangC.V. O’DonnellK.A. ZellerK.I. NguyenT. OsthusR.C. LiF. The c-Myc target gene network.Semin. Cancer Biol.200616425326410.1016/j.semcancer.2006.07.01416904903
    [Google Scholar]
  14. SinghA.M. DaltonS. The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming.Cell Stem Cell20095214114910.1016/j.stem.2009.07.00319664987
    [Google Scholar]
  15. StineZ.E. WaltonZ.E. AltmanB.J. HsiehA.L. DangC.V. MYC, metabolism, and cancer.Cancer Discov.20155101024103910.1158/2159‑8290.CD‑15‑050726382145
    [Google Scholar]
  16. CollerH.A. GrandoriC. TamayoP. ColbertT. LanderE.S. EisenmanR.N. GolubT.R. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion.Proc. Natl. Acad. Sci. USA20009773260326510.1073/pnas.97.7.326010737792
    [Google Scholar]
  17. RenD. ZhuangX. LvY. ZhangY. XuJ. GaoF. ChenD. WangY. FAM84B promotes the proliferation of glioma cells through the cell cycle pathways.World J. Surg. Oncol.202220136810.1186/s12957‑022‑02831‑836419094
    [Google Scholar]
  18. ZhangY. DuP. LiY. ZhuQ. SongX. LiuS. HaoJ. LiuL. LiuF. HuY. JiangL. MaQ. LuW. LiuY. TASP1 promotes gallbladder cancer cell proliferation and metastasis by up-regulating FAM49B via PI3K/AKT pathway.Int. J. Biol. Sci.202016573975110.7150/ijbs.4051632071545
    [Google Scholar]
  19. XieW. HanZ. ZuoZ. XinD. ChenH. HuangJ. ZhuS. LouH. YuZ. ChenC. ChenS. HuY. HuangJ. ZhangF. NiZ. ShenX. XueX. LinK. ASAP1 activates the IQGAP1/CDC42 pathway to promote tumor progression and chemotherapy resistance in gastric cancer.Cell Death Dis.202314212410.1038/s41419‑023‑05648‑936792578
    [Google Scholar]
  20. GuY. LinX. KapoorA. ChowM.J. JiangY. ZhaoK. TangD. The oncogenic potential of the centromeric border protein FAM84B of the 8q24.21 gene desert.Genes202011331210.3390/genes1103031232183428
    [Google Scholar]
  21. TolomeoD. AgostiniA. VisciG. TraversaD. StorlazziC.T. PVT1: A long non-coding RNA recurrently involved in neoplasia-associated fusion transcripts.Gene202177914549710.1016/j.gene.2021.14549733600954
    [Google Scholar]
  22. OzawaT. MatsuyamaT. ToiyamaY. TakahashiN. IshikawaT. UetakeH. YamadaY. KusunokiM. CalinG. GoelA. CCAT1 and CCAT2 long noncoding RNAs, located within the 8q.24.21 ‘gene desert’, serve as important prognostic biomarkers in colorectal cancer.Ann. Oncol.20172881882188810.1093/annonc/mdx24828838211
    [Google Scholar]
  23. DrydenN.H. BroomeL.R. DudbridgeF. JohnsonN. OrrN. SchoenfelderS. NaganoT. AndrewsS. WingettS. KozarewaI. AssiotisI. FenwickK. MaguireS.L. CampbellJ. NatrajanR. LambrosM. PerrakisE. AshworthA. FraserP. FletcherO. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C.Genome Res.201424111854186810.1101/gr.175034.11425122612
    [Google Scholar]
  24. Martínez-BarriocanalÁ. ArangoD. DopesoH. PVT1 long non-coding rna in gastrointestinal cancer.Front. Oncol.2020103810.3389/fonc.2020.0003832083000
    [Google Scholar]
  25. JinK. WangS. ZhangY. XiaM. MoY. LiX. LiG. ZengZ. XiongW. HeY. Long non-coding RNA PVT1 interacts with MYC and its downstream molecules to synergistically promote tumorigenesis.Cell. Mol. Life Sci.201976214275428910.1007/s00018‑019‑03222‑131309249
    [Google Scholar]
  26. KimE.A. JangJ.H. SungE.G. SongI.H. KimJ.Y. LeeT.J. MiR-1208 increases the sensitivity to cisplatin by targeting TBCK in renal cancer cells.Int. J. Mol. Sci.20192014354010.3390/ijms2014354031331056
    [Google Scholar]
  27. HeF. SongZ. ChenH. ChenZ. YangP. LiW. YangZ. ZhangT. WangF. WeiJ. WeiF. WangQ. CaoJ. Long noncoding RNA PVT1-214 promotes proliferation and invasion of colorectal cancer by stabilizing Lin28 and interacting with miR-128.Oncogene201938216417910.1038/s41388‑018‑0432‑830076414
    [Google Scholar]
  28. ChenS. ShenX. Long noncoding RNAs: Functions and mechanisms in colon cancer.Mol. Cancer202019116710.1186/s12943‑020‑01287‑233246471
    [Google Scholar]
  29. OnagoruwaO.T. PalG. OchuC. OgunwobiO.O. Oncogenic role of PVT1 and therapeutic implications.Front. Oncol.2020101710.3389/fonc.2020.0001732117705
    [Google Scholar]
  30. LiM. YueW. LiQ. YuW. LiY. CaoX. CircularR.N.A. Circular RNA Circ_0000098 elevates ALX4 expression via adsorbing mir-1204 to inhibit the progression of hepatocellular carcinoma.Front. Oncol.20211169607810.3389/fonc.2021.69607834900665
    [Google Scholar]
  31. WangY. LiX. LiuW. LiB. ChenD. HuF. WangL. LiuX.M. CuiR. LiuR. MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer.Oncogene201938244820483410.1038/s41388‑019‑0760‑330808975
    [Google Scholar]
  32. YuS. WangM. ZhangH. GuoX. QinR. Circ_0092367 inhibits EMT and gemcitabine resistance in pancreatic cancer via regulating the miR-1206/ESRP1 axis.Genes20211211170110.3390/genes1211170134828307
    [Google Scholar]
  33. YanC. ChenY. KongW. FuL. LiuY. YaoQ. YuanY. PVT 1- derived miR-1207-5p promotes breast cancer cell growth by targeting STAT 6.Cancer Sci.2017108586887610.1111/cas.1321228235236
    [Google Scholar]
  34. HouX. NiuZ. LiuL. GuoQ. LiH. YangX. ZhangX. miR-1207-5p regulates the sensitivity of triple-negative breast cancer cells to Taxol treatment via the suppression of LZTS1 expression.Oncol. Lett.201810.3892/ol.2018.968730655858
    [Google Scholar]
  35. ChenD. WangZ. ZengZ. WuW. ZhangD. LuoH. WangF. QiuM. WangD. RenC. WangF. ChiaoL.J. PelicanoH. HuangP. LiY. XuR. Identification of MicroRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression.Hepatology201460259860910.1002/hep.2711824616020
    [Google Scholar]
  36. KassambaraA. RèmeT. JourdanM. FestT. HoseD. TarteK. KleinB. KleinB. GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells.PLOS Comput. Biol.2015111e100407710.1371/journal.pcbi.100407725633866
    [Google Scholar]
  37. JiW. BianZ. YuY. YuanC. LiuY. YuL. LiC. ZhuJ. JiaX. GuanR. ZhangC. MengX. JinY. BaiJ. YuJ. LeeK.Y. SunW. FuS. Expulsion of micronuclei containing amplified genes contributes to a decrease in double minute chromosomes from malignant tumor cells.Int. J. Cancer201413461279128810.1002/ijc.2846724027017
    [Google Scholar]
  38. ZhuJ. YuY. MengX. FanY. ZhangY. ZhouC. YueZ. JinY. ZhangC. YuL. JiW. JiaX. GuanR. WuJ. YuJ. BaiJ. GuanX.Y. WangM. LeeK.Y. SunW. FuS. De novo -generated small palindromes are characteristic of amplicon boundary junction of double minutes.Int. J. Cancer2013133479780610.1002/ijc.2808423382041
    [Google Scholar]
  39. ZhangM. VolpertO. ShiY.H. BouckN. Maspin is an angiogenesis inhibitor.Nat. Med.20006219619910.1038/7230310655109
    [Google Scholar]
  40. TuZ. LiK. JiQ. HuangY. LvS. LiJ. WuL. HuangK. ZhuX. Pan-cancer analysis: predictive role of TAP1 in cancer prognosis and response to immunotherapy.BMC Cancer202323113310.1186/s12885‑022‑10491‑w36759763
    [Google Scholar]
  41. Collados RodríguezM. The fate of speckled protein 100 (Sp100) during herpesviruses infection.Front. Cell. Infect. Microbiol.20211060752610.3389/fcimb.2020.60752633598438
    [Google Scholar]
  42. FraschillaI. JeffreyK.L. The Speckled Protein (SP) family: Immunity’s chromatin readers.Trends Immunol.202041757258510.1016/j.it.2020.04.00732386862
    [Google Scholar]
  43. ChenE.I. YatesJ.R.III Maspin and tumor metastasis.IUBMB Life2006581252910.1080/1521654050053172116540429
    [Google Scholar]
  44. Khalkhali-EllisZ. Maspin: the new frontier.Clin. Cancer Res.200612247279728310.1158/1078‑0432.CCR‑06‑158917189399
    [Google Scholar]
  45. ZhangW. ShiH.Y. ZhangM. Maspin overexpression modulates tumor cell apoptosis through the regulation of Bcl-2 family proteins.BMC Cancer2005515010.1186/1471‑2407‑5‑5015907209
    [Google Scholar]
  46. ZhaoX. ShenF. MaJ. ZhaoS. MengL. WangX. LiangS. LiangJ. HuC. ZhangX. CREB1-induced miR-1204 promoted malignant phenotype of glioblastoma through targeting NR3C2.Cancer Cell Int.202020111110.1186/s12935‑020‑01176‑032280303
    [Google Scholar]
  47. NaidooM. LevineF. GillotT. OrunmuyiA.T. Olapade-OlaopaE.O. AliT. KrampisK. PanC. DorsaintP. SbonerA. OgunwobiO.O. MicroRNA-1205 regulation of FRYL in prostate cancer.Front. Cell Dev. Biol.2021964748510.3389/fcell.2021.64748534386489
    [Google Scholar]
  48. XuH. HeY. LinL. LiM. ZhouZ. YangY. MiR-1207-5p targets PYCR1 to inhibit the progression of prostate cancer.Biochem. Biophys. Res. Commun.2021575566410.1016/j.bbrc.2021.08.03734461437
    [Google Scholar]
  49. WuY. DaiF. ZhangY. ZhengX. LiL. ZhangY. CaoJ. GaoW. miR-1207-5p suppresses laryngeal squamous cell carcinoma progression by downregulating SKA3 and inhibiting epithelial-mesenchymal transition.Mol. Ther. Oncolytics20212215216510.1016/j.omto.2021.08.00134514096
    [Google Scholar]
  50. JiangN. ZhaoL. ZongD. YinL. WuL. ChenC. SongX. ZhangQ. JiangX. HeX. FengJ. Long non-coding RNA LUADT1 promotes nasopharyngeal carcinoma cell proliferation and invasion by downregulating miR-1207-5p.Bioengineered2021122107161072810.1080/21655979.2021.200195234738862
    [Google Scholar]
  51. YouL. WangH. YangG. ZhaoF. ZhangJ. LiuZ. ZhangT. LiangZ. LiuC. ZhaoY. Gemcitabine exhibits a suppressive effect on pancreatic cancer cell growth by regulating processing of PVT 1 to miR1207.Mol. Oncol.201812122147216410.1002/1878‑0261.1239330341811
    [Google Scholar]
  52. ShoshaniO. BrunnerS.F. YaegerR. LyP. Nechemia-ArbelyY. KimD.H. FangR. CastillonG.A. YuM. LiJ.S.Z. SunY. EllismanM.H. RenB. CampbellP.J. ClevelandD.W. Chromothripsis drives the evolution of gene amplification in cancer.Nature2021591784813714110.1038/s41586‑020‑03064‑z33361815
    [Google Scholar]
  53. MatsuiA. IharaT. SudaH. MikamiH. SembaK. Gene amplification: mechanisms and involvement in cancer.Biomol. Concepts20134656758210.1515/bmc‑2013‑002625436757
    [Google Scholar]
  54. BudakotiM. PanwarA.S. MolpaD. SinghR.K. BüsselbergD. MishraA.P. CoutinhoH.D.M. NigamM. Micro-RNA: The darkhorse of cancer.Cell. Signal.20218310999510.1016/j.cellsig.2021.10999533785398
    [Google Scholar]
  55. LeeY.S. DuttaA. MicroRNAs in Cancer.Annu. Rev. Pathol.20094119922710.1146/annurev.pathol.4.110807.09222218817506
    [Google Scholar]
  56. TafrihiM. HasheminasabE. MiRNAs: Biology, biogenesis, their web-based tools, and databases.MicroRNA20188142710.2174/221153660766618082711163330147022
    [Google Scholar]
  57. BartelD.P. MicroRNAs: Target recognition and regulatory functions.Cell2009136221523310.1016/j.cell.2009.01.00219167326
    [Google Scholar]
  58. Ali SyedaZ. LangdenS.S.S. MunkhzulC. LeeM. SongS.J. Regulatory mechanism of MicroRNA expression in cancer.Int. J. Mol. Sci.2020215172310.3390/ijms2105172332138313
    [Google Scholar]
  59. FabianM.R. SonenbergN. FilipowiczW. Regulation of mRNA translation and stability by microRNAs.Annu. Rev. Biochem.201079135137910.1146/annurev‑biochem‑060308‑10310320533884
    [Google Scholar]
  60. BerardiR. MorgeseF. OnofriA. MazzantiP. PistelliM. BallatoreZ. SaviniA. De LisaM. CaramantiM. RinaldiS. PagliarettaS. SantoniM. PierantoniC. CascinuS. Role of maspin in cancer.Clin. Transl. Med.201321e810.1186/2001‑1326‑2‑823497644
    [Google Scholar]
  61. BodenstineT.M. SeftorR.E.B. Khalkhali-EllisZ. SeftorE.A. PembertonP.A. HendrixM.J.C. Maspin: molecular mechanisms and therapeutic implications.Cancer Metastasis Rev.2012313-452955110.1007/s10555‑012‑9361‑022752408
    [Google Scholar]
  62. UmekitaY. OhiY. SoudaM. RaiY. SagaraY. SagaraY. TamadaS. TanimotoA. Maspin expression is frequent and correlates with basal markers in triple-negative breast cancer.Diagn. Pathol.2011613610.1186/1746‑1596‑6‑3621496280
    [Google Scholar]
  63. LonardoF. LiX. KaplunA. SoubaniA. SethiS. GadgeelS. ShengS. The natural tumor suppressor protein maspin and potential application in non small cell lung cancer.Curr. Pharm. Des.201016161877188110.2174/13816121079120897420337574
    [Google Scholar]
  64. ZhengH.C. GongB.C. The roles of maspin expression in gastric cancer: a meta- and bioinformatics analysis.Oncotarget2017839664766649010.18632/oncotarget.2019229029529
    [Google Scholar]
  65. GurzuS. JungI. Subcellular expression of maspin in colorectal cancer: Friend or foe.Cancers (Basel)202113336610.3390/cancers1303036633498377
    [Google Scholar]
  66. GouletB. ChanG. ChambersA.F. LewisJ.D. An emerging role for the nuclear localization of maspin in the suppression of tumor progression and metastasis 1 This article is part of Special Issue entitled Asilomar Chromatin and has undergone the Journal’s usual peer review process.Biochem. Cell Biol.2012901223810.1139/o11‑05322047058
    [Google Scholar]
  67. WangN. ChangL.L. Maspin suppresses cell invasion and migration in gastric cancer through inhibiting EMT and angiogenesis via ITGB1/FAK pathway.Hum. Cell202033366367510.1007/s13577‑020‑00345‑732409959
    [Google Scholar]
  68. LockettJ. YinS. LiX. MengY. ShengS. Tumor suppressive maspin and epithelial homeostasis.J. Cell. Biochem.200697465166010.1002/jcb.2072116329135
    [Google Scholar]
  69. LinY.H. TsuiK.H. ChangK.S. HouC.P. FengT.H. JuangH.H. Maspin is a PTEN-upregulated and p53-upregulated tumor suppressor gene and acts as an HDAC1 inhibitor in human bladder cancer.Cancers20191211010.3390/cancers1201001031861435
    [Google Scholar]
  70. Nehad Abd El-MaqsoudE.R.T. Loss of maspin expression in bladder cancer: Its relationship with p53 and clinicopathological parameters.J. Egypt. Natl. Canc. Inst.2010221112
    [Google Scholar]
  71. ZhuS. WuH. WuF. NieD. ShengS. MoY.Y. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis.Cell Res.200818335035910.1038/cr.2008.2418270520
    [Google Scholar]
  72. SongJ.H. MeltzerS.J. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers.Gastroenterology201214313547.e210.1053/j.gastro.2012.05.00322580099
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665305114240718072029
Loading
/content/journals/ppl/10.2174/0109298665305114240718072029
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): colorectal cancer; DNA amplification; LOVO cells; MASPIN; miR-1204; tumorigenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test