Skip to content
2000
Volume 23, Issue 2
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Solvent perturbation was used to study variations in structure of Arisaema helliborifolium lectin (AHL) with the help of circular dichroism (CD), intrinsic fluorescence (IF), extrinsic fluorescence, quenching and dynamic light scattering (DLS). AHL was studied under acidic, alkaline and 6 M guanidine hydrochloride (GuHCl) equilibrium states. Three structural states were identified for AHL at different conditions, that are native (N; pH 7.0), molten globule (MG; pH 2.0) and unfolded (U; pH 12.0). CD analysis revealed that 50% of secondary structure of AHL was β-sheet component. A complete loss of secondary structure was observed at GuHCl treatment. The tertiary structural changes as studied by changes in microenvironment of trp residues also suggested a pH induced MG state as in case of CD. Parameter-A analysis pointed at the multi-step unfolding process of lectin under varying pH (pH 1-13). A comparision of CD and IF data further indicated that different pathways were followed for secondary and tertiary structure unfolding. Tryptophans of native AHL were only partially exposed to solvent belonging to Class II. Hydrodynamic diameter (Dh ) measurements of AHL via DLS also confirmed of a pH induced molten globule. A thermally induced molten globule was identified for AHL between 54-60 °C as monitored by DLS. An irreversible thermal denaturation was observed with the formation of a large aggregate. The Dh of AHL at neutral pH was confirmed by transmission electron microscopy (TEM).

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0929866523666151111144026
2016-02-01
2024-11-27
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/0929866523666151111144026
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test